南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3): 87-96.doi: 10.12302/j.issn.1000-2006.202205037
张赟齐1(), 董宁光1, 郝艳宾1, 陈永浩1, 张俊佩2,*(), 侯智霞3, 苏淑钗3, 吴佳庆1, 齐建勋1,*()
收稿日期:
2022-05-21
修回日期:
2022-07-09
出版日期:
2023-05-30
发布日期:
2023-05-25
通讯作者:
张俊佩,齐建勋
基金资助:
ZHANG Yunqi1(), DONG Ningguang1, HAO Yanbin1, CHEN Yonghao1, ZHANG Junpei2,*(), HOU Zhixia3, SU Shuchai3, WU Jiaqing1, QI Jianxun1,*()
Received:
2022-05-21
Revised:
2022-07-09
Online:
2023-05-30
Published:
2023-05-25
Contact:
ZHANG Junpei,QI Jianxun
摘要:
【目的】 果实表型分析和评价是良种选育的基础,分析核桃(Julans regia)坚果表型多样性并开展性状综合评价,可筛选出具有优良坚果性状的核桃品系。【方法】以北京农林科学院核桃选种圃109份丰产性较好的核桃单株为研究对象,测定其18个坚果表型性状,分析各性状的变异系数和遗传多样性,并进行方差、相关性、主成分、聚类和综合评价分析。【结果】①109份核桃坚果的18个表型性状变异均达到极显著水平,变异系数范围为4.70%~25.00%,遗传多样性指数范围为2.849~3.023,表征坚果大小和干质量的指标在个体间具有较高的离散程度,而坚果形状指标的个体间变异较小;②坚果各部分的干质量指标与反映坚果大小的指标均呈极显著正相关,坚果形状指标与坚果三径关系密切,种壳厚度和种壳干质量会显著影响坚果出仁率;③坚果大小、形状和外在品质指标能反映坚果表型性状的绝大部分信息,这3个主成分的累计贡献率达91.596%,以这3个主成分共筛选出几何平均直径、坚果体积、单果干质量、核仁干质量、球形度、壳厚、出仁率和体积出仁率等8个重要性状;④在欧氏距离9.0处将109份种质资源聚为4大类群,可用于亲本材料的选育;⑤根据坚果性状综合得分,并结合理想核桃坚果的一般特征筛选出XJ45、A068、E030、XJ59和W27优系。【结论】北京农林科学院核桃选种圃中109份丰产核桃单株的坚果表型性状显示出较高的遗传多样性,且各表型性状间的关系较为密切;种质资源分为4个不同用途的育种类群; 8个重要的坚果表型性状可用于初步构建核桃种质资源的评价标准,以及京津冀地区核桃新品种的选育和创制。
中图分类号:
张赟齐,董宁光,郝艳宾,等. 109份丰产核桃单株坚果表型多样性分析及性状评价[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 87-96.
ZHANG Yunqi, DONG Ningguang, HAO Yanbin, CHEN Yonghao, ZHANG Junpei, HOU Zhixia, SU Shuchai, WU Jiaqing, QI Jianxun. Nuts’ phenotypic diversity analysis and character evaluation of 109 high-yield walnut individual trees[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(3): 87-96.DOI: 10.12302/j.issn.1000-2006.202205037.
