[1] |
WANG Y C, JIANG D M, TOSHIO O, et al. Recent advances in soil seed bank research[J]. Contemp Probl Ecol, 2013, 6(5):520-524.DOI:10.1134/s1995425513050181.
|
[2] |
LAMONT B B, PAUSAS J G, HE T H, et al. Fire as a selective agent for both serotiny and nonserotiny over space and time[J]. Crit Rev Plant Sci, 2020, 39(2):140-172.DOI:10.1080/07352689.2020.1768465.
|
[3] |
马君, 刘志民. 植冠种子库及其生态意义研究[J]. 生态学杂志, 2005, 24(11):1329-1333.
|
|
MA J, LIU Z M. Canopy seed bank and its ecological significance:a review[J]. Chin J Ecol, 2005, 24(11):1329-1333.DOI: 10.13292/j.1000-4890.2005.0154.
|
[4] |
AGUADO M, VICENTE M J, MIRALLES J, et al. Aerial seed bank and dispersal traits in Anthemis chrysantha (Asteraceae),a critically endangered species[J]. Flora Morphol Distribution Funct Ecol Plants, 2012, 207(4):275-282.DOI:10.1016/j.flora.2012.02.002.
|
[5] |
BHATT A, PHONDANI P C, PHARTYAL S S, et al. Influence of aerial seed banks on germination response in three desert plant species[J]. J Plant Ecol, 2016, 10(6):994-1000.DOI:10.1093/jpe/rtw113.
|
[6] |
苏文华, 崔凤涛, 赵元蛟, 等. 云南松球果延迟开放及其植冠种子库[J]. 生态学报, 2017, 37(2):541-548.
|
|
SU W H, CUI F T, ZHAO Y J, et al. Canopy seed bank and serotinous cones of Pinus yunnanensis forests[J]. Acta Ecol Sin, 2017, 37(2):541-548.DOI:10.5846/stxb201507041414.
|
[7] |
SU W H, YU J E, ZHANG G F, et al. Comparison of the canopy and soil seed banks of Pinus yunnanensis in central Yunnan,China[J]. For Ecol Manag, 2019, 437:41-48.DOI:10.1016/j.foreco.2019.01.002.
|
[8] |
邓志军, 宋松泉, 艾训儒. 植物种子保存和检测的原理与技术[M]. 北京: 科学出版社, 2019.
|
|
DENG Z J, SONG S Q, AI X R. The principle and technology of plant seed preservation and detection[M]. Beijing: Science Press, 2019.
|
[9] |
李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学, 2015, 48(4):646-660.
|
|
LI Z H, WANG J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Sci Agric Sin, 2015, 48(4):646-660.DOI:10.3864/j.issn.0578-1752.2015.04.03.
|
[10] |
陈快. 吸湿-回干循环对水杉种子活力的影响[D]. 恩施: 湖北民族大学, 2020.
|
|
CHEN K. Effect of hydration-dehydration cycles on seed vigor of Metasequoia glyptostroboides[D]. Enshi: Hubei Minzu University, 2020.
|
[11] |
LIU H, ZHU Y F, LIU X, et al. Effect of artificially accelerated aging on the vigor of Metasequoia glyptostroboides seeds[J]. J For Res, 2020, 31(3):769-779.DOI:10.1007/s11676-018-0840-1.
|
[12] |
中国科学院中国植物志编辑委员会. 中国植物志:第47卷第1册[M]. 北京: 科学出版社, 1985: 56.
|
|
Editorial committee of flora of China, CAS. Flora of China:vol.47(1)[M]. Beijing: Science Press, 1985: 56.
|
[13] |
钟军弟, 蔡进改, 张涛, 等. 复羽叶栾树育苗基质配方的筛选[J]. 北方园艺, 2017(4):83-89.
|
|
ZHONG J D, CAI J G, ZHANG T, et al. Screening of substrate formula for seedling of Koelreuteria bipinnata[J]. North Hortic, 2017(4):83-89.DOI:10.11937/bfyy.201704019.
|
[14] |
TAWFIK A, IBRAHIM O,TAHA. Micropropagation of Koelreuteria bipinnata using juvenile and mature explants[J]. Curr J Appl Sci Technol, 2021, 20(3):470-478.DOI:10.14456/cast.2020.31.
|
[15] |
YANG Y, YANG Y, YU Y, et al. First report of rust disease on Koelreuteria bipinnata caused by Nyssopsora koelreuteriae in China[J]. Plant Dis, 2016, 100(5):1014.DOI:10.1094/pdis-10-15-1182-pdn.
|
[16] |
CAO L M, LIU J H, LIN Q, et al. The floral organogenesis of Koelreuteria bipinnata and its variety K.bipinnata var. integrifolia (Sapindaceae):evidence of floral constraints on the evolution of monosymmetry[J]. Plant Syst Evol, 2018, 304(8):923-935.DOI:10.1007/s00606-018-1519-y.
|
[17] |
LUO Z H, TIAN D L, NING C, et al. Roles of Koelreuteria bipinnata as a suitable accumulator tree species in remediating Mn,Zn,Pb,and Cd pollution on Mn mining wastelands in Southern China[J]. Environ Earth Sci, 2015, 74(5):4549-4559.DOI:10.1007/s12665-015-4510-8.
