[1] |
李亮, 何晓军, 胡理乐, 等. 1958—2008年太白山太白红杉林碳循环模拟[J]. 生态学报, 2013,33(9):2845-2855.
doi: 10.5846/stxb201202130189
|
|
LI L, HE X J, HU L L, et al. Simulation of the carbon cycle of Larix chinensis forest during 1958 and 2008 at Taibai Mountain, China[J]. Acta Ecol Sin, 2013,33(9):2845-2855. DOI: 10.5846/stxb201202130189.
|
[2] |
柯金虎, 朴世龙, 方精云. 长江流域植被净第一性生产力及其时空格局研究[J]. 植物生态学报, 2003,27(6):764-770.
|
|
KE J H, PIAO S L, FANG J Y. NPP and its spatio-temporal patterns in the Yangtze River watershed[J]. Acta Phytoecol Sin, 2003,27(6):764-770. DOI: ZWSB.0.2003-06-005.
|
[3] |
赵东升, 吴绍洪, 尹云鹤. 气候变化情景下中国自然植被净初级生产力分布[J]. 应用生态学报, 2011,22(4):897-904.
|
|
ZHAO D S, WU S H, YIN Y H. Variation trends of natural vegetation net primary productivity in China under climate change scenario[J]. Chin J Appl Ecol, 2011,22(4):897-904. DOI: 10.13287/j.1001-9332.2011.0114.
|
[4] |
ERŞAHIN S, BILGILI B C, DIKMEN Ü, et al. Net primary productivity of Anatolian forests in relation to climate, 2000-2010[J]. Forest Science, 2016,62(6):698-709. DOI: 10.5849/forsci.15-171.
doi: 10.5849/forsci.15-171
|
[5] |
KIMBALL J S, ZHAO M, MCDONALD K C, et al. Satellite remote sensing of terrestrial net primary production for the Panarctic basin and Alaska[J]. Mitigation and Adaptation Strategies for Global Change, 2006,11(4):783-804. DOI: 10.1007/s11027-005-9014-5.
doi: 10.1007/s11027-005-9014-5
|
[6] |
WANG H, LIU G H, LI Z S, et al. Impacts of climate change on net primary productivity in arid and semiarid regions of China[J]. Chinese Geographical Science, 2016,26(1):35-47. DOI: 10.1007/s11769-015-0762-1.
doi: 10.1007/s11769-015-0762-1
|
[7] |
朱莹莹, 韩磊, 赵永华, 等. 中国西北地区NPP模拟及其时空格局[J]. 生态学杂志, 2019,38(6):1861-1871.
|
|
ZHU Y Y, HAN L, ZHAO Y H, et al. Simulation and spatio-temporal pattern of vegetation NPP in northwest China[J]. Chin J Ecol, 2019,38(6):1861-1871. DOI: 10.13292/j.1000-4890.201906.012.
|
[8] |
唐凤德, 韩士杰, 张军辉. 长白山阔叶红松林生态系统碳动态及其对气候变化的响应[J]. 应用生态学报, 2009,20(6):1285-1292.
|
|
TANG F D, HAN S J, ZHANG J H. Carbon dynamics of broad-leaved Korean pine forest ecosystem in Changbai Mountains and its responses to climate change[J]. Chin J Appl Ecol, 2009,20(6):1285-1292. DOI: 10.13287/j.1001-9332.2009.0219.
|
[9] |
孙国栋. LPJ模型对1981—1998年中国区域潜在植被分布和碳通量的模拟[J]. 气候与环境研究, 2009,14(4):341-351.
|
|
SUN G D. Simulation of potential vegetation distribution and estimation of carbon flux in China from 1981 to 1998 with LPJ dynamic global vegetation model[J]. Clim Environ Res, 2009,14(4):341-351. DOI: QHYH.0.2009-04-003.
|
[10] |
BEER C, LUCHT W, GERTEN D, et al. Effects of soil freezing and thawing on vegetation carbon density in Siberia: a modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM)[J]. Global Biogeochemical Cycles, 2007, 21(1):GB1012. DOI: 10.1029/2006GB002760.
