南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6): 141-149.doi: 10.12302/j.issn.1000-2006.202203062
收稿日期:
2022-03-28
修回日期:
2022-06-19
出版日期:
2023-11-30
发布日期:
2023-11-23
通讯作者:
*乔桂荣(基金资助:
HUANG Biyun1,2(), ZHUO Renying1, QIAO Guirong1,*()
Received:
2022-03-28
Revised:
2022-06-19
Online:
2023-11-30
Published:
2023-11-23
摘要:
【目的】比较不同类型毛竹(Phyllostachys edulis)愈伤组织在组成细胞形态、细胞周期时相分布比例、基因表达等方面的差异,研究不同类型毛竹愈伤组织的增殖与分化潜力,为毛竹离体再生挑选合适的愈伤组织提供依据。【方法】以毛竹未成熟胚为外植体诱导愈伤,依据外观、质地挑选出白色半透明型、白色致密型和黄色致密型等3种不同类型的毛竹愈伤组织;通过石蜡切片组织细胞学观察、流式细胞仪检测细胞周期时相分布比例,探究3种类型毛竹愈伤组织的增殖与再生能力;利用实时荧光定量PCR (qRT-PCR)对毛竹不同类型愈伤组织中胚性维持及生长调节相关基因的表达量进行分析,筛选可用于后续提高再生效率的候选基因。【结果】第2类白色致密型的毛竹愈伤组织表面及内部具有大量胚性细胞组成的分生组织细胞团,处于DNA合成期(S期)、DNA合成后期(G2期)的细胞比例显著高于其他两类愈伤组织,分别达到细胞总数的8.78%和8.95%;2个PeWUS基因在胚性较强的第2类和第3类愈伤中表达量较高,3个PeGRF基因在第2类愈伤组织中表达量最高。【结论】不同类型毛竹愈伤组织增殖和再生能力存在差异,第2类白色致密的愈伤组织增殖和再生能力更强,更适合作为组织培养材料,筛选出的差异基因可作为提高毛竹再生效率的候选基因。
中图分类号:
黄碧芸,卓仁英,乔桂荣. 毛竹不同类型愈伤组织比较分析[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 141-149.
HUANG Biyun, ZHUO Renying, QIAO Guirong. Comparative analysis of different types of callus in moso bamboo[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(6): 141-149.DOI: 10.12302/j.issn.1000-2006.202203062.
表1
qRT-PCR引物"
基因 gene | 基因ID gene ID | 正向引物(5'-3') forward primer(5'-3') | 反向引物(5'-3') reverse primer(5'-3') |
---|---|---|---|
PH02Gene04456.t1 | TGGAGTGGGACAATGCCAAG | ATGGAGATCTGCTTGCGGAG | |
PH02Gene03707.t1 | TTTTACTGCGCCAAGAACGC | TCGTCCGTCATCACCTTGAC | |
WUS | PH02Gene44184.t1 | GCGACCATCACGGTGTTCAT | CATACTCGTTGACGGGGAGG |
PH02Gene15929.t1 | GGCAGATGGGGTTTGTGGAA | CGAACATGGCTCGCAAGTCT | |
PH02Gene32607.t1 | AGGCACTCCACTGCACCTGT | CCAGAATGGACACCGAAGAA | |
PH02Gene02258.t2 | TGGGTACGGGTCCTACTTCG | TGCGTTTCCACAGGCTTTCT | |
PH02Gene06385.t2 | ATGACCAGGCTTACATTGCG | GTCCGTCGTCAAGTGTTTCC | |
PH02Gene10190.t3 | GAGCTACCCTCTGCTTGGAA | AGGAGTGGCTGTTGTCATCG | |
PH02Gene23215.t2 | CGTCGCAGATTCATGTCGAT | GTGATGGCTCAAGGTGGGA | |
PH02Gene26399.t1 | CCTCGTTTCATCGGATTCAC | CCTGGGCCAGTCCACATAGT | |
PH02Gene29026.t2 | AAACACTAGGGGCTTCACCA | TGACGGCTCAAGGTAGGAAT | |
GRF | PH02Gene34199.t1 | CACGCCTTCTTCTCCGACAG | TTCGTCGTCCTCTTCTTTGG |
PH02Gene01484.t1 | GCTCCCCCGCCTCTCCTGT | CGGCGAAGTAGCGGTAGATG | |
PH02Gene03343.t1 | ACTCGCCGCAGCCACCGT | CAAGCCCAGCCCAAGAACCAG | |
PH02Gene03768.t1 | GTCAACTCGCTTCCAAAGGTCG | TGGCAACGGAGAAGTCAGAGG | |
PH02Gene06203.t1 | CGGACGGACGGCAAGAAATG | TGCTGCTGATGGTTGATGGTGAG | |
PH02Gene08777.t1 | TGTGAAGCAGGAGAACCAGACGC | GAAGTCAGAGGACGCCATCGGTA | |
PH02Gene33803.t1 | CATCAAATGAAGGAAACAGTGCG | AAGGCGAGGGGCAACTTTTATT | |
