南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1): 151-158.doi: 10.12302/j.issn.1000-2006.201907005
收稿日期:
2019-07-03
接受日期:
2020-04-06
出版日期:
2021-01-30
发布日期:
2021-02-01
通讯作者:
崔晓阳
基金资助:
WANG Mingzhe(), CUI Xiaoyang*(), LI Siwen, ZHANG Weibo, ZHAO Huachen
Received:
2019-07-03
Accepted:
2020-04-06
Online:
2021-01-30
Published:
2021-02-01
Contact:
CUI Xiaoyang
摘要:
【目的】气候变化对人类社会发展产生的影响受到了世界各国的广泛关注,提高森林生态系统的固碳潜力被认为是经济可行且有效减缓大气二氧化碳(CO2)浓度的重要途径之一,大兴安岭地区森林生态系统的黑碳储量在全球碳循环和碳汇方面具有重要的作用。研究大兴安岭不同地形因子条件下土壤黑碳的储藏分布特征,为区域森林土壤黑碳储量准确估算和森林土壤固碳功能的定量评估提供参考依据。【方法】在大兴安岭北端寒温带针叶林区,按照坡位、坡向差异,对称设置20块样地,采集1 m剖面内不同发生层土样。采用氢氟酸(HF)和盐酸(HCl)处理的重铬酸盐氧化方法对土壤黑碳进行分离,探讨了地形因子(坡位、坡向和坡度)对黑碳(BC)分布的影响,并借助逐步回归分析量化各因子对土壤黑碳密度变异的相对影响程度。【结果】①研究区土壤黑碳密度(面密度)范围为0.02~3.64 kg/m2,腐殖质层密度最大,占全剖面的50.3%,具有明显的表层集聚效应;黑碳占有机碳的比例范围为3.7%~42.5%,除凋落物层外随深度增加呈不断增加的趋势,说明黑碳含量依土层减小的程度比有机碳含量依土层减少的程度小,对比非黑碳成分黑碳向下迁移的程度更大,其稳定性更强;各土层黑碳含量变化范围为0.24~59.13 g/kg,空间变异性较大。②坡位显著影响土壤黑碳含量和密度的分布,不同土层之间下坡位的黑碳含量均显示高于上坡位,下坡腐殖质层黑碳密度是上坡的2.21倍,其1 m剖面黑碳密度是上坡的1.91倍;不同土层间黑碳占有机碳比例均显示下坡位高于上坡位,而差异未达到显著水平;逐步回归显示,坡位对土壤黑碳数量分异的影响较大,可独立解释腐殖质层黑碳密度空间变异的42.1%、1 m剖面黑碳密度空间变异的46.0%。③坡向通过光照和温度的不同影响黑碳储量分布,总体看来,BC含量(除凋落物层和母质层)和BC密度(除凋落物层)均显示阳坡略高于阴坡,但差异不显著,故坡向对黑碳影响较小;腐殖质层土壤BC密度与坡度无显著相关性,而按上下坡分组统计比较淀积层和全部1 m剖面,则上下坡点位分群趋势明显,下坡BC密度与坡度呈显著正相关,上坡BC密度与坡度无显著相关性,坡度对黑碳分布的影响不及坡位大。【结论】大兴安岭林区黑碳储量丰富,BC主要存在于土壤表层并缓慢向下迁移,其生物化学惰性可有效促进碳固定,提升森林土壤碳汇能力。坡位是影响研究区域森林土壤黑碳分布的主控因子,在同一发生层内,不同坡位的土壤剖面间由于土壤理化性质、植被类型、地表径流冲刷作用等因素的各异导致黑碳含量和密度存在较大差异。研究结果可部分解释区域黑碳分布规律,并为碳汇林立地的选取与经营提供参考。
中图分类号:
王明哲,崔晓阳,李斯雯,等. 大兴安岭北端地形因子对针叶林土壤黑碳储量的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 151-158.
WANG Mingzhe, CUI Xiaoyang, LI Siwen, ZHANG Weibo, ZHAO Huachen. Effects of topographic factors on soil black carbon storage in coniferous forests at the north end of Greater Khingan Mountains[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(1): 151-158.DOI: 10.12302/j.issn.1000-2006.201907005.
