小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征

陈秀波, 段文标, 陈立新, 朱德全, 赵晨晨, 刘东旭

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 77-86.

PDF(3055 KB)
PDF(3055 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 77-86. DOI: 10.12302/j.issn.1000-2006.201902033
研究论文

小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征

作者信息 +

Community structure and diversity of soil nirK-type denitrifying microorganisms in three forest types of primitive Pinus koraiensis mixed forest in Liangshui National Nature Reserve, Lesser Khingan Mountains

Author information +
文章历史 +

摘要

【目的】分析小兴安岭地区3种典型原始红松林下土壤nirK型反硝化微生物的群落结构和多样性,探索影响原始红松林土壤nirK型反硝化微生物群落的关键土壤理化因子。【方法】在黑龙江省伊春市小兴安岭凉水自然保护区内采集3种原始红松林(云冷杉红松林、椴树红松林和枫桦红松林)林下土壤样品,提取土壤微生物总DNA,PCR扩增反硝化过程中的关键酶——硝酸盐还原酶的编码基因nirK高变区片段,采用Illumina MiSeq技术对其进行测序,并运用生物信息学技术分析nirK反硝化微生物的群落结构和多样性。【结果】共获得3种林型土壤nirK型基因的848 312条有效序列,761 912条优质序列,平均长度为320 bp。3种原始红松林土壤nirK型反硝化微生物分属于三界(细菌、古菌和无明确分类地位)。3种林型土壤中均含有大量未被鉴定的nirK型基因序列,在已鉴定的nirK型反硝化微生物中各林型均以变形菌门(Proteobacteria)为主,核心菌属为慢生根瘤菌属(Bradyrhizobium)、红假单胞菌属(Rhodopseudomonas)、固氮螺菌属(Azospirillum)和伯霍尔德杆菌属(Burkholderia)。α多样性分析显示:3种原始红松林nirK型反硝化微生物的4种α多样性指数(Shannon指数、Simpson指数、Ace指数和Chao1指数)没有显著差异。但β多样性分析显示:3种林型土壤nirK型反硝化微生物群落组成差异显著(R=0.25,P<0.05)。Metastats分析表明:3种林型土壤中丰度存在显著差异的是拟杆菌门(Bacteroidetes)、广古菌门(Euryarchaeota)和变形菌门(Proteobacteria)。土壤铵态氮和全氮含量是显著影响林下土壤nirK型反硝化微生物群落组成的主要理化因子(P<0.05)。【结论】3种原始红松林土壤理化性质差异没有对nirK型反硝化微生物的α多样性指数产生显著影响,但导致β多样性差异显著,其中铵态氮和全氮含量是显著影响3种原始红松林土壤nirK型反硝化微生物群落组成的主要因子。

Abstract

【Objective】The community structure and diversity characteristics of soil nirK-type denitrifying microorganisms in three types of primitive Pinus koraiensis forest (Picea asperata-Abies fabri-Pinus koraiensis forest, Tilia spp.-P. koraiensis forest, and Betula costata-P. koraiensis forest) were analyzed, and the key soil physicochemical factors affecting the soil nirK-type denitrifying microbial community were explored in the Liangshui National Nature Reserve of the Lesser Khingan Mountains.【Method】Soil samples of the selected three types of primitive P. koraiensis forest were collected in the Liangshui National Nature Reserve of the Lesser Khingan Mountains of Yichun City, Heilongjiang Province. Additionally, total soil microbial DNA was extracted, and variable range fragments of the nirK gene, which encodes the coding gene of nitrate reductase (a key enzyme in the denitrifying process), were amplified with PCR. The community composition and diversity characteristics of soil nirK-type denitrifying microorganisms in the different forest types of P. koraiensis were analyzed by using high-throughput sequencing and bioinformatic analysis.【Result】A total of 761 912 high-quality sequences of the 848 312 effective sequences of the nirK gene were obtained with high-throughput sequencing of 12 soil samples in the three types of primitive P. koraiensis forest, and the average length of these sequences was 320 bp. Soil nirK-type denitrifying microorganisms of the three forest types belong to bacteria and archaea.In addition there were a large number of sequences without clear classification information. The soil nirK denitrifying microorganisms identified in the three forest types belonged primarily to Proteobacteria at the Phylum level. However, the core genera included Bradyrhizobium, Rhodopseudomonas, Azospirillum and Burkholderia. Alpha diversity analysis showed that there was no significant difference in the four alpha diversity indices (Shannon, Chao1, Ace and Simpson index) of soil nirK-type denitrifying microorganisms among the three forest types. Beta diversity analysis showed that there were significant differences in the composition of soil nirK microbial communities among the three forest types (R=0.25, P=0.016). Metastats analysis showed that the significant differences in soil nirK microbial communities among the three forest types were with regards to Proteobacteria, Euryarchaeota and Bacteroidetes. Soil ammonium nitrogen and total nitrogen were the main soil physicochemical factors influencing soil nirK-type denitrifying microorganisms communities in the three forest types (P<0.05).【Conclusion】There was no significant difference in the alpha diversity index of the three primitive P. koraiensis forests (Shannon index, Simpson index, Ace index and Chao1 index), although beta diversity analysis showed that there were significant differences in the composition of the soil nirK microbial community among the three types of primitive P. koraiensis forest (R=0.25, P=0.016). Ammonium nitrogen and total nitrogen were the main soil physicochemical factors that significantly affected the soil nirK denitrifying microorganism in the three forest types.