PH02Gene45969.t1 | CCGCAGCATCAGCAGCACTT | GATGGGTAGGCACAGGAACACG | |
内参reference gene | PeTIP41 | AAAATCATTGTAGGCCATTGTCG | ACTAAATTAAGCCAGCGGGAGTG |
图1
不同类型毛竹愈伤组织及组织细胞学观察 a、A. 第Ⅰ类愈伤组织the type Ⅰ callus; b、B. 第Ⅱ类愈伤组织the type Ⅱ callus; c、C.第Ⅲ类愈伤组织the type Ⅲ callus; d. 第Ⅰ类愈伤组织继代后褐化the type Ⅰ callus browning during subculture; e. 第Ⅱ类愈伤组织继代后增殖the type Ⅱ callus proliferated after subculture; f. 第Ⅲ类愈伤组织继代后表面产生白色颗粒愈伤the type Ⅲ callus produced white granular callus on the surface after subculture; g、h.愈伤组织继代过程中分化出芽和根shoot and root differentiation from callus during subculture; i. 组培瓶中第Ⅱ类愈伤分化再生植株的同时增殖产生新的愈伤in tissue culture flask, the type Ⅱ callus differentiated into plants and proliferated to produce new callus;D、E. 愈伤组织内部胚性细胞团embryonic cell clumps inside callus; F. 愈伤组织内部子叶胚cotyledon embryo inside callus。 黑色箭头→指向非胚性细胞black arrow represents the non-embryonic cells;红色箭头指向胚性细胞red arrow represents the embryonic cells; 黄色箭头指向分生组织细胞团yellow arrow represents the meristematic cell mass; 粉色箭头指向子叶胚 pink arrow represents the cotyledon embryo。"
[1] | 黄培和. 毛竹开发利用现状及对策浅析[J]. 南方农业, 2020, 14(3):141-142. |
HUANG P H. Analysis on the present situation and countermeasures of bamboo development and utilization[J]. South China Agric, 2020, 14(3):141-142.DOI: 10.19415/j.cnki.1673-890x.2020.03.071. | |
[2] | PENG Z H, LU Y, LI L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461, 461e1-461e2.DOI: 10.1038/ng.2569. |
[3] | YANG K B, LI L C, LOU Y F, et al. A regulatory network driving shoot lignification in rapidly growing bamboo[J]. Plant Physiol, 2021, 187(2):900-916.DOI: 10.1093/plphys/kiab289. |
[4] | WANG K L, ZHANG Y Y, ZHANG H M, et al. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode[J]. New Phytol, 2021, 231(6):2215-2230.DOI: 10.1111/nph.17542. |
[5] | TAO G Y, RAMAKRISHNAN M, VINOD K K, et al. Multi-omics analysis of cellular pathways involved in different rapid growth stages of moso bamboo[J]. Tree Physiol, 2020, 40(11):1487-1508.DOI: 10.1093/treephys/tpaa090. |
[6] | LI L, CHENG Z C, MA Y J, et al. The association of hormone signalling genes,transcription and changes in shoot anatomy during moso bamboo growth[J]. Plant Biotechnol J, 2018, 16(1):72-85.DOI: 10.1111/pbi.12750. |
[7] | LI Y, ZHANG D Q, ZHANG S Q, et al. Transcriptome and miRNAome analysis reveals components regulating tissue differentiation of bamboo shoots[J]. Plant Physiol, 2022, 188(4):2182-2198.DOI: 10.1093/plphys/kiac018. |
[8] | QIAO G R, YANG H Q, ZHANG L, et al. Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene[J]. In Vitro Cell Dev Biol-Plant, 2014, 50(4):385-391.DOI: 10.1007/s11627-013-9591-z. |