表1
土壤黑碳密度与坡位、坡度的相关性分析"
土壤黑碳指标变量 soil black carbon index variable | 相关系数 correlation coefficient | 偏相关系数 partial correlation coefficient | ||
---|---|---|---|---|
坡位 slope position | 坡度 slope gradient | 坡位 slope position | 坡度 slope gradient | |
A层土壤BC密度 A horizon soil BC density | 0.649** | -0.486* | 0.509* | 0.151 |
1 m剖面层土壤BC密度 layer of the 1 m profile soil BC density | 0.679** | -0.439* | 0.640** | 0.34 |
[1] | 林伟盛. 森林土壤呼吸对皆伐与火烧的响应情况[J]. 安徽农学通报, 2012,18(20):74,103. |
LIN W S. Response of forest soil respiration to clear cutting and fire[J]. Auhui Agric Sci Bull, 2012,18(20):74,103.DOI: 10.3969/j.issn.1007-7731.2012.20.039. | |
[2] | 王海淇, 郭爱雪, 邸雪颖. 大兴安岭林火点烧对土壤有机碳和微生物量碳的即时影响[J]. 东北林业大学学报, 2011,39(5):72-76. |
WANG H Q, GUO A X, DI X Y. Immediate changes in soil organic carbon and microbial biomass carbon after an experimental fire in Great Xing’an Mountains[J]. J Northeast For Univ, 2011,39(5):72-76.DOI: 10.13759/j.cnki.dlxb.2011.05.016. | |
[3] |
SHRESTHA G, TRAINA S, SWANSTON C. Black carbon’s properties and role in the environment:a comprehensive review[J]. Sustainability, 2010,2(1):294-320.DOI: 10.3390/su2010294.
doi: 10.3390/su2010294 |
[4] |
DICKENS A F, GÉLINAS Y, MASIELLO C A, et al. Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004,427(6972):336-339.DOI: 10.1038/nature02299.
doi: 10.1038/nature02299 pmid: 14737163 |
[5] | 尹云锋, 杨玉盛, 高人, 等. 皆伐火烧对杉木人工林土壤有机碳和黑碳的影响[J]. 土壤学报, 2009,46(2):352-355. |
YIN Y F, YANG Y S, GAO R, et al. Effects of slash burning on soil organic carbon and black carbon in Chinese fir plantation[J]. Acta Pedol Sin, 2009,46(2):352-355.DOI: 10.3321/j.issn:0564-3929.2009.02.023. | |
[6] | 康宏樟, 喻文娟, 刘春江. 森林土壤黑碳:功能、储量和测定方法[J]. 上海交通大学学报(农业科学版), 2010,28(5):474-479. |
KANG H Z, YU W J, LIU C J. Black carbon in forest soils:functions,reserves and determining methods[J]. J Shanghai Jiaotong Univ Agric Sci (Agric Sci), 2010,28(5):474-479.DOI: 10.3969/j.issn.1671-9964.2010.05.016. | |
[7] | 孙金兵, 宋金凤, 高菲, 等. 生态系统类型及地形因子对土壤黑碳含量与分布的影响[J]. 安徽农业科学, 2013,41(34):13224-13229. |
SUN J B, SONG J F, GAO F, et al. The influence of ecological system types and terra inon the contents and distribution of black carbon in the soils[J]. J Anhui Agric Sci, 2013,41(34):13224-13229.DOI: 10.3969/j.issn.0517-6611.2013.34.049. | |
[8] |
SKJEMSTAD J O, REICOSKY D C, WILTS A R, et al. Charcoal carbon in US agricultural soils[J]. Soil Science Society of America Journal, 2002,66(4):1249.DOI: 10.2136/sssaj2002.1249.
doi: 10.2136/sssaj2002.1249 |
[9] |
DAI X, BOUTTON T W, GLASER B, et al. Black carbon in a temperate mixed-grass savanna[J]. Soil Biol Biochem, 2005,37(10):1879-1881.DOI: 10.1016/j.soilbio.2005.02.021.
doi: 10.1016/j.soilbio.2005.02.021 |
[10] |
LEHMANN J, SKJEMSTAD J, SOHI S, et al. Australian climate-carbon cycle feedback reduced by soil black carbon[J]. Nature Geosci, 2008,1:832-835.DOI: 10.1038/ngeo358.
doi: 10.1038/ngeo358 |
[11] |
汪青. 土壤和沉积物中黑碳的环境行为及效应研究进展[J]. 生态学报, 2012,32(1):293-310.