表1
109份核桃种质资源编号及名称"
编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | A001 | 20 | A248 | 39 | D6N1 | 58 | W20 | 77 | W50 | 96 | XJ39 |
2 | A002 | 21 | A250 | 40 | D8 | 59 | W21 | 78 | W57 | 97 | XJ40 |
3 | A013 | 22 | A253 | 41 | D15 | 60 | W23 | 79 | E030 | 98 | XJ45 |
4 | A051 | 23 | A255 | 42 | D23 | 61 | W24 | 80 | E032 | 99 | XJ49 |
5 | A068 | 24 | A265 | 43 | D30 | 62 | W27 | 81 | E042 | 100 | XJ57 |
6 | A082 | 25 | A266 | 44 | D33B1 | 63 | W29 | 82 | E042B53 | 101 | XJ59 |
7 | A091 | 26 | A271 | 45 | D35 | 64 | W30 | 83 | B17 | 102 | 075X1N1 |
8 | A097 | 27 | A293 | 46 | W2 | 65 | W31 | 84 | B26 | 103 | 175D2B1 |
9 | A110 | 28 | A298 | 47 | W4 | 66 | W33 | 85 | B99 | 104 | Z1 |
10 | A123 | 29 | A336 | 48 | W6 | 67 | W34 | 86 | B112 | 105 | Z2 |
11 | A125 | 30 | A364 | 49 | W8 | 68 | W36 | 87 | K1 | 106 | Z3 |
12 | A145 | 31 | A385 | 50 | W9 | 69 | W37 | 88 | K2 | 107 | Z4 |
13 | A171 | 32 | A389 | 51 | W12 | 70 | W38 | 89 | K1L4 | 108 | Z5 |
14 | A201 | 33 | A389B1 | 52 | W13 | 71 | W40 | 90 | HF | 109 | ZY |
15 | A205 | 34 | A390 | 53 | W14 | 72 | W42 | 91 | O13N1 | ||
16 | A219 | 35 | A393N2 | 54 | W15 | 73 | W43 | 92 | X1N1 | ||
17 | A212 | 36 | DY | 55 | W17 | 74 | W45 | 93 | XJ12 | ||
18 | A215B1 | 37 | D2-2 | 56 | W18 | 75 | W46 | 94 | XJ14 | ||
19 | A241 | 38 | D2-3 | 57 | W19 | 76 | W47 | 95 | XJ16 |
表2
109份核桃种质资源坚果表型性状的遗传多样性分析"
表型性状 phenotypic traits | 最大值 max. | 最小值 min. | 极差 range | 均值 mean | SD | CV/% | 遗传多样性 指数H' | F |
---|---|---|---|---|---|---|---|---|
L/mm | 46.95 | 29.76 | 17.19 | 39.20 | 3.32 | 8.47 | 2.925 | 69.092** |
W/mm | 40.68 | 25.03 | 15.65 | 33.30 | 2.53 | 7.59 | 2.871 | 63.512** |
T/mm | 42.02 | 26.65 | 15.37 | 34.05 | 2.86 | 8.39 | 2.980 | 77.350** |
TS/mm | 2.46 | 0.72 | 1.74 | 1.33 | 0.30 | 22.45 | 2.978 | 123.899** |
mN/g | 22.33 | 6.96 | 15.37 | 13.45 | 2.52 | 18.77 | 2.905 | 60.490** |
mK/g | 12.37 | 3.82 | 8.55 | 7.52 | 1.36 | 18.01 | 2.869 | 39.752** |
mD/g | 0.48 | 0.15 | 0.34 | 0.28 | 0.07 | 23.86 | 2.924 | 16.434** |
mS/g | 10.77 | 2.81 | 7.96 | 5.64 | 1.41 | 25.00 | 2.880 | 105.591** |
Ra | 1.01 | 0.73 | 0.27 | 0.85 | 0.06 | 7.01 | 3.023 | 75.112** |
INSI | 1.03 | 0.74 | 0.29 | 0.86 | 0.06 | 7.06 | 2.992 | 86.926** |
E | 1.36 | 0.96 | 0.40 | 1.16 | 0.09 | 7.60 | 2.952 | 84.123** |
Da/mm | 42.29 | 28.22 | 14.08 | 35.52 | 2.60 | 7.32 | 2.954 | 70.447** |
Dg/mm | 42.17 | 28.14 | 14.03 | 35.39 | 2.59 | 7.33 | 2.953 | 70.795** |
φ | 1.02 | 0.82 | 0.20 | 0.91 | 0.04 | 4.70 | 2.961 | 87.233** |
S/cm2 | 55.97 | 24.88 | 31.09 | 39.60 | 5.71 | 14.41 | 2.953 | 68.230** |
V/cm3 | 39.53 | 11.69 | 27.84 | 23.67 | 5.05 | 21.34 | 2.979 | 65.726** |