[9] | YE S W, CAI C Y, REN H B, et al. An efficient plant regeneration and transformation system of ma bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant[J]. Front Plant Sci, 2017, 8:1298.DOI: 10.3389/fpls.2017.01298. |
[10] | HUANG B Y, ZHUO R Y, FAN H J, et al. An efficient genetic transformation and CRISPR/Cas9-based genome editing system for moso bamboo (Phyllostachys edulis)[J]. Front Plant Sci, 2022, 13:822022.DOI: 10.3389/fpls.2022.822022. |
[11] | 何炎红, 吴高殷, 白玉娥, 等. 山杏体细胞胚胎发生及其组织学观察[J]. 经济林研究, 2018, 36(1):163-166. |
HE Y H, WU G Y, BAI Y, et al. Somatic embryogenesis processes in Armeniaca sibirica and its histological observation[J]. Nonwood For Res, 2018, 36(1):163-166.DOI: 10.14067/j.cnki.1003-8981.2018.01.028. | |
[12] | 赵浩雁, 刘建秀, 陈静波, 等. 荻幼穗诱导不同类型愈伤组织的差异[J]. 草业科学, 2019, 36(7):1781-1791. |
ZHAO H Y, LIU J X, CHEN J B, et al. Variation analysis of different types of callus induced from immature inflorescences of Miscanthus sacchariflorus[J]. Pratacultural Sci, 2019, 36(7):1781-1791.DOI: 10.11829/j.issn.1001-0629.2019-0081. | |
[13] | 曹雨, 陈章辉, 区丁文, 等. 墨西哥玉米草组培体系的建立及愈伤组织切片观察[J]. 华南师范大学学报(自然科学版), 2016, 48(6):19-24,143. |
CAO Y, CHEN Z H, OU D W, et al. The establishment of teosinte tissue culture and callus section observation[J]. J South China Norm Univ (Nat Sci Ed), 2016, 48(6):19-24,143.DOI: 10.6054/j.jscnun.2016.10.007. | |
[14] | 魏冬霞, 张滕, 郑严仪, 等. 芍药愈伤组织中体细胞胚发育过程的组织细胞学观察[J]. 植物研究, 2018, 38(1):56-63. |
WEI D X, ZHANG T, ZHENG Y Y, et al. Histocytology observation on the somatic embryogenesis in herbaceous peony callus[J]. Bull Bot Res, 2018, 38(1):56-63.DOI: 10.7525/j.issn.1673-5102.2018.01.007. | |
[15] | 赵俊, 木万福, 张志星. 植物石蜡切片技术改进[J]. 安徽农学通报, 2009, 15(5):69,90. |
ZHAO J, MU W F, ZHANG Z X. Improvement of plant paraffin section technical[J]. Anhui Agric Sci Bull, 2009, 15(5):69,90.DOI: 10.16377/j.cnki.issn1007-7731.2009.05.004. | |
[16] | FAN C J, MA J M, GUO Q R, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2):e56573.DOI: 10.1371/journal.pone.0056573. |
[17] | NUNEZ R. DNA measurement and cell cycle analysis by flow cytometry[J]. Curr News Mol Biol, 2001, 3(3):67-70.DOI: 10.21775/cimb.003.067. |
[18] | 季艳丽, 陈发菊, 邓为, 等. 高粱体胚发生的组织细胞学观察[J]. 生物资源, 2019, 41(4):371-375. |
JI Y L, CHEN F J, DENG W, et al. Histocytological observation of somatic embryogenesis in Sorghum bicolor[J]. Biotic Resour, 2019, 41(4):371-375.DOI: 10.14188/j.ajsh.2019.04.012. | |
