不同矫正位置对落叶松分位数削度方程预测精度的影响

辛士冬, 何培, 姜立春

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1) : 182-188.

PDF(2186 KB)
PDF(2186 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1) : 182-188. DOI: 10.12302/j.issn.1000-2006.201908036
研究论文

不同矫正位置对落叶松分位数削度方程预测精度的影响

作者信息 +

Effects of different calibration positions on prediction precision of quantile taper function for Larix gmelinii

Author information +
文章历史 +

摘要

【目的】基于非线性分位数回归方法构建大兴安岭落叶松(Larix gmelinii)树干削度方程,并分析比较基本模型与不同分位数(τ=0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9)模型,利用树干不同高度的上部直径进行矫正分位数组合模型预测精度,为落叶松天然林干形的精准预测提供理论依据。【方法】以大兴安岭壮志林场212株落叶松树干干形数据为研究对象,基于非线性分位数回归方法和Max and Burkhart分段削度方程,利用SAS软件中NLP过程拟合各分位数分段削度方程,把树干相对高20%、30%、40%、50%、60%、70%处的直径以及胸径到树尖的中间位置(50%*)的树干上部直径引入到分段削度方程中进行矫正,并以平均误差(MAB)和相对误差(MPB)为评价指标对削度方程进行对比分析。【结果】Max-Burkhart分段削度方程在9个不同的分位点都可以得到参数估计值,因此分位数回归削度模型可以评价在不同分位数的预测能力。未矫正的分位数(τ=0.5、0.6)模型的预测精度略优于基本模型。准确地选择矫正位置至关重要,与未矫正的基本模型相比,利用树干相对高20%和70%处的直径进行矫正不能提高各分位数组合模型的预测精度,利用树干相对高30%、40%、50%、60%处的直径以及胸径到树尖中间位置的树干上部直径进行矫正的大多数分位数组合(3、5、7、9个分位数组合)模型的预测精度都能得到提高,总体使用矫正位置分位数组合模型的预测精度顺序为40%>50%*>50%> 60%>30%>20%>70%。最佳的矫正位置为树干相对高40%处,并以3个分位数的组合(τ=0.3、0.5、0.7)模型预测精度最高,与未矫正的基本模型相比,MAB和MPB均下降13.5%。【结论】在削度方程中引入一个合理的矫正位置可以提高模型的预测精度,其中,最佳矫正位置为树干相对高40%处,最优模型为3个分位数组合(τ=0.3、0.5、0.7)模型。在实际应用中,如果不考虑矫正时,建议采用分位数τ=0.5削度方程的参数估计值。

Abstract

【Objective】 The aim of this study was to develop a stem taper equation based on the quantile regression method for Larix gmelinii in Greater Khingan Mountains. We compared and analyzed the prediction precision of basic models, different quantile (τ=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) models, and quantile group models using different upper-stem diameters. These studies provide a theoretical basis for the precise prediction of the natural forest taper of L. gmelinii. 【Method】 The stem taper data of 212 L. gmelinii in Greater Khingan Mountains, Songling Forest Bureau, were the research object. Based on the nonlinear quantile regression method and Max and Burkhart segmented taper equation, the nonlinear programming (NLP) method in SAS software was used to fit the stem taper equation of different quantiles. Calibration of the taper equations was carried out using the upper-stem diameter measured at the relative heights of 20%, 30%, 40%, 50%, 60%, 70%, and the midpoint between the breast height and the tip of the tree (50%*). The mean absolute bias (MAB) and mean percentage of bias (MPB) were used as statistical criteria to compare the calibrated stem taper equations. 【Result】 The parameters of the Max and Burkhart segmented taper equations based on nine different quantiles were obtained, allowing the prediction ability of the quantile regression taper model in different quantiles to be evaluated. The prediction accuracy of the uncalibrated quantile models at the quantile (τ=0.5, 0.6) was slightly better than the uncalibrated basic model. Accurate choices of the localized position were essential. Compared with the uncalibrated basic model, the prediction accuracy of each quantile group model for the calibrated stem taper using the upper-stem diameter measured at relative heights of 20% and 70% was not improved. The prediction accuracy of the most quantile group (3, 5, 7, 9) models calibrated using the upper stem measurements at relative heights of 30%, 40%, 50%, 60% and the midpoint between the breast height and the tip of the tree was improved. The overall prediction accuracy using a quantile group model for the calibrated positions was 40%>50%*>50%>60%>30%>20%>70%. The best calibration position was the relative height of 40% of the tree, and the three quantile (τ=0.3, 0.5, 0.7) group model had the highest prediction accuracy. Both MAB and MPB decreased by 13.5% compared to the uncalibrated basic model. 【Conclusion】 Introducing a reasonable calibration position in the taper equation improved the prediction accuracy of the models. The best calibration position was the relative height of 40% of the tree with the group of three quantiles (τ =0.3, 0.5, 0.7). In practical applications, if the calibration is not considered, it is recommended that the quantile (τ =0.5) should be used.