关键词

小兴安岭 / 原始红松林 / nirK基因 / 反硝化微生物 / 群落结构 / 高通量测序 / 凉水自然保护区

Key words

Lesser Khingan Mountains / primitive Pinus koraiensis forest / nirK gene / denitrifying microorganisms / community structure / high-throughput sequencing / Liangshui National Nature Reserve

引用本文

导出引用
陈秀波, 段文标, 陈立新, . 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版). 2021, 45(2): 77-86 https://doi.org/10.12302/j.issn.1000-2006.201902033
CHEN Xiubo, DUAN Wenbiao, CHEN Lixin, et al. Community structure and diversity of soil nirK-type denitrifying microorganisms in three forest types of primitive Pinus koraiensis mixed forest in Liangshui National Nature Reserve, Lesser Khingan Mountains[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 77-86 https://doi.org/10.12302/j.issn.1000-2006.201902033
中图分类号: S718.81   

参考文献

[1]
王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016,52(1):150-158.
WANG N, YANG X, LI S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient[J]. Sci Silvae Sin, 2016,52(1):150-158.DOI: 10.11707/j.1001-7488.20160118.
[2]
孙雪, 隋心, 韩冬雪, 等. 原始红松林退化演替后土壤微生物功能多样性的变化[J]. 环境科学研究, 2017,30(6):911-919.
SUN X, SUI X, HAN D X, et al. Changes of soil microbial functional diversity in the degraded and successional primitive Korean pine forest in Lesser Khingan Mountain,Northern China[J]. Res Environ Sci, 2017,30(6):911-919.DOI: 10.13198/j.issn.1001-6929.2017.01.90.
[3]
SHAW L J, NICOL G W, SMITH Z, et al. Nitrosospira spp.can produce nitrous oxide via a nitrifier denitrification pathway[J]. Environ Microbiol, 2006,8(2):214-222.DOI: 10.1111/j.1462-2920.2005.00882.x.
[4]
JONES C M, HALLIN S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities[J]. ISME J, 2010,4(5):633-641.DOI: 10.1038/ismej.2009.152.
[5]
PRIEME A, BRAKER G, TIEDJE J M. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils[J]. Appl Environ Microbiol, 2002,68(4):1893-1900.DOI: 10.1128/aem.68.4.1893-1900.2002.
[6]
RUIZ-RUEDA O, TRIAS R, GARCIA-GIL L J, et al. Diversity of the nitrite reductase gene nirS in the sediment of a free-water surface constructed wetland[J]. International Microbiology: the Official Journal of the Spanish Society for Microbiology, 2007,10(4):253-260. DOI: 10.2436/20.1501.01.34
[7]
CAVIGELLI M A, ROBERTSON G P. The functional significance of denitrifier community composition in a terrestrial ecosystem[J]. Ecology, 2000,81(5):1402-1414.DOI: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2.
[8]
ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiol Mol Biol Rev, 1997,61(4):533-616.DOI: 10.1128/.61.4.533-616.1997.
[9]
BRAKER G, ZHOU J, WU L, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities[J]. Appl Environ Microbiol, 2000,66(5):2096-2104.DOI: 10.1128/aem.66.5.2096-2104.2000.
[10]
朱杰, 刘海, 吴邦魁, 等. 稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响[J]. 中国生态农业学报, 2018,26(9):1324-1332.
ZHU J, LIU H, WU B K, et al. Effects of integrated rice-crayfish farming system on community structure and diversity of nirK denitrification microbe in paddy soils[J]. Chin J Eco-Agric, 2018,26(9):1324-1332.DOI: 10.13930/j.cnki.cjea.171165.
[11]
CHEN J, NIE Y X, LIU W, et al. Ammonia-oxidizing Archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil[J]. Front Microbiol, 2017,8:1384.DOI: 10.3389/fmicb.2017.01384.
[12]