[19] | 李红, 李波, 陈雪梅, 等. 苜蓿愈伤组织细胞学观察及芽分化的研究[J]. 江苏农业科学, 2015, 43(6):49-51. |
LI H, LI B, CHEN X M, et al. Cytological observation of alfalfa callus and study on bud differentiation[J]. Jiangsu Agric Sci, 2015, 43(6):49-51.DOI: 10.15889/j.issn.1002-1302.2015.06.013. | |
[20] | 荆茹月, 霍坤, 李志辉. 香樟胚性与非胚性愈伤组织间的差异研究[J]. 中南林业科技大学学报, 2020, 40(10):70-78. |
JING R Y, HUO K, LI Z H. Difference between embryogenic and non-embryogenic callus of Cinnamomum camphora L[J]. J Cent South Univ For Technol, 2020, 40(10):70-78.DOI: 10.14067/j.cnki.1673-923x.2020.10.008. | |
[21] | 廖婧, 方炎明, 虞木奎. 麻栎茎段体胚发生和组织学观察初报[J]. 植物研究, 2011, 31(5):575-578. |
LIAO J, FANG Y M, YU M K. Preliminary report on somatic embryogenesis from stem of Quercus acutissima Carr.and histological observation[J]. Bull Bot Res, 2011, 31(5):575-578. | |
[22] | 诸葛菲, 洪彬, 徐胤, 等. 马来甜龙竹种胚培养增殖芽芽尖再生体系建立[J]. 核农学报, 2019, 33(12):2319-2327. |
ZHUGE F, HONG B, XU Y, et al. Establishment of regeneration system based on shoot tips in proliferation buds from embryo of Dendrocalamus asper[J]. J Nucl Agric Sci, 2019, 33(12):2319-2327.DOI: 10.11869/j.issn.100-8551.2019.12.2319. | |
[23] | 张宁. 版纳甜龙竹愈伤组织诱导与植株再生体系的建立[D]. 杭州: 浙江农林大学, 2011. |
ZHANG N. Callus induction and plantlet regeneration in Dendrocalamus hamiltonii[D]. Hangzhou: Zhejiang A & F University, 2011. | |
[24] | 陈文波, 蒋瑶, 董玘鑫. 慈竹愈伤组织的诱导及增殖培养[J]. 凯里学院学报, 2018, 36(3):53-57. |
CHEN W B, JIANG Y, DONG Q X. Study on callus induction and proliferation of Neosinocalamus affinis[J]. J Kaili Univ, 2018, 36(3):53-57.DOI: 10.3969/j.issn.1673-9329.2018.03. | |
[25] | 孙瑞明, 王娟, 陈芳, 等. 香竹愈伤组织诱导研究[J]. 福建林学院学报, 2013, 33(1):48-51. |
SUN R M, WANG J, CHEN F, et al. Study on callus inducement of Chimonocalamus delicates[J]. J Fujian Coll For, 2013, 33(1):48-51.DOI: 10.13324/j.cnki.jfcf.2013.01.009. | |
[26] | 闵义, 计巧灵, 王雪华, 等. 胡杨器官和体胚发生方式的植株再生[J]. 生物技术, 2007, 17(6):52-55. |
MIN Y, JI Q L, WANG X H, et al. Regeneration of Populus euphratica via organogenesis and embryogenesis[J]. Biotechnology, 2007, 17(6):52-55.DOI: 10.16519/j.cnki.1004-311x.2007.06.028. | |
[27] | 贾永蕊. 流式细胞术在DNA检测中的应用[J]. 中国医学装备, 2010, 7(4):4-6. |
JIA Y R. Application of flow cytometer in detection of DNA[J]. China Med Equip, 2010, 7(4):4-6.DOI: 10.3969/j.issn.1672-8270.2010.04.002. | |
[28] | ESCOBEDO-GRACIA-MEDRANO R M, BURGOS-TAN M J, KU-CAUICH J R, et al. Using flow cytometry analysis in plant tissue culture derived plants[J]. Methods Mol Biol, 2018, 1815:317-332.DOI: 10.1007/978-1-4939-8594-4_22. |