关键词

落叶松 / 组合分位数 / 矫正位置 / 削度方程 / 预测精度

Key words

Larix gmelinii / combined quantile / calibration position / taper equation / prediction precision

引用本文

导出引用
辛士冬, 何培, 姜立春. 不同矫正位置对落叶松分位数削度方程预测精度的影响[J]. 南京林业大学学报(自然科学版). 2021, 45(1): 182-188 https://doi.org/10.12302/j.issn.1000-2006.201908036
XIN Shidong, HEI Pei, JIANG Lichun. Effects of different calibration positions on prediction precision of quantile taper function for Larix gmelinii[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(1): 182-188 https://doi.org/10.12302/j.issn.1000-2006.201908036
中图分类号: S758.2   

参考文献

[1]
孟宪宇. 削度方程和出材率表的研究[J]. 南京林业大学学报(自然科学版), 1982,6(1):122-133.
MENG X Y. Studies of taper equations and the table of merchantable volumes[J]. J Nanjing For Univ (Nat Sci Ed), 1982,6(1):122-133.
[2]
JIANG L C, BROOKS J R, WANG J X. Compatible taper and volume equations for yellow-poplar in West Virginia[J]. Forest Ecology and Management, 2005,213(1/2/3):399-409. DOI: 10.1016/J.FORECO.2005.04.006.
[3]
JIANG L C, BROOKS J R. Taper, volume, and weight equations for red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2008,25(3):151-153. DOI: 10.1093/NJAF/25.3.151.
[4]
曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997,33(2):127-132.
摘要
从削度方程的概念入手,对削度方程的结构形式进行了深入研究,提出了具有最佳结构的削度方程的一般形式,并以湖南省杉木为例,确定了最佳削度方程的具体形式。试验结果表明,建立的新模型要优于以往发表的任何削度方程
ZENG W S, LIAO Z Y. Research of the taper equation[J]. Sci Silvae Sin, 1997,33(2):127-132.
[5]
CAO Q V, WANG J. Calibrating fixed-and mixed-effects taper equations[J]. Forest Ecology and Management, 2011,262(4):671-673. DOI: 10.1016/J.FORECO.2011.04.039.
Accurate and affordable measurements of upper-stem diameters are now possible thanks to recent advances in laser technology. Measurement of the midpoint upper-stem diameter can be employed to improve the accuracy of diameter predictions along the tree bole. Felled-tree data from a loblolly pine (Pinus taeda L.) plantation was used to evaluate two approaches: (1) calibrating a segmented taper equation by constraining a parameter, and (2) localizing the taper model by predicting the random effects for each tree. The calibration technique is much simpler and produced less-biased prediction of diameters and is therefore recommended. Calibration results were similar for both fixed- and mixed-effects taper models, even though a slight gain in accuracy and precision was attained with the mixed-effects model. (C) 2011 Elsevier B.V.
[6]
SABATIA C O. Use of upper stem diameters in a polynomial taper equation for New Zealand radiata pine: an evaluation[J]. New Zealand Journal of Forestry Science, 2016,46(1):14. DOI: 10.1186/S40490-016-0070-2.
[7]
CZAPLEWSKI R L, MCCLURE J P. Conditioning a segmented stem profile model for two diameter measurements[J]. Forest Science, 1988,34(2):512-522.
[8]
CAO Q V. Calibrating a segmented taper equation with two diameter measurements[J]. Southern Journal of Applied Forestry, 2009,33(2):58-61. DOI: 10.1093/SJAF/33.2.58.
[9]
KOZAK A. Effects of upper stem measurements on the predictive ability of a variable-exponent taper equation[J]. Canadian Journal of Forest Research, 1998,28(7):1078-1083. DOI: 10.1139/X98-120.
[10]
GÓMEZ-GARCÍA E, CRECENTE-CAMPO F, DIÉGUEZ-ARANDA U. Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain[J]. Annals of Forest Science, 2013,70(7):707-715. DOI: 10.1007/S13595-013-0313-9.

Context

Taper equations predict the variation in diameter along the stem, therefore characterizing stem form. Several recent studies have tested mixed models for developing taper equations. Mixed-effects modeling allow the interindividual variation to be explained by considering both fixed-effects parameters (common to the population) and random-effects parameters (specific to each individual).

Aims

The objective of this study is to develop a mixed-effect variable exponent taper equation for birch trees in northwestern Spain by determining which fixed-effects parameters should be expanded with random-effects parameters.

Methods

All possible combinations of linear expansions with random effects in one and in two of the fixed-effects model parameters were tested. Upper stem diameter measurements were used to estimate random-effects parameters by the use of an approximate Bayesian estimator, which calibrated stem profile curves for individual trees.

