南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (5): 28-38.doi: 10.12302/j.issn.1000-2006.202208030
所属专题: 专题报道:自然保护地森林生态系统研究
• 专题报道:自然保护地森林生态系统研究 • 上一篇 下一篇
收稿日期:
2022-08-13
修回日期:
2022-09-19
出版日期:
2024-09-30
发布日期:
2024-10-03
通讯作者:
* 王宏翔 (wanghongxiang168@126.com),讲师。作者简介:
王耀仪 (1693843668@qq.com)。
基金资助:
WANG Yaoyi(), WANG Hongxiang*(), WANG Yongqiang, ZENG Wenhao, YE Shaoming
Received:
2022-08-13
Revised:
2022-09-19
Online:
2024-09-30
Published:
2024-10-03
摘要:
【目的】功能性状多样性对森林生物多样性保护及生态系统功能稳定性的维持具有重要意义。探究不同林层的功能多样性特征及其形成原因,有助于深入理解生物多样性维持机制和植物群落构建过程。【方法】以广西雅长兰科植物国家级自然保护区1.6 hm2常绿阔叶天然老龄林监测样地植被调查数据为基础,运用K-means非层次聚类与高斯核密度估计方法划分林层,采集植物叶片性状和环境因子数据,通过结构方程模型揭示不同林层物种多样性与环境因子(地形、土壤和光照)对功能多样性的直接、间接影响。【结果】①林下层多样性指数显著高于林冠层(P<0.05)。②林下层物种多样性对4个功能多样性指数均有显著的直接影响,而林冠层物种多样性仅对功能丰富度指数(FRic)与功能二次熵指数(RAOQ)有显著的直接影响(P<0.05)。③林冠开度对林下层FRic指数有极显著的间接效应(β= 0.278,P<0.01),对林下层功能均匀度指数(FEve)有极显著的直接效应(β= -0.593,P<0.01)。④地形因子主要影响林冠层功能多样性。其中,坡向对林冠层FEve指数(β= -0.420,P<0.01)与RAOQ指数(β= -0.300,P<0.05)均有显著的直接效应。⑤土壤因子主要通过物种多样性间接影响各林层的功能多样性。其中,林下层功能多样性主要受全磷、有效磷、碱解氮、有效钾含量的影响,而全钾含量对林冠层FRic与RAOQ指数有一定的影响。【结论】研究区内各林层功能多样性存在较大差异。林下层功能多样性主要受物种多样性、林冠开度和土壤养分的影响,而地形因子则是林冠层功能多样性的主要影响因素。本研究结果揭示了不同林层内功能性状多样性对生物及非生物环境变化的响应,拓展了以往对于林分垂直分层多样性的认识,为天然林生物多样性保护提供更进一步的参考依据。
中图分类号:
王耀仪,王宏翔,王永强,等. 雅长保护区老龄林不同林层功能性状多样性及其影响因素分析[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 28-38.
WANG Yaoyi, WANG Hongxiang, WANG Yongqiang, ZENG Wenhao, YE Shaoming. Affecting factors analysis of functional diversity at different forest strata in an old growth forest community in Yachang Natural Reserve[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(5): 28-38.DOI: 10.12302/j.issn.1000-2006.202208030.
