槭树属常见树种翅果性状多样性与风传播特征分析

吴红, 燕丽萍, 李成忠, 夏群, 周霞, 赵宝元

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 103-110.

PDF(2026 KB)
PDF(2026 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 103-110. DOI: 10.12302/j.issn.1000-2006.201909016
研究论文

槭树属常见树种翅果性状多样性与风传播特征分析

作者信息 +

Morphological characteristics and wind dispersal characteristics of samara of common Acer species

Author information +
文章历史 +

摘要

【目的】研究15种槭树属树种翅果性状,探究果实性状和风传播特征之间的相关性,为深入研究槭树属植物果实的风传播机制和种群扩张提供理论参考。【方法】以15种槭树属树种翅果为材料,在分析种子长度、种子宽度、果翅长度、果翅宽度、种子长宽比和种子长/果翅长特征等参数的基础上,模拟果实的传播特征(沉降速度和水平传播距离),比较15种果实性状和风传播特性间的相关性。【结果】①15种槭树属树种翅果开张角度对沉降速度和水平传播距离的影响最大,种子宽度影响较弱;②15种槭树属树种翅果沉降速度为69.14~224.06 cm/s,扇叶槭最慢,梣叶槭最快;扇叶槭果实的水平传播距离最远,梣叶槭最近;③15种槭树属植物果实沉降速度与种子长度、果翅长度、果翅宽度、种子长宽比和种子长/果翅长正相关,与果实两翅开张角度和种子宽度负相关;水平传播距离与果实两翅开张角度、种子长、果翅长、果翅宽、种子长宽比和种子长/果翅长均呈负相关,而与种子宽度正相关,果实水平传播距离与其沉降速度呈负相关,果实沉降速度和水平传播距离受多种性状影响;④对15种槭树翅果的8个性状主成分分析表明,前3个主成分的累计贡献率达82.911%, 基于8个性状进行聚类分析可知,当欧氏距离为10时,15种槭树可分为4类。【结论】果实形态特征的相关性分析表明,15种槭树果实形态特征对沉降速度的影响依次为:两翅张开角度>种子长/果翅长>种子长度>果翅长度>种子长宽比>果翅宽度>种子宽度。果实的水平传播距离受多种因子的综合制约。千粒质量、两翅张开角度、种子长/果翅长可作为槭树分类的重要依据。

Abstract

【Objective】In order to explore the correlation between samara characteristics and wind dispersal characteristics and provide theoretical reference for further study on the mechanism of wind dispersal and population expansion of Acer samaras, characteristics of 15 Acer species samaras were studied.【Method】The 1 000-grain-weight, seed length, seed width, wing length, wing width, angle of samara , ratio of seed length to width, ratio of seed length to wing length and the dispersal characteristics (settlement velocity and horizontal dispersal distance) of 15 Acer samara were studied by simulation experiments, and the correlation between samara characteristics and wind dispersal characteristics was compared.【Result】① The angle of samara had the greatest influence on settlement velocity and horizontal dispersal distance, while the seed width had the weakest influence. ② The samara settlement velocity ranged from 69.14 to 224.06 cm/s; the slowest was Acer flabellatum and the fastest was Acer negundo. The horizontal dispersal distance also varied, and the farthest was Acer negundo and the nearest was Acer flabellatum. ③ The samara settlement velocity was positively correlated with seed length, wing length, wing width, ratio of seed length to width, and ratio of seed length to wing length, and negatively correlated with the angle of samara and seed width. The horizontal dispersal distance was negatively correlated with the angle of samara, seed length, wing length, wing width, ratio of seed length to width, and ratio of seed length to wing length, but positively correlated with seed width. The horizontal dispersal distance was negatively correlated with the samara settlement velocity. Samara settlement velocity and horizontal dispersal distance were affected by many morphological indexes. ④ Principal component analysis of eight samara characters of 15 species of Acer showed that the cumulative contribution rate of the first three principal components was 82.911%. The genetic relationship of 15 Acer species was examined via cluster analysis of eight traits, when euclidean distance is 10, 15 Acer species can be divided into 4 groups.【Conclusion】The correlation analysis showed that the effects of samara morphological characteristics on settlement velocity were as follows: angle of samara > ratio of seed length to wing length > seed length > wing length > ratio of seed length to width > wing width > seed width. The horizontal dispersal distance of samara is restricted by many factors. The 1 000 seed mass, angle of samara, and ratio of seed length to wing length can be used as important factors for the classification of Acer.