IPK/% | 68.62 | 41.10 | 27.52 | 56.08 | 4.51 | 8.04 | 2.915 | 63.107** |
IKCV/cm-3 | 4.75 | 1.29 | 3.46 | 2.49 | 0.60 | 24.05 | 2.849 | 72.936** |
表3
109份核桃种质资源坚果表型性状的相关性分析"
表型性状 phenotypic trait | L | W | T | TS | mN | mK | mD | mS | Ra |
---|---|---|---|---|---|---|---|---|---|
L | 1 | ||||||||
W | 0.630** | 1 | |||||||
T | 0.601** | 0.913** | 1 | ||||||
TS | 0.139 | 0.174 | 0.122 | 1 | |||||
mN | 0.628** | 0.844** | 0.821** | 0.507** | 1 | ||||
mK | 0.673** | 0.875** | 0.853** | 0.177 | 0.902** | 1 | |||
mD | 0.391** | 0.500** | 0.418** | -0.009 | 0.412** | 0.469** | 1 | ||
mS | 0.459** | 0.646** | 0.629** | 0.737** | 0.904** | 0.630** | 0.239* | 1 | |
Ra | -0.542** | 0.307** | 0.245* | 0.034 | 0.144 | 0.116 | 0.046 | 0.144 | 1 |
INSI | -0.519** | 0.307** | 0.346** | 0.013 | 0.176 | 0.151 | 0.026 | 0.170 | 0.969** |
E | 0.468** | -0.290** | -0.422** | 0.029 | -0.184 | -0.175 | -0.013 | -0.161 | -0.881** |
Da | 0.851** | 0.927** | 0.919** | 0.160 | -0.842** | 0.883** | 0.482** | 0.636** | -0.042 |
Dg | 0.833** | 0.937** | 0.929** | 0.158 | 0.846** | 0.888** | 0.484** | 0.638** | -0.01 |
φ | -0.519** | 0.307** | 0.346** | 0.011 | 0.175 | 0.151 | 0.028 | 0.167 | 0.969** |
S | 0.826** | 0.937** | 0.932** | 0.160 | 0.850** | 0.887** | 0.489** | 0.646** | -0.002 |
V | 0.817** | 0.935** | 0.932** | 0.163 | 0.852** | 0.885** | 0.492** | 0.651** | 0.007 |
IPK | 0.080 | 0.052 | 0.043 | -0.755** | -0.252** | 0.181 | 0.141 | -0.632** | -0.058 |
IKCV | -0.789** | -0.873** | -0.862** | -0.396** | -0.874** | -0.789** | -0.389** | -0.788** | 0.018 |
INSI | 1 | ||||||||
E | -0.968** | 1 | |||||||
Da | 0.005 | -0.049 | 1 | ||||||
Dg | 0.037 | -0.082 | 0.999** | 1 | |||||
φ | 1.000** | -0.969** | 0.005 | 0.038 | 1 | ||||
S | 0.047 | -0.091 | 0.998** | 0.999** | 0.047 | 1 | |||
V | 0.057 | -0.101 | 0.993** | 0.994** | 0.057 | 0.999** | 1 | ||
IPK | -0.061 | 0.031 | 0.067 | 0.068 | -0.056 | 0.056 | 0.044 | 1 | |
IKCV | -0.025 | 0.057 | -0.935** | -0.935** | -0.024 | -0.927** | -0.916** | 0.227* | 1 |
表4
109份核桃种质资源坚果数量性状的主成分分析"
表型性状 phenotypic traits | PC1 | PC2 | PC3 |
---|---|---|---|
L | 0.758 | -0.640 | 0.077 |
W | 0.951 | 0.167 | 0.138 |
T | 0.936 | 0.205 | 0.156 |
TS | 0.299 | 0.019 | -0.880 |
mN | 0.930 | 0.064 | -0.248 |
mK | 0.914 | 0.020 | 0.162 |
mD | 0.504 | -0.055 | 0.252 |
mS | 0.762 | 0.099 | -0.612 |
Ra | 0.098 | 0.965 | 0.036 |
INSI | 0.141 | 0.988 | 0.054 |
E | -0.170 | -0.951 | -0.095 |
Da | 0.975 | -0.144 | 0.135 |
Dg | 0.978 | -0.111 | 0.140 |
φ | 0.141 | 0.988 | 0.058 |
S | 0.980 | -0.101 | 0.134 |
V | 0.978 | -0.091 | 0.128 |