表1
土壤因子前2个主成分的载荷"
土壤因子 soil factors | 第1主成分 PCA1 | 第2主成分 PCA2 |
---|---|---|
酸碱度 pH | 0.39 | 0.24 |
全氮含量 TN | -0.44 | 0.17 |
有机碳含量 OC | -0.45 | 0.11 |
全磷含量 TP | 0.08 | 0.57 |
全钾含量 TK | 0.33 | 0.38 |
碱解氮含量 AHN | -0.41 | 0.25 |
有效磷含量 AP | -0.14 | 0.27 |
有效钾含量 AK | -0.07 | 0.54 |
土壤含水率 SMC | -0.38 | -0.09 |
方差解释率 explained variance ratio | 0.48 | 0.29 |
累积解释率 cumulative explained variance | 0.48 | 0.77 |
表2
不同林层物种及功能多样性的差异"
林层 layer | 物种丰富度 SR | 香农指数 Shannon index | 辛普森指数 Simpson index | 均匀度指数 Pielou index | 功能丰富度 FRic | 功能均匀度 FEve | 功能分歧度 FDiv | 二次熵指数 RAOQ |
---|---|---|---|---|---|---|---|---|
林分整体stand | 27.25±4.37 a | 2.49±0.37 a | 0.86±0.07 a | 0.75±0.09 a | 9.66±5.42 a | 0.63±0.06 b | 0.85±0.04 b | 3.45±0.84 a |
林冠层canopy | 11.83±2.51 c | 1.71±0.33 c | 0.71±0.10 c | 0.70±0.10 b | 0.50±0.61 c | 0.63±0.07 b | 0.89±0.06 a | 2.73±0.96 b |
林下层understory | 22.5±4.24 b | 2.30±0.50 b | 0.81±0.14 b | 0.74±0.14 ab | 5.66±3.62 b | 0.67±0.08 a | 0.85±0.06 b | 3.54±0.92 a |
图3
物种多样性与环境因子的随机森林相对重要性排序 变量的重要程度由均方误差增量(%IncMSE)表示,每一个值表示去掉该变量后模型预测误差的增量。The variable importance values are expressed by the percentage increase of mean square incresement (%IncMSE). Simpson.辛普森指数Simpson index;Shannon.香农指数Shannon index;Pielou.均匀度指数Pielou index; PCA1.土壤因子主成分排序轴1Each value represents the increase in the prediction error of the same model after the omission of a variable the first principal component axis for soil factors;PCA2.土壤因子主成分排序轴2 the second principal component axis for soil factors;Co.林冠开度canopy openness;Slope.坡度;Aspect.坡向;Convexity.凹凸度。下同。The same below."
表3
林下层物种多样性和环境因子的相关系数"
指标 index | Shannon | SR | Simpson | Pielou | PCA1 | PCA2 | Slope | Aspect | Convexity |
---|---|---|---|---|---|---|---|---|---|
SR | 0.73*** | ||||||||
Simpson | 0.97*** | 0.63*** | |||||||
Pielou | 0.97*** | 0.56*** | 0.97*** | ||||||
PCA1 | 0.12 | -0.10 | 0.08 | 0.16 | |||||
PCA2 | 0.63*** | 0.40** | 0.60*** | 0.64*** | -0.09 | ||||
Slope | 0.15 | 0.00 | 0.15 | 0.18 | -0.29 | 0.19 | |||
Aspect | 0.08 | 0.32 | 0.06 | -0.01 | -0.07 | 0.31 | 0.14 | ||
Convexity | 0.12 | 0.17 | 0.16 | 0.10 | -0.32* | 0.19 | 0.04 | 0.14 | |
Co | -0.26 | 0.26 | -0.23 | -0.40** | -0.43** | -0.32* | -0.12 | 0.21 | 0.34* |
表4
林冠层物种多样性和环境因子的相关关系"
指标 index | Shannon | SR | Simpson | Pielou | PCA1 | PCA2 | Slope | Aspect |
---|---|---|---|---|---|---|---|---|
SR | 0.72*** | |||||||
Simpson | 0.92*** | 0.46** | ||||||
Pielou | 0.90*** | 0.36* | 0.97*** | |||||
PCA1 | 0.26 | -0.07 | 0.29 | 0.38* | ||||
PCA2 | 0.58*** | 0.44** | 0.54*** | 0.51*** | -0.09 | |||
Slope | 0.24 | 0.35* | 0.17 | 0.11 | -0.29 | 0.19 | ||
Aspect | 0.39* | 0.18 | 0.42** | 0.41** | -0.07 | 0.31 | 0.14 | |
Convexity | -0.002 | 0.22 | -0.05 | -0.12 | -0.32* | 0.19 | 0.04 | 0.14 |
[1] | 马克平. 生物多样性科学的热点问题[J]. 生物多样性, 2016, 24(1):1-2. |
MA K P. Hot topics for biodiversity science[J]. Biodivers Sci, 2016, 24(1):1-2.DOI: 10.17520/biods.2016029. | |
[2] | MORI A S, FURUKAWA T, SASAKI T. Response diversity determines the resilience of ecosystems to environmental change[J]. Biol Rev, 2013, 88(2):349-364.DOI: 10.1111/brv.12004. |