TANG Y Q, ZHANG X Y, LI D D, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of Ammonia oxidizers and denitrifying bacteria in Chinese fir plantations[J]. Soil Biol Biochem, 2016,103:284-293.DOI: 10.1016/j.soilbio.2016.09.001.
[13]
KEIL D, MEYER A, BERNER D, et al. Influence of land-use intensity on the spatial distribution of N-cycling microorganisms in grassland soils[J]. FEMS Microbiol Ecol, 2011,77(1):95-106.DOI: 10.1111/j.1574-6941.2011.01091.x.
[14]
WANG Z, ZHANG X X, LU X, et al. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing[J]. PLoS One, 2014,9(11):e113603.DOI: 10.1371/journal.pone.0113603.
[15]
LI F G, LI M C, SHI W C, et al. Distinct distribution patterns of proteobacterial nirK-and nirS-type denitrifiers in the Yellow River estuary,China[J]. Can J Microbiol, 2017,63(8):708-718.DOI: 10.1139/cjm-2017-0053.
[16]
HAN B, YE X H, LI W, et al. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J]. J Soils Sediments, 2017,17(10):2457-2468.DOI: 10.1007/s11368-017-1700-x.
[17]
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
[18]
张维玲, 张金池. 不同种植时间脐橙园土壤理化特性研究[J]. 南京林业大学学报(自然科学版), 2018,42(4):181-186.
ZHANG W L, ZHANG J C. Effects of different planting years on soil physical and chemical properties in navel orange orchard[J]. J Nanjing For Univ(Nat Sci Ed), 2018,42(4):181-186.
[19]
郝玉琢, 周磊, 吴慧, 等. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019,43(4):101-108.
HAO Y Z, ZHOU L, WU H, et al. Comparison of ecological stoichiometric characteristics of leaf-litter-soil in four types of Fraxinus mandshurica plantations[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(4):101-108.DOI: 10.3969/j.issn.1000-2006.201806021
[20]
王国兵, 王瑞, 徐瑾, 等. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019,43(2):1-6.
WANG G B, WANG R, XU J, et al. Effects of biochar application on microbial biomass C,N,P and stoichiometry characteristics of poplar plantation soil[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(2):1-6.DOI: 10.3969/j.issn.1000-2006.201803022
[21]
CAPORASO J G, LAUBER C L, WALTERS W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal, 2012,6(8):1621-1624. DOI: 10.1038/ismej.2012.8.
[22]
EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010,26(19):2460-2461.DOI: 10.1093/bioinformatics/btq461.
[23]
WHITE J R, NAGARAJAN N, POP M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples[J]. PLoS Comput Biol, 2009,5(4):e1000352.DOI: 10.1371/journal.pcbi.1000352.
[24]
HOU S P, AI C, ZHOU W, et al. Structure and assembly cues for rhizospheric nirK-and nirS-type denitrifier communities in long-term fertilized soils[J]. Soil Biol Biochem, 2018,119:32-40.DOI: 10.1016/j.soilbio.2018.01.007.
[25]
BREMER C, BRAKER G, MATTHIES D, et al. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil[J]. Applied and Environmental Microbiology, 2007,73(21):6876-6884. DOI: 10.1128/aem.01536-07.
[26]
YANG Y D, HU Y G, WANG Z M, et al. Variations of the nirS-,nirK-,and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes[J]. Environ Sci Pollut Res, 2018,25(14):14057-14067.DOI: 10.1007/s11356-018-1548-7.
[27]
杜倩, 梁素钰, 李琳, 等. 阔叶红松林土壤酶活性及微生物群落功能多样性分析[J]. 森林工程, 2019,35(1):1-7.
DU Q, LIANG S Y, LI L, et al. Soil enzyme activities and microbial community functional diversity of broad-leaved Korean pine forest[J]. Forest Engineering, 2019,35(1):1-7.
[28]
罗希茜, 陈哲, 胡荣桂, 等. 长期施用氮肥对水稻土亚硝酸还原酶基因多样性的影响[J]. 环境科学, 2010,31(2):423-430.