IPK | -0.065 | -0.100 | 0.936 |
IKCV | -0.949 | 0.106 | 0.159 |
特征值eigen value | 9.790 | 4.356 | 2.341 |
贡献率/% contributive percentage | 54.390 | 24.203 | 13.003 |
累计贡献率/% total percentage | 54.390 | 78.593 | 91.596 |
表5
核桃坚果表型性状综合得分排序表"
品系编号 genotype | 综合 评价值 D | 排名 rank | 品系编号 genotype | 综合 评价值 D | 排名 rank | 品系编号 genotype | 综合 评价值 D | 排名 rank | 品系编号 genotype | 综合 评价值 D | 排名 rank |
---|---|---|---|---|---|---|---|---|---|---|---|
DY | 0.807 | 1 | D6N1 | 0.516 | 29 | W57 | 0.446 | 57 | Z2 | 0.386 | 85 |
XJ45 | 0.716 | 2 | A02 | 0.515 | 30 | B17 | 0.445 | 58 | W13 | 0.385 | 86 |
A265 | 0.712 | 3 | XJ40 | 0.509 | 31 | B26 | 0.444 | 59 | W36 | 0.384 | 87 |
B99 | 0.673 | 4 | A219 | 0.506 | 32 | A13 | 0.443 | 60 | A271 | 0.381 | 88 |
D30 | 0.646 | 5 | XJ16 | 0.500 | 33 | W14 | 0.439 | 61 | E032 | 0.376 | 89 |
A068 | 0.629 | 6 | K2 | 0.499 | 34 | A097 | 0.438 | 62 | W6 | 0.361 | 90 |
E030 | 0.617 | 7 | W47 | 0.498 | 35 | W19 | 0.428 | 63 | W45 | 0.356 | 91 |
A082 | 0.604 | 8 | W17 | 0.498 | 36 | D8 | 0.426 | 64 | D15 | 0.354 | 92 |
XJ59 | 0.597 | 9 | A241 | 0.494 | 37 | O13N1 | 0.422 | 65 | A298 | 0.347 | 93 |
W27 | 0.587 | 10 | A266 | 0.492 | 38 | W38 | 0.419 | 66 | W9 | 0.342 | 94 |
175D2B1 | 0.584 | 11 | A253 | 0.489 | 39 | E042B53 | 0.419 | 67 | A255 | 0.338 | 95 |
XJ57 | 0.582 | 12 | W18 | 0.488 | 40 | B112 | 0.415 | 68 | A205 | 0.337 | 96 |
A123 | 0.576 | 13 | XJ12 | 0.487 | 41 | D23 | 0.415 | 69 | Z3 | 0.335 | 97 |
A389B1 | 0.573 | 14 | A201 | 0.482 | 42 | W2 | 0.414 | 70 | A110 | 0.328 | 98 |
W23 | 0.567 | 15 | A336 | 0.478 | 43 | Z1 | 0.409 | 71 | D33B1 | 0.322 | 99 |
A393N2 | 0.567 | 16 | Z5 | 0.476 | 44 | W37 | 0.409 | 72 | A215B1 | 0.322 | 100 |
W12 | 0.556 | 17 | A125 | 0.473 | 45 | A01 | 0.408 | 73 | E042 | 0.317 | 101 |
W4 | 0.555 | 18 | XJ39 | 0.473 | 46 | W24 | 0.406 | 74 | W31 | 0.313 | 102 |
ZY | 0.546 | 19 | W30 | 0.467 | 47 | A390 | 0.406 | 75 | W20 | 0.312 | 103 |
W21 | 0.543 | 20 | W15 | 0.466 | 48 | A385 | 0.404 | 76 | A145 | 0.309 | 104 |
A248 | 0.542 | 21 | W33 | 0.465 | 49 | X1N1 | 0.403 | 77 | W43 | 0.272 | 105 |
A364 | 0.541 | 22 | W50 | 0.462 | 50 | A389 | 0.401 | 78 | D35 | 0.268 | 106 |
K1 | 0.540 | 23 | W29 | 0.461 | 51 | W40 | 0.399 | 79 | 075X1N1 | 0.219 | 107 |
A091 | 0.531 | 24 | W42 | 0.458 | 52 | XJ14 | 0.399 | 80 | D2-2 | 0.179 | 108 |
HF | 0.524 | 25 | W8 | 0.451 | 53 | A171 | 0.396 | 81 | D2-3 | 0.122 | 109 |
Z4 | 0.523 | 26 | W46 | 0.450 | 54 | A293 | 0.394 | 82 | |||
XJ49 | 0.521 | 27 | A51 | 0.446 | 55 | A250 | 0.394 | 83 | |||
K1L4 | 0.517 | 28 | W34 | 0.446 | 56 | A212 | 0.387 | 84 |