[3] | XU W, LUO W X, ZHANG C Y, et al. Biodiversity-ecosystem functioning relationships of overstorey versus understorey trees in an old-growth temperate forest[J]. Ann For Sci, 2019, 76(3):1-13.DOI: 10.1007/s13595-019-0845-8. |
[4] | CHAO A, CHIU C H, JOST L. Unifying species diversity,phylogenetic diversity,functional diversity,and related similarity and differentiation measures through hill numbers[J]. Annu Rev Ecol Evol Syst, 2014, 45:297-324.DOI: 10.1146/annurev-ecolsys-120213-091540. |
[5] | 何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12):1021-1035. |
HE Y Y, GUO S L, WANG Z. Research progress of trade-off relationships of plant functional traits[J]. Chin J Plant Ecol, 2019, 43(12):1021-1035.DOI: 10.17521/cjpe.2019.0122. | |
[6] | MASON N W H, MOUILLOT D, LEE W G, et al. Functional richness,functional evenness and functional divergence:the primary components of functional diversity[J]. Oikos, 2005, 111(1):112-118.DOI: 10.1111/j.0030-1299.2005.13886.x. |
[7] | LUO Y H, CADOTTE M W, BURGESS K S, et al. Greater than the sum of the parts:how the species composition in different forest strata influence ecosystem function[J]. Ecol Lett, 2019, 22(9):1449-1461.DOI: 10.1111/ele.13330. |
[8] | AGUIRRE-GUTIÉRREZ J, BERENGUER E, MENOR I O, et al. Functional susceptibility of tropical forests to climate change[J]. Nat Ecol Evol, 2022, 6(7):878-889.DOI: 10.1038/s41559-022-01747-6. |
[9] | 韩涛涛, 唐玄, 任海, 等. 群落/生态系统功能多样性研究方法及展望[J]. 生态学报, 2021, 41(8):3286-3295. |
HAN T T, TANG X, REN H, et al. Community/ecosystem functional diversity:measurements and development[J]. Acta Ecol Sin, 2021, 41(8):3286-3295.DOI: 10.5846/stxb201903080442. | |
[10] | VILLÉGER S, MASON N W H, MOUILLOT D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 2008, 89(8):2290-2301.DOI: 10.1890/07-1206.1. |
[11] | BISWAS S R, MALLIK A U, BRAITHWAITE N T, et al. Effects of disturbance type and microhabitat on species and functional diversity relationship in stream-bank plant communities[J]. For Ecol Manag, 2019, 432:812-822.DOI: 10.1016/j.foreco.2018.10.021. |
[12] | SUÁREZ-CASTRO A F, RAYMUNDO M, BIMLER M, et al. Using multi-scale spatially explicit frameworks to understand the relationship between functional diversity and species richness[J]. Ecography, 2022(6): e05844.DOI: 10.1111/ecog.05844. |
[13] | 许驭丹, 董世魁, 李帅, 等. 植物群落构建的生态过滤机制研究进展[J]. 生态学报, 2019, 39(7):2267-2281. |
XU Y D, DONG S K, LI S, et al. Research progress on ecological filtering mechanisms for plant community assembly[J]. Acta Ecol Sin, 2019, 39(7):2267-2281.DOI: 10.5846/stxb201804260946. | |
[14] | DING Y, ZANG R G, LU X H, et al. The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient[J]. J Veg Sci, 2019, 30(5):973-983.DOI: 10.1111/jvs.12786. |
[15] | 盘远方, 李娇凤, 姚玉萍, 等. 桂林岩溶石山青冈群落植物功能多样性和环境因子与坡向的关联研究[J]. 生态学报, 2021, 41(11):4484-4492. |
PAN Y F, LI J F, YAO Y P, et al. Changes in plant functional diversity and environmental factors of Cyclobalanopsis glauca community in response to slope gradient in Karst hills,Guilin[J]. Acta Ecol Sin, 2021, 41(11):4484-4492.DOI: 10.5846/stxb201906031169. | |