doi: 10.5846/stxb201011091604 |
WANG Q. A review of the environmental behavior and effects of black carbon in soils and sediments[J]. Acta Ecol Sin, 2012,32(1):293-310.DOI: 10.5846/stxb201011091604. | |
[12] |
GONZÁLEZ-PÉREZ J A, GONZÁLEZ-VILA F J, ALMENDROS G, et al. The effect of fire on soil organic matter:a review[J]. Environ Int, 2004,30(6):855-870.DOI: 10.1016/j.envint.2004.02.003.
doi: 10.1016/j.envint.2004.02.003 pmid: 15120204 |
[13] |
KUHLBUSCH T A J, CRUTZEN P J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2[J]. Global Biogeochemical Cycles, 1995,9(4):491-501.DOI: 10.1029/95gb02742.
doi: 10.1029/95GB02742 |
[14] | CZIMCZIK C I, PRESTON C M, SCHMIDT M W I, et al. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor:stocks,molecular structure,and conversion to black carbon (charcoal)[J]. Global Biogeochemical Cycles, 2003,17(1):2003-2007 .DOI: 10.1029/2002gb001956. |
[15] |
CHAPIN F S III, MCGUIRE A D, RANDERSON J, et al. Arctic and boreal ecosystems of western north America as components of the climate system[J]. Glob Chang Biol, 2000,6(S1):211-223.DOI: 10.1046/j.1365-2486.2000.06022.x.
doi: 10.1046/j.1365-2486.2000.06022.x |
[16] | 尹云锋, 杨玉盛, 高人, 等. 黑碳在杉木人工林土壤不同组分中的分配规律研究[J]. 土壤, 2009,41(4):625-629. |
YIN Y F, YANG Y S, GAO R, et al. Distribution of black carbon from soil different fractions in Chinese fir plantation[J]. Soils, 2009,41(4):625-629. DOI: 10.3321/j.issn:0253-9829.2009.04.020. | |
[17] | 张华, 王志立. 黑碳气溶胶气候效应的研究进展[J]. 气候变化研究进展, 2009,5(6):311-317. |
ZHANG H, WANG Z L. Advances in studies of black carbon effects on climate[J]. Adv Clim Chang Res, 2009,5(6):311-317.DOI: 10.3969/j.issn.1673-1719.2009.06.001. | |
[18] |
BRODOWSKI S, AMELUNG W, HAUMAIER L, et al. Black carbon contribution to stable humus in German arable soils[J]. Geoderma, 2007,139(1/2):220-228.DOI: 10.1016/j.geoderma.2007.02.004.
doi: 10.1016/j.geoderma.2007.02.004 |
[19] | 何跃, 张甘霖. 城市土壤有机碳和黑碳的含量特征与来源分析[J]. 土壤学报, 2006,43(2):177-182. |
HE Y, ZHANG G L. Concentration and sources of organic carbon and black carbon of urban soils in Nanjing[J]. Acta Pedol Sin, 2006,43(2):177-182.DOI: 10.3321/j.issn:0564-3929.2006.02.001. | |
[20] |
RUMPEL C, ALEXIS M, CHABBI A, et al. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture[J]. Geoderma, 2006,130(1/2):35-46.DOI: 10.1016/j.geoderma.2005.01.007.
doi: 10.1016/j.geoderma.2005.01.007 |
[21] |
LIM B, CACHIER H. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays[J]. Chem Geol, 1996,131(1/2/3/4):143-154.DOI: 10.1016/0009-2541(96)00031-9.
doi: 10.1016/0009-2541(96)00031-9 |
[22] | 李丽霞, 郜艳晖, 张瑛. 哑变量在统计分析中的应用[J]. 数理医药学杂志, 2006,19(1):51-53. |
LI L X, GAO Y H, ZHANG Y. The application of dummy variable in statistics analysis[J]. J Math Med, 2006,19(1):51-53.DOI: 10.3969/j.issn.1004-4337.2006.01.022. | |
[23] |
DELUCA T H, APLET G H. Charcoal and carbon storage in forest soils of the Rocky Mountain West[J]. Frontiers in Ecology and the Environment, 2008,6(1):18-24.DOI: 10.1890/070070.
doi: 10.1890/070070 |
[24] |
LYNCH J A, CLARK J S, STOCKS B J. Charcoal production,dispersal,and deposition from the Fort Providence experimental fire:interpreting fire regimes from charcoal records in boreal forests[J]. Can J For Res, 2004,34(8):1642-1656.DOI: 10.1139/x04-071.
