[1] |
孟宪宇. 削度方程和出材率表的研究[J]. 南京林业大学学报(自然科学版), 1982,6(1):122-133.
|
|
MENG X Y. Studies of taper equations and the table of merchantable volumes[J]. J Nanjing For Univ (Nat Sci Ed), 1982,6(1):122-133.
|
[2] |
JIANG L C, BROOKS J R, WANG J X. Compatible taper and volume equations for yellow-poplar in West Virginia[J]. Forest Ecology and Management, 2005,213(1/2/3):399-409. DOI: 10.1016/J.FORECO.2005.04.006.
doi: 10.1016/j.foreco.2005.04.006
|
[3] |
JIANG L C, BROOKS J R. Taper, volume, and weight equations for red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2008,25(3):151-153. DOI: 10.1093/NJAF/25.3.151.
doi: 10.1093/njaf/25.3.151
|
[4] |
曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997,33(2):127-132.
|
|
ZENG W S, LIAO Z Y. Research of the taper equation[J]. Sci Silvae Sin, 1997,33(2):127-132.
|
[5] |
CAO Q V, WANG J. Calibrating fixed-and mixed-effects taper equations[J]. Forest Ecology and Management, 2011,262(4):671-673. DOI: 10.1016/J.FORECO.2011.04.039.
doi: 10.1016/j.foreco.2011.04.039
|
[6] |
SABATIA C O. Use of upper stem diameters in a polynomial taper equation for New Zealand radiata pine: an evaluation[J]. New Zealand Journal of Forestry Science, 2016,46(1):14. DOI: 10.1186/S40490-016-0070-2.
doi: 10.1186/s40490-016-0070-2
|
[7] |
CZAPLEWSKI R L, MCCLURE J P. Conditioning a segmented stem profile model for two diameter measurements[J]. Forest Science, 1988,34(2):512-522.
|
[8] |
CAO Q V. Calibrating a segmented taper equation with two diameter measurements[J]. Southern Journal of Applied Forestry, 2009,33(2):58-61. DOI: 10.1093/SJAF/33.2.58.
doi: 10.1093/sjaf/33.2.58
|
[9] |
KOZAK A. Effects of upper stem measurements on the predictive ability of a variable-exponent taper equation[J]. Canadian Journal of Forest Research, 1998,28(7):1078-1083. DOI: 10.1139/X98-120.
doi: 10.1139/x98-120
|
[10] |
GÓMEZ-GARCÍA E, CRECENTE-CAMPO F, DIÉGUEZ-ARANDA U. Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain[J]. Annals of Forest Science, 2013,70(7):707-715. DOI: 10.1007/S13595-013-0313-9.
doi: 10.1007/s13595-013-0313-9
|
[11] |
SHARMA M, PARTON J. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis[J]. Forest Science, 2009,55(3):268-282. DOI: 10.1093/FORESTSCIENCE/55.3.268.
|
[12] |
KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978,46(1):33-50.
doi: 10.2307/1913643
|
[13] |
KOENKER R, HALLOCK K F. Quantile regression[J]. Journal of Economic Perspectives, 2015,15(4):143-156.
doi: 10.1257/jep.15.4.143
|
[14] |
张期奇, 董希斌, 张甜, 等. 抚育间伐强度对兴安落叶松中龄林测树因子的影响[J]. 森林工程, 2018,34(5):1-7.
|
|
ZHANG Q Q, DONG X B, ZHANG T, et al. The Effects of Different thinning Intensities on tree-measurement Factors of middle-aged Larch gmelinii Seedlings[J]. Forest Engineering, 2018,34(5):1-7.
|
[15] |
SHARMA M, BURKHART H E. Selecting a level of conditioning for the segmented polynomial taper equation[J]. Forest Science, 2003,49(2):324-330. DOI: 10.1093/FORESTSCIENCE/49.2.324.
|
[16] |
COBLE D W, HILPP K. Compatible cubic-foot stem volume and upper-stem diameter equations for semi-intensive plantation grown loblolly pipe trees in East Texas[J]. Southern Journal of Applied Forestry, 2006,30(3):132-141. DOI: 10.1093/SJAF/30.3.132.
doi: 10.1093/sjaf/30.3.132
|
[17] |
TRINCADO G, BURKHART H E. A generalized approach for modeling and localizing stem profile curves[J]. Forest Science, 2006,52(6):670-682. DOI: 10.1093/FORESTSCIENCE/52.6.670.
|
[18] |
OZCELIK R, BROOKS J R, JIANG L C. Modeling stem profile of Lebanon cedar, Brutian pine, and Cilicica fir in Southern Turkey using nonlinear mixed-effects models[J]. European Journal of Forest Research, 2011,130(4):613-621. DOI: 10.1007/S10342-010-0453-5.
doi: 10.1007/s10342-010-0453-5
|
[19] |
KOZAK A. My last words on taper equations[J]. Forestry Chronicle, 2004,80(4):507-515. DOI: 10.5558/TFC80507-4.
doi: 10.5558/tfc80507-4
|
[20] |
DOYOG N D, LEE Y J, LEE S J, et al. Compatible taper and stem volume equations for Larix kaempferi (Japanese larch) species of South Korea[J]. Journal of Mountain Science, 2017,14(7):1341-1349. DOI: 10.1007/S11629-016-4291-X.
doi: 10.1007/s11629-016-4291-x
|
[21] |
MAX T A, BURKHART H E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976,22(3):283-289. DOI: 10.1093/FORESTSCIENCE/22.3.283.
|
[22] |
KOENKER R, BASSETT G. Robust tests for heteroscedasticity based on regression quantiles[J]. Econometrica, 1982,50(1):43-61. DOI: 10.2307/1912528.
doi: 10.2307/1912528
|
[23] |
CADE B S, NOON B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology & the Environment, 2003,1(8):412-420. DOI: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2.
doi: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
|
[24] |
辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020,42(2):1-8.
|
|
XIN S D, JIANG L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020,42(2):1-8. DOI: 10.12171/j.1000-1522.20190014.
|
[25] |
SAS Institute Inc. SAS/OR 9.22 User ‘s guide: mathematical programming[M]. Cary, NC: SAS Institute Inc, 2010.
|
[26] |
CAO Q V, WANG J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015,61(2):213-219. DOI: 10.5849/FORSCI.14-008.
doi: 10.5849/forsci.14-008
|
[27] |
RODRIGUEZ F, LIZARRALDE I, BRAVO F. Comparison of stem taper equations for eight major tree species in the Spanish Plateau[J]. Forest Systems, 2015,24(3). DOI: 10.5424/FS/2015243-06229.
|