|
[18] |
李萧萧. 复羽叶栾树对Cd、Pb污染的修复潜力研究[D]. 重庆: 西南大学, 2019.
|
|
LI X X. Study on remediation potential of Koelreuteria bipinnate Franch. for Cd and Pb pollution[D]. Chongqing: Southwest University, 2019.
|
[19] |
冯景, 沈永宝, 史锋厚. 银杏种子脱水敏感性的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6):193-200.
|
|
FENG J, SHEN Y B, SHI F H. Study on desiccation sensitivity of Ginkgo biloba seeds[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):193-200.DOI:10.3969/j.issn.1000-2006.201808026.
|
[20] |
宋松泉. 种子生物学研究指南[M]. 北京: 科学出版社, 2005: 61-62.
|
|
SONG S Q. Seed biology research guide[M]. Beijing: Science Press, 2005: 61-62.
|
[21] |
HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts.I: kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1968,125(1):189-198.
|
[22] |
RAO K V M, SRESTY T V S. Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses[J]. Plant Science, 2000, 157(1): 113-128.DOI:10.1016/S0168-9452(00)00273-9.
|
[23] |
NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880.DOI:10.1093/oxfordjournals.pcp.a076232.
|
[24] |
LÜCK H. Catalase[C]// BERGMEYER H U. Methods of enzymatic analysis. New York: Academic Press, 1965: 885-894.
|
[25] |
ARRIGONI O, DE GARA L, TOMMASI F, et al. Changes in the ascorbate system during seed development of Vicia faba L[J]. Plant Physiol, 1992, 99(1):235-238.DOI:10.1104/pp.99.1.235.
|
[26] |
DIAS D C F S, RIBEIRO F P, DIAS L A S, et al. Tomato seed quality in relation to fruit maturation and post-harvest storage[J]. Seed Sci Technol, 2006, 34(3):691-699.DOI:10.15258/sst.2006.34.3.15.
|
[27] |
BARBEDO A S.C, ZANIN A C.W, BARBEDO C J et al. Efeitos da idade e do periodo de repouso pós-colheita dos frutos sobre a qualidade de sementes de berinjela[J]. Horticultura Brasileira, 1994, 12(1): 14-18
|
[28] |
DENG Z J, HU X F, AI X R, et al. Dormancy release of Cotinus coggygria seeds under a pre-cold moist stratification:an endogenous abscisic acid/gibberellic acid and comparative proteomic analysis[J]. New For, 2016, 47(1):105-118.DOI:10.1007/s11056-015-9496-2.
|
[29] |
BASKIN C C, CHESSON P L, BASKIN J M. Annual seed dormancy cycles in two desert winter annuals[J]. J Ecol, 1993, 81(3):551.DOI:10.2307/2261533.
|
[30] |
FINCH-SAVAGE W E, FOOTITT S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments[J]. J Exp Bot, 2017, 68(4):843-856.DOI:10.1093/jxb/erw477.
|
[31] |
LIMA A T, MEIADO M V. Effect of hydration and dehydration cycles on Mimosa tenuiflora seeds during germination and initial development[J]. S Afr N J Bot, 2018, 116:164-167.DOI:10.1016/j.sajb.2018.03.017.
|
[32] |
TRINDADE LIMA A, MARIA DE OLIVEIRA D, VINICIUS MEIADO M. Effect of hydration and dehydration cycles on Macroptilium atropurpureum seeds germination under water deficit conditions[J]. Commun Plant Sci, 2018, 8(1):55-61.DOI:10.26814/cps2018008.
|
[33] |
SOEDA Y, KONINGS M C J M, VORST O, et al. Gene expression programs during Brassica oleracea seed maturation,osmopriming,and germination are indicators of progression of the germination process and the stress tolerance level[J]. Plant Physiol, 2005, 137(1):354-368.DOI:10.1104/pp.104.051664.
|
[34] |
POLLE A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling:computer simulations as a step towards flux analysis[J]. Plant Physiol, 2001, 126(1):445-462.DOI:10.1104/pp.126.1.445.
|
[35] |
DESIKAN R, A-H-MACKERNESS S, HANCOCK J T, et al. Regulation of the Arabidopsis transcriptome by oxidative stress[J]. Plant Physiol, 2001, 127(1):159-172.DOI:10.1104/pp.127.1.159.
|
[36] |
KNIGHT H, KNIGHT M R. Abiotic stress signalling pathways:specificity and cross-talk[J]. Trends Plant Sci, 2001, 6(6):262-267.DOI:10.1016/s1360-1385(01)01946-x.
|
[37] |
MITTLER R. Oxidative stress,antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7(9):405-410.DOI:10.1016/S1360-1385(02)02312-9.
|
[38] |
程淑娟, 唐东芹, 刘群录. 盐胁迫对两种忍冬属植物活性氧平衡的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(1):137-141.
|
|
CHENG S J, TANG D Q, LIU Q L. Reactive oxygen species homeostasis of two Lonicera species under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(1):137-141.
|
[39] |
BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:83-116.DOI:10.1146/annurev.pp.43.060192.000503.
|
[40] |
WILLEKENS H, CHAMNONGPOL S, DAVEY M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants[J]. EMBO J, 1997, 16(16):4806-4816.DOI:10.1093/emboj/16.16.4806.
|