[29] | WINKELMANN T, SANGWAN R S, SCHWENKEL H G. Flow cytometric analyses in embryogenic and non-embryogenic callus lines of Cyclamen persicum Mill.:relation between ploidy level and competence for somatic embryogenesis[J]. Plant Cell Rep, 1998, 17(5):400-404.DOI: 10.1007/s002990050414. |
[30] | 张俊娥, 邓秀新. 采用流式细胞仪分析柑橘愈伤组织的细胞周期[J]. 果树学报, 2005, 22(6):741-743. |
ZHANG J E, DENG X X. Cell cycle of Citrus calli revealed by flow cytometry[J]. J Fruit Sci, 2005, 22(6):741-743. DOI: 10.3969/j.issn.1009-9980.2005.06.035. | |
[31] | IKEUCHI M, OGAWA Y, IWASE A, et al. Plant regeneration:cellular origins and molecular mechanisms[J]. Development, 2016, 143(9):1442-1451.DOI: 10.1242/dev.134668. |
[32] | VAN DER GRAAFF E, LAUX T, RENSING S A. The WUS homeobox-containing (WOX) protein family[J]. Genome Biol, 2009, 10(12):248.DOI: 10.1186/gb-2009-10-12-248. |
[33] | 苏英华. 拟南芥体细胞胚胎发生的机理研究[D]. 泰安: 山东农业大学, 2008. |
SU Y H. Study on the mechanisms of somatic embryogenesis in Arabidopsis[D]. Taian: Shandong Agricultural University, 2008. | |
[34] | ZUO J R, NIU Q W, FRUGIS G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis[J]. Plant J, 2002, 30(3):349-359.DOI: 10.1046/j.1365-313x.2002.01289.x. |
[35] | 肖艳青. 陆地棉WUSCHEL基因的克隆与功能验证[D]. 北京: 中国农业科学院, 2018. |
XIAO Y Q. Molecular cloning and functional identification of WUSCHEL gene from cotton (Gossypium hirsutum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
[36] | HOERSTER G, WANG N, RYAN L, et al. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation[J]. In Vitro Cell Dev Biol-Plant, 2020, 56(3):265-279.DOI: 10.1007/s11627-019-10042-2. |
[37] | 匡华琴, 刘生财, 陈裕坤, 等. 马银花愈伤组织RoWUS基因及其启动子的克隆与表达分析[J]. 热带作物学报, 2014, 35(10):1984-1991. |
KUANG H Q, LIU S C, CHEN Y K, et al. Cloning and qPCR analysis of RoWUS gene and isolation of promoter from callus in Rhododendron ovatum Planch[J]. Chin J Trop Crops, 2014, 35(10):1984-1991.DOI: 10.3969/j.issn.1000-2561.2014.10.017. | |
[38] | VAN DER KNAAP E, KIM J H, KENDE H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth[J]. Plant Physiol, 2000, 122(3):695-704.DOI: 10.1104/pp.122.3.695. |
[39] | WU L, ZHANG D F, XUE M, et al. Overexpression of the maize GRF10,an endogenous truncated growth-regulating factor protein,leads to reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11):1053-1063.DOI: 10.1111/jipb.12220. |
[40] | HORIGUCHI G, KIM G T, TSUKAYA H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant J, 2005, 43(1):68-78.DOI: 10.1111/j.1365-313X.2005.02429.x. |
[41] | 王锦楠. 生长调节因子GRF12a和GRF12b对杨树生长发育的作用及其机理研究[D]. 北京: 中国林业科学研究院, 2020. |