doi: 10.1002/2017GB005830
pmid: 29937626
|
[11] |
YIN Y H, MA D Y, WU S H. Climate change risk to forests in China associated with warming[J]. Scientific Reports, 2018,8:493. DOI: 10.1038/s41598-017-18798-6.
doi: 10.1038/s41598-017-18798-6
pmid: 29323158
|
[12] |
刘瑞刚, 李娜, 苏宏新, 等. 北京山区3种暖温带森林生态系统未来碳平衡的模拟与分析[J]. 植物生态学报, 2009,33(3):516-534.
doi: 10.3773/j.issn.1005-264x.2009.03.011
|
|
LIU R G, LI N, SU H X, et al. Simulation and analysis on future carbon balance of three deciduous forests in Beijing mountain area, warm temperate zone of China[J]. Chin J Plant Ecol, 2009,33(3):516-534. DOI: 10.3773/j.issn.1005-264x.2009.03.011.
|
[13] |
XU C Y. Statistical analysis of parameters and residuals of a conceptual water balance model-methodology and case study[J]. Water Resources Management, 2001,15(2):75-92. DOI: 10.1023/A:1012559608269.
doi: 10.1023/A:1012559608269
|
[14] |
YANG H F, Mu S J, LI J L. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China[J]. Catena, 2014,115:85-95. DOI: 10.1016/j.catena.2013.11.020.
doi: 10.1016/j.catena.2013.11.020
|
[15] |
周德刚, 黄荣辉, 黄刚. 近几十年来长江上游流域气候和植被覆盖的变化[J]. 大气科学学报, 2009,32(3):377-385.
|
|
ZHOU D G, HUANG R H, HUANG G. Variations of climate and vegetation cover over the upper reaches of the Yangtze River in the past decades[J]. Trans Atmos Sci, 2009,32(3):377-385. DOI: 10.13878/j.cnki.dqkxxb.2009.03.003.
|
[16] |
苗茜, 黄玫, 李仁强. 长江流域植被净初级生产力对未来气候变化的响应[J]. 自然资源学报, 2010,25(8):1296-1305.
doi: 10.11849/zrzyxb.2010.08.007
|
|
MIAO Q, HUANG M, LI R Q. Impacts of climate change on vegetation net primary productivity of the Yangtze River Basin[J]. J Nat Resour, 2010,25(8):1296-1305. DOI: 10.11849/zrzyxb.2010.08.007.
|
[17] |
LIU H Y, ZHANG M Y, LIN Z S. Relative importance of climate changes at different time scales on net primary productivity: a case study of the Karst area of northwest Guangxi, China[J]. Environmental Monitoring and Assessment, 2017,189(11):539. DOI: 10.1007/s10661-017-6251-5.
doi: 10.1007/s10661-017-6251-5
pmid: 28983747
|
[18] |
WANG J, MENG J J, CAI Y L. Assessing vegetation dynamics impacted by climate change in the southwestern Karst region of China with AVHRR NDVI and AVHRR NPP time-series[J]. Environmental Geology, 2008,54(6):1185-1195. DOI: 10.1007/s00254-007-0901-9.
doi: 10.1007/s00254-007-0901-9
|
[19] |
ZHANG Y, SONG C, ZHANG K, et al. Spatial-temporal variability of terrestrial vegetation productivity in the Yangtze River Basin during 2000-2009[J]. Journal of Plant Ecology, 2014,7(1):10-23. DOI: 10.1093/jpe/rtt025.
doi: 10.1093/jpe/rtt025
|
[20] |
FANG S F, YAN J W, CHE M L, et al. Climate change and the ecological responses in Xinjiang, China: model simulations and data analyses[J]. Quat Int, 2013,311:108-116. DOI: 10.1016/j.quaint.2013.08.032.
doi: 10.1016/j.quaint.2013.08.032
|