[1] | LIU B, ZHAO D, ZHANG P, et al. Seedling evaluation of six walnut rootstock species originated in China based on principal component analysis and cluster analysis[J]. Sci Hortic, 2020, 265: 109212. DOI:10.1016/j.scienta.2020.109212. |
[2] | RAJA V, AHMAD S I, IRSHAD M, et al. Anticandidal activity of ethanolic root extract of Juglans regia (L.): effect on growth, cell morphology, and key virulence factors[J]. J De Mycol Médicale, 2017, 27: 476-486. DOI:10.1016/j.mycmed.2017.07.002. |
[3] | ZHAO P, ZHOU H J, POTTER D, et al. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS)[J]. Mol Phylogenetics Evol, 2018, 126: 250-265. DOI:10.1016/j.ympev.2018.04.014. |
[4] | 中华人民共和国国家统计局. 中国统计年鉴 2021[M]. 北京: 中国统计出版社, 2021. |
National Bureau of statistics. China statistical yearbook 2021[M]. Beijing: China Statistics Press, 2021. | |
[5] | BERNARD A, LHEUREUX F, DIRLEWANGER E. Walnut: past and future of genetic improvement[J]. Tree Genet Genomes, 2018, 14: 1. DOI:10.1007/s11295-017-1214-0. |
[6] | FAMULA R A, RICHARDS J H, FAMULA T R, et al. Association genetics of carbon isotope discrimination and leaf morphology in a breeding population of Juglans regia L.[J]. Tree Genet Genomes, 2019, 15(1): 6. DOI:10.1007/s11295-018-1307-4. |
[7] | MARTÍNEZ-GARCÍA P J, FAMULA R A, LESLIE C, et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia)[J]. Tree Genet Genomes, 2017, 13(5):109. DOI:10.1007/s11295-017-1187-z. |
[8] | POGGETTI L, ERMACORA P, CIPRIANI G, et al. MorPhological and carpological variability of walnut germplasm (Juglans regia L.) collected in north-eastern Italy and selection of superior genotypes[J]. Sci Hortic, 2017, 225: 615-619. DOI:10.1016/j.scienta.2017.07.056. |
[9] | KHADIVI A, MONTAZERAN A, REZAEI M, et al. The pomological characterization of walnut (Juglans regia L.) to select the superior genotypes: an opportunity for genetic improvement[J]. Sci Hortic, 2019, 248: 29-33. DOI:10.1016/j.scienta.2018.12.054. |
[10] | MAHMOODI R, DADPOUR M R, HASSANI D, et al. Development of a core collection in Iranian walnut (Juglans regia L.) germplasm using the phenotypic diversity[J]. Sci Hortic, 2019, 249: 439-448. DOI:10.1016/j.scienta.2019.02.017. |
[11] | COSMULESCU S, STEFANESCU D. Morphological variation among Persian walnut (Juglans regia) genotypes within the population and depending on climatic year[J]. Sci Hortic, 2018, 242: 20-24. DOI:10.1016/j.scienta.2018.07.018. |
[12] | IPEK M, ARıKAN Ş, PıRLAK L, et al. Phenological, morphological and molecular characterization of some promising walnut (Juglans regia L) genotypes in Konya[J]. Erwerbs-Obstbau, 2019, 61(2): 149-156. DOI:10.1007/s10341-018-0411-9. |