WANG J N. The role and mechanism of growth regulators GRF12a and GEF12b on the growth and development of poplar[D]. Beijing: Chinese Academy of Forestry, 2020. | |
[42] | OMIDBAKHSHFARD M A, PROOST S, FUJIKURA U, et al. Growth-regulating factors (GRFs):a small transcription factor family with important functions in plant biology[J]. Mol Plant, 2015, 8(7):998-1010.DOI: 10.1016/j.molp.2015.01.013. |
[43] | KONG J X, MARTIN-ORTIGOSA S, FINER J, et al. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species[J]. Front Plant Sci, 2020, 11:572319.DOI: 10.3389/fpls.2020.572319. |
[44] | DEBERNARDI J M, TRICOLI D M, ERCOLI M F, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nat Biotechnol, 2020, 38(11):1274-1279.DOI: 10.1038/s41587-020-0703-0. |
[45] | FENG Q, XIAO L, HE Y Z, et al. Highly efficient,genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J]. J Integr Plant Biol, 2021, 63(12):2038-2042.DOI: 10.1111/jipb.13199. |
[1] | 谢燕燕, 郭子武, 林树燕, 左珂怡, 杨丽婷, 徐森, 谷瑞, 陈双林. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. |
[2] | 李承基, 官凤英, 周潇, 张璇, 郑亚雄. 配比施肥对带状采伐毛竹林立竹数量和质量恢复的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 79-85. |
[3] | 陆启帆, 林上平, 刘胜辉, 郑翔, 毕毓芳, 肖子璋, 姜姜, 王安可, 杜旭华. 施肥对毛竹林产量影响的Meta分析[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 88-96. |
[4] | 国颖, 杨港归, 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. |
[5] | 王晓静, 王涛, 杨凯, 李潞滨. PEG和NaCl胁迫下毛竹萌发种子中环状RNA特征及其表达研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 17-24. |
[6] | 王纪, 方升佐. 不同抗褐化剂对青钱柳愈伤组织酶活性和生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 167-174. |
[7] | 程方, 孙婷玉, 叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 175-182. |
[8] | 肖箫, 周阳, 王树梅, 郑亚雄, 官凤英. 带状采伐对新生毛竹空间结构及稳定性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 139-147. |
[9] | 王剑超, 邱文敏, 金康鸣, 陆铸畴, 韩小娇, 卓仁英, 刘晓光, 何正权. 伴矿景天WRKY基因家族鉴定及镉胁迫响应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 49-60. |
[10] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
[11] | 马娟娟, 吴琴霞, 陈颖, 王瑞敏, 袁斌龄, 胡宇辰, 曹福亮. 银杏胚乳不同发育时期生理代谢变化与其胚性感受态的相关性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 68-76. |
[12] | 王占军, 吴子琦, 王朝霞, 欧祖兰, 李杰, 蔡倩文, 徐忠东, 张照亮. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 71-80. |
[13] | 纳晓莹, 刘刚, 刘桂丰, 王秀伟. 4种基因表达量和光合参数差异对白桦无性系幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 88-94. |
[14] | 林莉莉, 胡安琪, 陈钢, 张霁月, 曹光球, 曹世江. 杉木ClWRKY44基因克隆及其表达特性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 203-209. |
[15] | 孙开, 江建平, 丁雨龙, RAMAKRISHNAU Muthusamy, 魏强. 毛竹竹秆秆柄形态与解剖学研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 40-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||