[16] | 李杰, 李远发, 陆道调, 等. 南盘江流域松栎混交林的分层多样性特征[J/OL]. 生态学杂志:1-13[2022-06-21]. |
LI J, LI Y F, LU D D, et al. The characteristics of stratification diversity of pine-oak mixed forests in the Nanpan River Basin[J/OL]. Chinese Journal of Ecology: 1-13[2022-06-21]. http://kns.cnki.net/kcms/detail/21.1148.Q.20220620.1345.014.html. | |
[17] | 桂旭君, 练琚愉, 张入匀, 等. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6):619-629. |
GUI X J, LIAN J Y, ZHANG R Y, et al. Vertical structure and its biodiversity in a subtropical evergreen broad-leaved forest at Dinghushan in Guangdong Province,China[J]. Biodivers Sci, 2019, 27(6):619-629.DOI: 10.17520/biods.2019107. | |
[18] | LI Y, HE J, YU S, et al. Spatial structure of the vertical layers in a subtropical secondary forest 57 years after clear-cutting[J]. iForest, 2019, 12(5):442-450.DOI: 10.3832/ifor2975-012. |
[19] | 李艳朋, 倪云龙, 许涵, 等. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9):1186-1197. |
LI Y P, NI Y L, XU H, et al. Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodivers Sci, 2021, 29(9):1186-1197.DOI: 10.17520/biods.2021205. | |
[20] | 吴昊, 肖楠楠, 林婷婷. 秦岭松栎林功能多样性与物种多样性和环境异质性的耦合关系[J]. 生态环境学报, 2020, 29(6):1090-1100. |
WU H, XIAO N N, LIN T T. Relationships between functional diversity and species diversity of pine-oak mixed forest in Qinling Mountains and their environmental explanations[J]. Ecol Environ Sci, 2020, 29(6):1090-1100.DOI: 10.16258/j.cnki.1674-5906.2020.06.003. | |
[21] | CHENG X Q, TAIN P, LI Z Z, et al. Effects of environmental factors on plant functional traits across different plant life forms in a temperate forest ecosystem[J]. New For, 2022, 53(1):125-142.DOI: 10.1007/s11056-021-09847-0. |
[22] | 楼一恺, 范忆, 戴其林, 等. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系[J]. 生态学报, 2021, 41(21):8568-8577. |
LOU Y K, FAN Y, DAI Q L, et al. Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve[J]. Acta Ecol Sin, 2021, 41(21):8568-8577.DOI: 10.5846/stxb202007301989. | |
[23] | 张田田, 王璇, 任海保, 等. 浙江古田山次生与老龄常绿阔叶林群落特征的比较[J]. 生物多样性, 2019, 27(10):1069-1080. |
ZHANG T T, WANG X, REN H B, et al. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan,Zhejiang Province[J]. Biodivers Sci, 2019, 27(10):1069-1080.DOI: 10.17520/biods.2019059. | |
[24] | 李述万. 广西雅长兰科植物国家级自然保护区维管束植物物种多样性研究[D]. 桂林: 广西师范大学, 2017. |
LI S W. Studies on species diversity of vascular plants in Yachang orchid national nature reserve of Guangxi[D]. Guilin: Guangxi Normal University, 2017. | |
[25] | PEREZ-HARGUINDEGUY N, DIAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(67-234).DOI:http://dx.doi,org/10.1017/BT12225. |
[26] | WANG L Q, ALI A. Climate regulates the functional traits-aboveground biomass relationships at a community-level in forests:a global meta-analysis[J]. Sci Total Environ, 2021, 761:143238.DOI: 10.1016/j.scitotenv.2020.143238. |
[27] | 柯娴氡, 贺立静, 苏志尧. 南方4种木本植物相对叶绿素指标及其分布[J]. 中南林业科技大学学报, 2010, 30(8):82-86. |
KE X D, HE L J, SU Z Y. Relative chlorophyll content and its distribution of four woody species in south China[J]. J Central South Univ For & Technol, 2010, 30(8):82-86.DOI: 10.14067/j.cnki.1673-923x.2010.08.025. | |