[13] | SHAH R A, BAKSHI P, SHARMA N, et al. Diversity assessment and selection of superior Persian walnut (Juglans regia L.) trees of seedling origin from north-western Himalayan region[J]. Resour Environ Sustain, 2021, 3:100015. DOI:10.1016/j.resenv.2021.100015. |
[14] | 王滑. 西藏核桃种质资源遗传多样性研究[D]. 北京: 中国林业科学研究院, 2010. |
WANG H. Genetic diversity of germplasm resources on walnut in Tibet region[D]. Beijing: Chinese Academy of Forestry, 2010. | |
[15] | 徐永杰. 大巴山区核桃种质资源评价及其坚果特异性状发掘[D]. 北京: 中国林业科学研究院, 2016. |
XU Y J. Germplasm evaluation and nut specific traits excavation of walnut in Daba Mountains[D]. Beijing: Chinese Academy of Forestry, 2016. | |
[16] | 李亚兰, 潘存德, 范江涛, 等. 基于坚果表型性状的新疆核桃种质资源多样性与分类[J]. 西南农业学报, 2019, 32(9): 1986-1994. |
LI Y L, PAN C D, FAN J T, et al. Diversity and classification of common walnut (Juglans regia L.) germplasm in Xinjiang based on nut phenotype traits[J]. Southwest China J Agric Sci, 2019, 32(9): 1986-1994. DOI:10.16213/j.cnki.scjas.2019.9.004. | |
[17] | 蒲光兰, 肖千文, 吴开志, 等. 四川核桃种质资源表型多样性研究[J]. 湖南农业大学学报(自然科学版), 2014, 40(2): 162-167. |
PU G L, XIAO Q W, WU K Z, et al. Research on the phenotypic diversity of walnut germplasm resources in Sichuan[J]. J Hunan Agric Univ (Nat Sci), 2014, 40(2): 162-167. DOI:10.13331/j.cnki.jhau.2014.02.011. | |
[18] | 冀爱青. 华北山地核桃遗传多样性和矿质营养特性研究[D]. 太古: 山西农业大学, 2014. |
JI A Q. The genetic diversity and characteristics of mineral nutrition of the north China mountains walnut[D]. Taigu: Shanxi Agricultural University, 2014. | |
[19] | 宋晨歌. 河北省核桃种质资源调查与分析[D]. 保定: 河北农业大学, 2015. |
SONG C G. The investigation and analysis on walnut resource survey in Hebei Province[D]. Baoding: Hebei Agricultural University, 2015. | |
[20] | 刘宝尧. 青海地方核桃种质资源遗传多样性研究[D]. 西宁: 青海大学, 2016. |
LIU B Y. Genetic diversity of germplasm resources on walnut (Juglans regia L.) in Qinghai[D]. Xining: Qinghai University, 2016. | |
[21] | 李建挥, 李柏海, 柏文富, 等. 湖南省核桃资源调查及表型特征分析[J]. 湖南林业科技, 2019, 46(6): 59-67, 73. |
LI J H, LI B H, BAI W F, et al. Investigation of walnut and hickory genetic resources in Hunan Province[J]. Hunan For Sci & Technol, 2019, 46(6): 59-67, 73. DOI:10.3969/j.issn.1003-5710.2019.06.010. | |
[22] | 雒宏佳, 李建红, 赵生春, 等. 甘肃省核桃坚果表型特征及多样性研究[J]. 中国果树, 2019(5): 87-92. |
LUO H J, LI J H, ZHAO S C, et al. Phenotypic characteristics and diversity of walnut nuts in Gansu Province[J]. China Fruits, 2019(5): 87-92. DOI:10.16626/j.cnki.issn1000-8047.2019.05.022. | |
[23] | 杨从华, 肖良俊, 宁德鲁, 等. 云南核桃种质资源调查初报[J]. 西部林业科学, 2018, 47(5): 89-93. |