doi: 10.1139/x04-071 |
[25] |
CARCAILLET C. Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils?Evidence from the Alps based on AMS 14C dates[J]. The Holocene, 2001,11(2):231-242.DOI: 10.1191/095968301674071040.
doi: 10.1191/095968301674071040 |
[26] |
MAJOR J, LEHMANN J, RONDON M, et al. Fate of soil-applied black carbon:downward migration,leaching and soil respiration[J]. Glob Chang Biol, 2010,16(4):1366-1379.DOI: 10.1111/j.1365-2486.2009.02044.x.
doi: 10.1111/gcb.2010.16.issue-4 |
[27] |
FERNANDES M B, SKJEMSTAD J O, JOHNSON B B, et al. Characterization of carbonaceous combustion residues.I.Morphological,elemental and spectroscopic features[J]. Chemosphere, 2003,51(8):785-795.DOI: 10.1016/S0045-6535(03)00098-5.
doi: 10.1016/S0045-6535(03)00098-5 |
[28] |
KNICKER H, TOTSCHE K U, ALMENDROS G, et al. Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS 13C NMR spectra obtained from pyrogenic humic material [J]. Org Geochem, 2005,36(10):1359-1377.DOI: 10.1016/j.orggeochem.2005.06.006.
doi: 10.1016/j.orggeochem.2005.06.006 |
[29] |
HOFRICHTER M, ZIEGENHAGEN D, SORGE S, et al. Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system[J]. Appl Microbiol Biotechnol, 1999,52(1):78-84.DOI: 10.1007/s002530051490.
doi: 10.1007/s002530051490 pmid: 10461373 |
[30] |
CHUGHTAI A R, JASSIM J A, PETERSON J H, et al. Spectroscopic and solubility characteristics of oxidized soots[J]. Aerosol Science and Technology, 1991,15(2):112-126.DOI: 10.1080/02786829108959518.
doi: 10.1080/02786829108959518 |
[31] |
KNICKER H, ALMENDROS G, GONZALEZ-VILA F J, et al. Characteristic alterations of quantity and quality of soil organic matter caused by forest fires in continental Mediterranean ecosystems:a solid-state 13C NMR study[J]. European Journal of Soil Science, 2006,57(4):558-569.DOI: 10.1111/j.1365-2389.2006.00814.x.
doi: 10.1111/ejs.2006.57.issue-4 |
[32] |
HOCKADAY W C, GRANNAS A M, KIM S, et al. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil[J]. Organic Geochemistry, 2006,37(4):501-510. DOI: 10.1016/j.orggeochem.2005.11.003.
doi: 10.1016/j.orggeochem.2005.11.003 |
[33] |
GUGGENBERGER G, RODIONOV A, SHIBISTOVA O, et al. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia[J]. Global Change Biology, 2008,14(6):1367-1381.DOI: 10.1111/j.1365-2486.2008.01568.x.
doi: 10.1111/gcb.2008.14.issue-6 |
[34] | 刘兆云, 章明奎. 林地土壤中黑碳的出现及分布特点[J]. 浙江林学院学报, 2009,26(3):341-345. |
LIU Z Y, ZHANG M K. Black carbon occurrence and distribution in forest soils in Zhejiang Province,China[J]. J Zhejiang For Coll, 2009,26(3):341-345.DOI: 10.3969/j.issn.2095-0756.2009.03.008. | |
[35] |
GLASER B, BALASHOV E, HAUMAIER L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Org Geochem, 2000,31(7/8):669-678.DOI: 10.1016/s0146-6380(00)00044-9.