[28] | 熊映杰, 于果, 魏凯璐, 等. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2):136-147. |
XIONG Y J, YU G, WEI K L, et al. Relationships between lamina size,vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain,southeastern China[J]. Chin J Plant Ecol, 2022, 46(2):136-147.DOI: 10.17521/cjpe.2021.0060. | |
[29] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000:1-336. |
LU R K. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000:1-336. | |
[30] | HARMS K E, CONDIT R, HUBBELL S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. J Ecol, 2001, 89(6):947-959.DOI: 10.1111/j.1365-2745.2001.00615.x. |
[31] | 濮毅涵, 徐丹丹, 王浩斌. 基于数码相片的林冠郁闭度提取方法研究[J]. 林业资源管理, 2020(6):153-160. |
PU Y H, XU D D, WANG H B. An approach on estimating canopy closure via digital images[J]. For Resour Manag, 2020(6):153-160.DOI: 10.13466/j.cnki.lyzygl.2020.06.024. | |
[32] | 唐丽丽, 陈国平, 冯小梅, 等. 基于系统发育的燕山东麓植物群落的构建机制[J]. 植物研究, 2017, 37(6):807-815. |
TANG L L, CHEN G P, FENG X M, et al. Community assembly rules of the east of Yanshan Mountain based on phylogeny[J]. Bull Bot Res, 2017, 37(6):807-815.DOI: 10.7525/j.issn.1673-5102.2017.06.002. | |
[33] | 马克平, 刘玉明. 生物群落多样性的测度方法 Ⅰ:α多样性的测度方法(下)[J]. 生物多样性, 1994, 2(4):231-239. |
MA K P, LIU Y M. The measurement method of biodiversity Ι: α diversity measurement method(Ⅱ)[J]. Chin Biodiversity, 1994, 2(4):231-239. | |
[34] | BOTTA-DUKÁT Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits[J]. J Veg Sci, 2005, 16(5):533-540.DOI: 10.1111/j.1654-1103.2005.tb02393.x. |
[35] | 石亚飞, 石善恒, 黄晓敏. 基于R的结构方程模型在生态学中的应用[J]. 生态学杂志, 2022, 41(5):1015-1023. |
SHI Y F, SHI S H, HUANG X M. The application of structural equation modeling in ecology based on R[J]. Chin J Ecol, 2022, 41(5):1015-1023.DOI: 10.13292/j.1000-4890.202203.016. | |
[36] | ROSSEEL Y. Lavaan:an R package for structural equation modeling[J]. J Stat Softw, 2012, 48(2):1-36.DOI: 10.18637/jss.v048.i02. |
[37] | KASSAMBARA A. Ggcorrplot: visualization of a vorrelation matrix using ‘ggplot2’[EB/OL]. R package version 013.2019. [2022-08-10]. https://CRAN.R-project.org/package=ggcorrplot. |
[38] | BREIMAN L, CUTLER A, LIAW A, et al. RandomForest: Breiman and Cutler’s Random Forests for Classification and Regression[EB/OL]. R package version 47-11. 2022. [2022-08-10]. https://CRAN.R-project.org/package=randomForest. |
[39] | OKSANEN J, SIMPSON G L, BLANCHET F G, et al. Community Ecology Package[EB/OL]. R package version 26-2. 2022. [2022-08-10]. https://cran.r-project.org/web/packages/vegan/. |
[40] | MAMMOLA S, CARMONA C P, GUILLERME T, et al. Concepts and applications in functional diversity[J]. Funct Ecol, 2021, 35(9):1869-1885.DOI: 10.1111/1365-2435.13882. |
[41] | R Core Team. R: a language and environment for statistical computing,2021. [EB/OL]. [2022-08-10]. https://www.R-project.org. |
[42] | SU X P, ZHENG G C, CHEN H Y H. Understory diversity are driven by resource availability rather than resource heterogeneity in subtropical forests[J]. For Ecol Manag, 2022, 503:119781.DOI: 10.1016/j.foreco.2021.119781. |
[43] | BOTTA-DUKÁT Z, CZÚCZ B. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation[J]. Methods Ecol Evol, 2016, 7(1):114-126.DOI: 10.1111/2041-210X.12450. |