YANG C H, XIAO L J, NING D L, et al. Preliminary report on investigation of Yunnan walnut germplasm resources[J]. J West China For Sci, 2018, 47(5): 89-93. DOI:10.16473/j.cnki.xblykx1972.2018.05.015. | |
[24] | 陆婷, 陈少瑜, 吴涛, 等. 迪庆州核桃种质资源的遗传多样性与遗传结构[J]. 西部林业科学, 2021, 50(2): 71-77. |
LU T, CHEN S Y, WU T, et al. Genetic diversity and genetic structure of walnut germplasm resources in Diqing[J]. J West China For Sci, 2021, 50(2): 71-77. DOI:10.16473/j.cnki.xblykx1972.2021.02.010. | |
[25] | 张建英, 张莹莹, 毛向红. 砂壤土绿岭核桃根系空间分布规律研究[J]. 安徽农业科学, 2020, 48(23): 151-153. |
ZHANG J Y, ZHANG Y Y, MAO X H. Research on the spatial distribution of lüling walnut root system in sandy loam[J]. J Anhui Agric Sci, 2020, 48(23): 151-153. DOI:10.3969/j.issn.0517-6611.2020.23.037. | |
[26] | MILOŠEVIC T, MILOŠEVIC N. Determination of size and shape features of hazelnuts using multivariate analysis[J]. Acta Sci Polonorum Hortorum Cultus, 2017, 16(5): 49-61. DOI:10.24326/asphc.2017.5.6. |
[27] | KHAN W, HUSSAIN M, ALI K, et al. Distribution and phenotypic variation in Juglans regia L. growing in Hindu Kush ranges of Pakistan[J]. Acta Ecol Sin, 2020, 40(5): 363-372. DOI:10.1016/j.chnaes.2020.02.009. |
[28] | 刘珮君, 王晓敏, 李国花, 等. 166份番茄种质资源的综合评价[J]. 云南大学学报(自然科学版), 2020, 42(4): 792-803. |
LIU P J, WANG X M, LI G H, et al. Comprehensive evaluation of 166 tomato germplasm resources[J]. J Yunnan Univ (Nat Sci Ed), 2020, 42(4): 792-803. | |
[29] | CHEN L N, MA Q G, CHEN Y K, et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers[J]. Sci Hortic, 2014, 168: 240-248. DOI:10.1016/j.scienta.2014.02.004. |
[30] | ZENELI G, KOLA H, DIDA M. Phenotypic variation in native walnut populations of northern Albania[J]. Sci Hortic, 2005, 105(1): 91-100. DOI:10.1016/j.scienta.2004.11.003. |
[31] | BUJDOSOG, CSEKE K. The Persian (English) walnut (Juglans regia L.) assortment of Hungary: nut characteristics and origin[J]. Sci Hortic, 2021, 283: 110035. DOI:10.1016/j.scienta.2021.110035. |
[32] | COSMULESCU S, STEFANESCU D, IONESCU M B. Genetic diversity among Juglans regia genotypes based on morphological characters of nut[J]. Erwerbs-Obstbau, 2018, 60(2): 137-143. DOI:10.1007/s10341-017-0347-5. |
[33] | EBRAHIMI A, KHADIVI-KHUB A, NOSRATI Z, et al. Identification of superior walnut (Juglans regia) genotypes with late leafing and high kernel quality in Iran[J]. Sci Hortic, 2015, 193: 195-201. DOI:10.1016/j.scienta.2015.06.049. |
[34] | SHAMLU F, REZAEI M, LAWSON S, et al. Genetic diversity of superior Persian walnut genotypes in Azadshahr, Iran[J]. Physiol Mol Biol Plants, 2018, 24(5): 939-949. DOI:10.1007/s12298-018-0573-9. |