LUO X Q, CHEN Z, HU R G, et al. Effect of long-term fertilization on the diversity of nitrite reductase genes(nirK and nirS) in paddy soil[J]. Environ Sci, 2010,31(2):423-430.DOI: 10.13227/j.hjkx.2010.02.038.
[29]
王婷, 刘丽丽, 张克强, 等. 牛场肥水灌溉对土壤nirKnirS型反硝化微生物群落结构的影响[J]. 生态学报, 2017,37(11):3655-3664.
WANG T, LIU L L, ZHANG K Q, et al. Effects of cattle fertilizer on community structure of nirK-and nirS-type denitrifying bacteria in soil[J]. Acta Ecol Sin, 2017,37(11):3655-3664.DOI: 10.5846/stxb201604180714.
[30]
BAÑERAS L, RUIZ-RUEDA O, LÓPEZ-FLORES R, et al. The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation[J]. Int Microbiol, 2012,15(2):89-99.DOI: 10.2436/20.1501.01.162.
[31]
URBANOVÁ M, ŠNAJDR J, BALDRIAN P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biol Biochem, 2015,84:53-64.DOI: 10.1016/j.soilbio.2015.02.011.
[32]
BARTA J, TAHOVSKA K, KAAA J, et al. The effect of nitrate addition on abundance of nirK, nirS and gln genes in acidified Norway spruce forest soil, proceedings of the EGU General Assembly Conference[C]. Vienna,Austria, 2010.
[33]
SZUKICS U, ABELL G C J, HÖDL V, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J]. FEMS Microbiol Ecol, 2010,72(3):395-406.DOI: 10.1111/j.1574-6941.2010.00853.x.
[34]
BÁRTA J, MELICHOVÁ T, VANĚK D, et al. Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil[J]. Biogeochemistry, 2010,101(1/2/3):123-132.DOI: 10.1007/s10533-010-9430-9.
[35]
KANDELER E, BRUNE T, ENOWASHU E, et al. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile[J]. FEMS Microbiol Ecol, 2009,67(3):444-454.DOI: 10.1111/j.1574-6941.2008.00632.x.
[36]
PETERSEN D G, BLAZEWICZ S J, FIRESTONE M, et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska[J]. Environ Microbiol, 2012,14(4):993-1008.DOI: 10.1111/j.1462-2920.2011.02679.x.
[37]
LEVY-BOOTH D J, WINDER R S. Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut Douglas-fir stands by using real-time PCR[J]. Appl Environ Microbiol, 2010,76(21):7116-7125.DOI: 10.1128/aem.02188-09.
[38]
MORALES S E, COSART T, HOLBEN W E. Bacterial gene abundances as indicators of greenhouse gas emission in soils[J]. The ISME Journal, 2010,4(6):799-808. DOI: 10.1038/ismej.2010.8.
[39]
姜一, 陈立新, 段文标, 等. 小兴安岭原始红松混交林林隙土壤不同形态氮含量[J]. 生态学杂志, 2014,33(12):3374-3380.
JIANG Y, CHEN L X, DUAN W B, et al. Concentrations of different nitrogen forms in gaps of natural Pinus koraiensis mixed forest in Xiao Xing’anling Mountains[J]. Chin J Ecol, 2014,33(12):3374-3380.DOI: 10.13292/j.1000-4890.2014.0302.
[40]
BAGGS E M, SMALES C L, BATEMAN E J. Changing pH shifts the microbial sourceas well as the magnitude of N2O emission from soil[J]. Biol Fertil Soils, 2010,46(8):793-805.DOI: 10.1007/s00374-010-0484-6.
[41]
LIGI T, TRUU M, TRUU J, et al. Effects of soil chemical characteristics and water regime on denitrification genes (nirS,nirK,and nosZ) abundances in a created riverine wetland complex[J]. Ecol Eng, 2014,72:47-55.DOI: 10.1016/j.ecoleng.2013.07.015.
[42]
XIE Z, LE ROUX X, WANG C P, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows[J]. Soil Biol Biochem, 2014,77:89-99.DOI: 10.1016/j.soilbio.2014.06.024.
[43]
CHEN C, ZHANG J N, LU M, et al. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers[J]. Biology and Fertility of Soils, 2016,52(4):455-467.DOI: 10.1007/s00374-016-1089-5.

基金

国家自然科学基金项目(31670627)
国家自然科学基金项目(31770656)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(3055 KB)

Accesses

Citation

Detail

段落导航
相关文章

/