[44] | SANAPHRE-VILLANUEVA L, DUPUY J, ANDRADE J, et al. Functional diversity of small and large trees along secondary succession in a tropical dry forest[J]. Forests, 2016, 7(12):163.DOI: 10.3390/f7080163. |
[45] | 郑芬, 李兆佳, 邱治军, 等. 广东南岭天然常绿阔叶林林下光环境对林下幼树功能性状的影响[J]. 生态学报, 2020, 40(13):4516-4527. |
ZHENG F, LI Z J, QIU Z J, et al. Effects of understory light on functional traits of evergreen broad-leaved forest saplings in Nanling Mountains,Guangdong Province[J]. Acta Ecol Sin, 2020, 40(13):4516-4527.DOI: 10.5846/stxb201911152453. | |
[46] | 谭一波, 申文辉, 付孜, 等. 环境因子对桂西南蚬木林下植被物种多样性变异的解释[J]. 生物多样性, 2019, 27(9):970-983. |
TAN Y B, SHEN W H, FU Z, et al. Effect of environmental factors on understory species diversity in southwest Guangxi Excentrodendron tonkinense forests[J]. Biodivers Sci, 2019, 27(9):970-983.DOI: 10.17520/biods.2019133. | |
[47] | 徐耀粘, 刘检明, 万丹, 等. 林冠结构和地形对亚热带常绿落叶阔叶林林下幼苗物种多样性和功能多样性的影响[J]. 植物科学学报, 2020, 38(6):733-742. |
XU Y Z, LIU J M, WAN D, et al. Effects of canopy structure and topography on seedling species diversity in an evergreen and deciduous broad-leaved mixed forest[J]. Plant Sci J, 2020, 38(6):733-742.DOI: 10.11913/PSJ.2095-0837.2020.60733. | |
[48] | LIANG J J, ZHOU M, TOBIN P C, et al. Biodiversity influences plant productivity through niche-efficiency[J]. Proc Natl Acad Sci USA, 2015, 112(18):5738-5743.DOI: 10.1073/pnas.1409853112. |
[49] | MOUILLOT D, BELLWOOD D R, BARALOTO C, et al. Rare species support vulnerable functions in high-diversity ecosystems[J]. PLoS Biol, 2013, 11(5):e1001569.DOI: 10.1371/journal.pbio.1001569. |
[50] | MAO Q G, CHEN H, GURMESA G A, et al. Negative effects of long-term phosphorus additions on understory plants in a primary tropical forest[J]. Sci Total Environ, 2021, 798:149306.DOI: 10.1016/j.scitotenv.2021.149306. |
[51] | BORDIN K M, MÜLLER S C. Drivers of subtropical forest dynamics:the role of functional traits,forest structure and soil variables[J]. J Veg Sci, 2019, 30(6):1164-1174.DOI: 10.1111/jvs.12811. |
[52] | 徐武美, 宋彩云, 李巧明. 西双版纳热带季节雨林土壤养分空间异质性对乔木树种多样性的影响[J]. 生态学报, 2015, 35(23):7756-7762. |
XU W M, SONG C Y, LI Q M. Relationship between soil resource heterogeneity and tree diversity in Xishuangbanna tropical seasonal rainforest,southwest China[J]. Acta Ecol Sin, 2015, 35(23):7756-7762.DOI: 10.5846/stxb201405120968. |
[1] | 田春红, 李明阳, 李陶, 李登攀, 田雷. 基于Sentinel 1 & 2主被动遥感数据和冠层高度的森林净初级生产力估测[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 132-140. |
[2] | 郭弘婷, 纪小芳, 汪成, 邹汉鲁, 王丽艳, 姜姜. 我国人工林林下灌木层植物多样性空间变异及影响要素[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 144-152. |
[3] | 赵颖慧, 杨海城, 甄贞. 基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 23-32. |
[4] | 董灵波, 刘兆刚. 森林健康评价及其多尺度转换方法[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 206-216. |
[5] | 罗艳, 何朋俊, 吕倩, 范川, 冯茂松, 李贤伟, 陈露蔓. 目标树经营初期对马尾松人工林碳贮量的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 206-214. |
[6] | 张乾,居为民,杨风亭,曹林,冯永康. 森林冠层多角度高光谱观测系统的实现与分析[J]. 南京林业大学学报(自然科学版), 2016, 40(03): 101-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||