doi: 10.1016/S0146-6380(00)00044-9 |
[36] | 薛丽佳, 高人, 杨玉盛, 等. 武夷山土壤有机碳和黑碳的分配规律研究[J]. 林业科学研究, 2011,24(3):399-403. |
XUE L J, GAO R, YANG Y S, et al. Distribution pattern of organic carbon and black carbon from different soils in Wuyi Mountains[J]. For Res, 2011,24(3):399-403.DOI: 10.13275/j.cnki.lykxyj.2011.03.002. | |
[37] | SCHMIDT M W I, SKJEMSTAD J O, CZIMCZIK C I, et al. Comparative analysis of black carbon in soils[J]. Global Biogeochemical Cycles, 2001,15(1):163-167.DOI: 10.1029/2000gb001284. |
[38] | 韩永明, 曹军骥. 环境中的黑碳及其全球生物地球化学循环[J]. 海洋地质与第四纪地质, 2005,25(1):125-132. |
HAN Y M, CAO J J. Black carbon in the environments and its global biogeochemical cycle[J]. Mar Geol Quat Geol, 2005,25(1):125-132.DOI: 10.16562/j.cnki.0256-1492.2005.01.020. | |
[39] | 张履勤, 章明奎. 土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响[J]. 土壤通报, 2006,37(4):662-665. |
ZHANG L Q, ZHANG M K. Effects of land use on particulate organic carbon and black carbon accumulation in red and yellow soils[J]. Chin J Soil Sci, 2006,37(4):662-665.DOI: 10.3321/j.issn:0564-3945.2006.04.009. | |
[40] | 王阳, 章明奎. 不同类型林地土壤颗粒态有机碳和黑碳的分布特征[J]. 浙江大学学报(农业与生命科学版), 2011,37(2):193-202. |
WANG Y, ZHANG M K. Distribution characters of particulate organic carbon and black carbon in soils under different forestry vegetations[J]. J Zhejiang Univ (Agric Life Sci), 2011,37(2):193-202.DOI: 10.3785/j.issn.1008-9209.2011.02.012. | |
[41] | 刘兆云, 章明奎. 侵蚀—沉积连续地形中土壤碳库的空间分异[J]. 水土保持通报, 2009,29(3):61-65. |
LIU Z Y, ZHANG M K. Spatial variation of soil organic carbon pools in erosion-deposition continuation landform[J]. Bull Soil Water Conserv, 2009,29(3):61-65.DOI: 10.13961/j.cnki.stbctb.2009.03.041. | |
[42] |
李林海, 郜二虎, 梦梦, 等. 黄土高原小流域不同地形下土壤有机碳分布特征[J]. 生态学报, 2013,33(1):179-187.
doi: 10.5846/stxb201202040143 |
LI L H, GAO E H, MENG M, et al. The distribution of soil organic carbon as affected by landforms in a small watershed of gully region of the Loess Plateau[J]. Acta Ecol Sin, 2013,33(1):179-187.DOI: 10.5846/stxb201202040143. | |
[43] | 张颖妮. 过火后森林土壤黑碳的分布格局特征研究[D]. 福州:福建农林大学, 2011. |
ZHANG Y N. A study on distribution pattern of burned forest soil black carbon[D]. Fuzhou:Fujian Agriculture and Forestry University, 2011. | |
[44] | KANE E S, KASISCHKE E S, VALENTINE D W, et al. Topographic influences on wildfire consumption of soil organic carbon in interior Alaska:implications for black carbon accumulation[J]. J Geophys Res, 2007,112(G3):G03017:1-11.DOI: 10.1029/2007jg000458. |
[1] | 陈科屹, 何友均, 张立文, 才琪. 黑龙江大兴安岭国有林区发展进程评价及其政策调节响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 257-267. |
[2] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[3] | 萨如拉, 王子瑞, 滑永春, 呼日查, 刘磊, 高明龙, 于晓雨. 基于结构方程模型的大兴安岭北部天然林森林生态系统恢复能力评价研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 196-204. |
[4] | 董灵波, 唐亚如, 田栋元, 刘兆刚, 蔺雪莹. 大兴安岭中部地区不同林分类型结构复杂性评价[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 147-155. |
[5] | 孙宇, 李凤日, 谢龙飞, 董利虎. 基于林分及地形因子的落叶松人工林林分生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 129-136. |
[6] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[7] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[8] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[9] | 林杰, 张相, 姜姜, 蒯杰, 郭赓, 孟苗婧, 李肖. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194. |
[10] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[11] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
[12] | 朱锦迪, 韦新良, 杨晶晶, 张继艳. 地形因子对亚热带针阔混交林树种多样性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 153-161. |
[13] | 刘珂, 李明阳, 李灵, 田康, 樊亚男, 王志刚, 瞿明凯, 黄标. 南水北调中线工程水源地土壤有机碳密度空间分异及驱动因素研究[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 35-43. |
[14] | 范之馨, 王艮梅, 张焕朝, 陈捷. 添加有机肥对滨海盐渍土壤溶解性有机碳特征的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 15-24. |
[15] | 朱珠, 徐侠, 杨赛兰, 彭凡茜, 张惠光, 蔡斌. 陆地生态系统土壤有机碳分解温度敏感性研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 33-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||