[35] | KHADIVI-KHUB A, EBRAHIMI A, SHEIBANI F, et al. Phenological and pomological characterization of Persian walnut to select promising trees[J]. Euphytica, 2015, 205(2): 557-567. DOI:10.1007/s10681-015-1429-9. |
[36] | 赵宝军, 刘枫, 张俊佩, 等. 核桃杂交后代产量性状因子分析与综合评价[J/OL]. 分子植物育种, 2021: 1-12. (2021-10-15). [2022-05-20] https://kns.cnki.net/kcms/detail/46.1068.S.20211015.0513.010.html. |
ZHAO B J, LIU F, ZHANG J P, et al. Factor analysis and comprehensive evaluation of yield characteristics of walnut hybrid progeny[J/OL]. Mol Plant Breed, 2021: 1-12. (2021-10-15)[2022-05-20]. https://kns.cnki.net/kcms/detail/46.1068.S.20211015.0513.010.html. | |
[37] | 陈善波, 王莎, 金银春, 等. 四川穗状核桃优良单株坚果综合性状评价研究[J]. 四川林业科技, 2018, 39(1): 32-36. |
CHEN S B, WANG S, JIN Y C, et al. Research on evaluation of comprehensive characters of nuts from superior individuals in Sichuan[J]. J Sichuan For Sci Technol, 2018, 39(1): 32-36. DOI:10.16779/j.cnki.1003-5508.2018.01.007. |
[1] | 尹增芳, 欧香, 陈瑶, 杨爱香, 孙李勇. 望春玉兰生物学基础研究进展与展望[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 256-262. |
[2] | 陶涛, 刘耀辉, 薛中俊, 高越, 袁璐鸿, 郑芬, 吴炜, 黄界颍. 7株香榧优株坚果表型性状与品质特性的研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 37-44. |
[3] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
[4] | 樊晓芸, 郭素娟, 李艳华, 江锡兵. 板栗果实褐变度与总酚和总黄酮的相关性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 159-166. |
[5] | 李建挥, 李柏海, 吴思政, 柏文富, 禹霖, 聂东伶, 严佳文, 熊颖, 向祖恒, 彭先凤. 湘西地区核桃坚果表型特征及多样性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 171-179. |
[6] | 方升佐. 青钱柳产业发展历程及资源培育研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 115-126. |
[7] | 唐敏, 杨开宇, 张赛男, 陈利英, 刘洋, 张雪梅, 齐国辉. 硒对核桃种仁抗氧化酶活性及果实品质的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 127-134. |
[8] | 张庆源, 田野, 王淼, 翟政, 周诗朝. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
[9] | 贾展慧, 贾晓东, 许梦洋, 莫正海, 翟敏, 宣继萍, 张计育, 王刚, 王涛, 郭忠仁. 薄壳山核桃原花青素合成关键酶基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 49-57. |
[10] | 田梦阳, 窦全琴, 谢寅峰, 汤文华, 季艳红. 4个薄壳山核桃品种的光合特性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 67-74. |
[11] | 梁文超, 步行, 罗思谦, 谢寅峰, 张往祥, 胡加玲. 氮磷钾复合肥对增温促花后‘长寿冠’海棠生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 81-88. |
[12] | 黄小辉, 吴焦焦, 王玉书, 冯大兰, 孙向阳. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 119-126. |
[13] | 季琳琳, 陈素传, 吴志辉, 常君, 陶汝鹏, 周米生, 蔡新玲. 山核桃果实主要经济性状和养分含量的差异分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 131-137. |
[14] | 季艳红, 潘平平, 窦全琴, 谢寅峰. 不同泥炭替代基质对薄壳山核桃幼苗生长及叶绿素荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 145-155. |
[15] | 季艳红, 汤文华, 窦全琴, 谢寅峰. 施肥对薄壳山核桃容器苗生长及养分积累的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 47-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||