Results

Parameter estimates for more than half of the mixed models investigated were nonsignificant. A first order autoregressive error structure was used to completely remove the autocorrelation between residuals, as mixed-effects modeling were not sufficient for this purpose.

Conclusion

The mixed model with the best fitting statistics did not provide the best calibration statistics for all upper stem diameter measurements. From a practical point of view, model calibration should be considered an essential criterion in mixed model selection.


[11]
SHARMA M, PARTON J. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis[J]. Forest Science, 2009,55(3):268-282. DOI: 10.1093/FORESTSCIENCE/55.3.268.
[12]
KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978,46(1):33-50.
[13]
KOENKER R, HALLOCK K F. Quantile regression[J]. Journal of Economic Perspectives, 2015,15(4):143-156.
[14]
张期奇, 董希斌, 张甜, 等. 抚育间伐强度对兴安落叶松中龄林测树因子的影响[J]. 森林工程, 2018,34(5):1-7.
ZHANG Q Q, DONG X B, ZHANG T, et al. The Effects of Different thinning Intensities on tree-measurement Factors of middle-aged Larch gmelinii Seedlings[J]. Forest Engineering, 2018,34(5):1-7.
[15]
SHARMA M, BURKHART H E. Selecting a level of conditioning for the segmented polynomial taper equation[J]. Forest Science, 2003,49(2):324-330. DOI: 10.1093/FORESTSCIENCE/49.2.324.
[16]
COBLE D W, HILPP K. Compatible cubic-foot stem volume and upper-stem diameter equations for semi-intensive plantation grown loblolly pipe trees in East Texas[J]. Southern Journal of Applied Forestry, 2006,30(3):132-141. DOI: 10.1093/SJAF/30.3.132.
[17]
TRINCADO G, BURKHART H E. A generalized approach for modeling and localizing stem profile curves[J]. Forest Science, 2006,52(6):670-682. DOI: 10.1093/FORESTSCIENCE/52.6.670.
[18]
OZCELIK R, BROOKS J R, JIANG L C. Modeling stem profile of Lebanon cedar, Brutian pine, and Cilicica fir in Southern Turkey using nonlinear mixed-effects models[J]. European Journal of Forest Research, 2011,130(4):613-621. DOI: 10.1007/S10342-010-0453-5.
The Max and Burkhart segmented taper model was fitted using nonlinear mixed-effects modeling techniques to account for within- and between-individual stem profile variation for Lebanon cedar (Cedrus libani A. Rich.), brutian pine (Pinus brutia Ten.), and cilicica fir (Abies cilicica Carr.) in Turkey. About 75% of the trees were randomly selected for model development, with the remainder used for model validation. Diameter measurements from various heights were evaluated for tree-specific calibrations by predicting random-effects parameters using an approximate Bayesian estimator. The procedure was tested with a validation dataset. Predictive accuracy of the model was improved by including random-effects parameters for a new tree based on upper stem diameter measurements. Prediction in stem diameter was less biased and more precise across the all sections of bole when compared to predictions based only on fixed-effects parameters. In the future, the proposed mixed models can be applied to region wide three species stands by fitting the model to a larger data set that more closely represents regional variation.
[19]
KOZAK A. My last words on taper equations[J]. Forestry Chronicle, 2004,80(4):507-515. DOI: 10.5558/TFC80507-4.
[20]
DOYOG N D, LEE Y J, LEE S J, et al. Compatible taper and stem volume equations for Larix kaempferi (Japanese larch) species of South Korea[J]. Journal of Mountain Science, 2017,14(7):1341-1349. DOI: 10.1007/S11629-016-4291-X.
[21]
MAX T A, BURKHART H E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976,22(3):283-289. DOI: 10.1093/FORESTSCIENCE/22.3.283.
[22]
KOENKER R, BASSETT G. Robust tests for heteroscedasticity based on regression quantiles[J]. Econometrica, 1982,50(1):43-61. DOI: 10.2307/1912528.
[23]
CADE B S, NOON B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology & the Environment, 2003,1(8):412-420. DOI: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2.
[24]
辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020,42(2):1-8.
XIN S D, JIANG L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020,42(2):1-8. DOI: 10.12171/j.1000-1522.20190014.
[25]
SAS Institute Inc. SAS/OR 9.22 User ‘s guide: mathematical programming[M]. Cary, NC: SAS Institute Inc, 2010.
[26]
CAO Q V, WANG J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015,61(2):213-219. DOI: 10.5849/FORSCI.14-008.
[27]
RODRIGUEZ F, LIZARRALDE I, BRAVO F. Comparison of stem taper equations for eight major tree species in the Spanish Plateau[J]. Forest Systems, 2015,24(3). DOI: 10.5424/FS/2015243-06229.

基金

国家自然科学基金项目(31570624)
黑龙江省应用技术研究与开发计划项目(GA19C006)
中央高校基本科研业务费专项资金项目(2572019CP15)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2186 KB)

Accesses

Citation

Detail

段落导航
相关文章

/