关键词

槭树属 / 翅果性状 / 沉降速度 / 水平传播距离 / 主成分分析 / 聚类分析

Key words

Acer / samara characters / settlement velocity / horizontal dispersal distance / principal component analysis / cluster analysis

引用本文

导出引用
吴红, 燕丽萍, 李成忠, . 槭树属常见树种翅果性状多样性与风传播特征分析[J]. 南京林业大学学报(自然科学版). 2021, 45(2): 103-110 https://doi.org/10.12302/j.issn.1000-2006.201909016
WU Hong, YAN Liping, LI Chengzhong, et al. Morphological characteristics and wind dispersal characteristics of samara of common Acer species[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 103-110 https://doi.org/10.12302/j.issn.1000-2006.201909016
中图分类号: S718   

参考文献

[1]
WILLSON M F, RICE B L, WESTOBY M. Seed dispersal spectra:a comparison of temperate plant communities[J]. J Veg Sci, 1990,1(4):547-562.DOI: 10.2307/3235789.
[2]
HUGHES L, DUNLOP M, FRENCH K, et al. Predicting dispersal spectra:a minimal set of hypotheses based on plant attributes[J]. J Ecol, 1994,82(4):933.DOI: 10.2307/2261456.
[3]
QUINN R M, LAWTON J H, EVERSHAM B C, et al. The biogeography of scarce vascular plants in Britain with respect to habitat preference,dispersal ability and reproductive biology[J]. Biol Conserv, 1994,70(2):149-157.DOI: 10.1016/0006-3207(94)90283-6.
[4]
HOVESTADT T, YAO P, LINSENMAIR K E. Seed dispersal mechanisms and the vegetation of forest islands in a west African forest-savanna mosaic (Comoé National Park,Ivory Coast)[J]. Plant Ecol, 1999,144(1):1-25.DOI: 10.1023/A:1009764031116.
[5]
ANDERSEN M. Mechanistic models for the seed shadows of wind-dispersed plants[J]. Am Nat, 1991,137(4):476-497.DOI: 10.1086/285178.
[6]
VAN DORP D, VAN DEN HOEK W P M, DALEBOUDT C. Seed dispersal capacity of six perennial grassland species measured in a wind tunnel at varying wind speed and height[J]. Can J Bot, 1996,74(12):1956-1963.DOI: 10.1139/b96-234.
[7]
KIVINIEMI K, TELENIUS A. Experiments on adhesive dispersal by wood mouse:seed shadows and dispersal distances of 13 plant species from cultivated areas in southern Sweden[J]. Ecography, 1998,21(2):108-116.DOI: 10.1111/j.1600-0587.1998.tb00664.x.
[8]
吴建国, 徐天莹. 模拟未来气候变化对东北6种蒲公英种子风传播距离的影响[J]. 生态学杂志, 2018,37(3):914-928.
WU J G, XU T Y. The impacts of simulated climate change on seed dispersal distance by wind for six dandelion species in northeast China[J]. Chin J Ecol, 2018,37(3):914-928.DOI: 10.13292/j.1000-4890.201803.001.
[9]
TACKENBERG O, POSCHLOD P, BONN S. Assessment of wind dispersal potential in plant species[J]. Ecol Monogr, 2003,73(2):191-205.DOI: 10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2.
[10]
戴志聪, 杜道林, 司春灿, 等. 用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J]. 广西植物, 2009,29(3):342-347.
DAI Z C, DU D L, SI C C, et al. A method to exactly measure the morphological quantity of leaf using Scanner and Image J Software[J]. Guihaia, 2009,29(3):342-347.DOI: 10.3969/j.issn.1000-3142.2009.03.013.
[11]
SHELDON J C, BURROWS F M. The dispersal effectiveness of the achene-pappus units of selected compositae in steady winds with convection[J]. New Phytol, 1973,72(3):665-675.DOI: 10.1111/j.1469-8137.1973.tb04415.x.
[12]
王季槐, SVEND C, PREBEN K H, 等. 杂草种子空间扩散模型的建立[J]. 贵州科学, 2004,22(2):1-4.
WANG J H, SVEND C, PREBEN K H, et al. The establishment of spatial models for weed seed dispersal[J]. Guizhou Sci, 2004,22(2):1-4.DOI: 10.3969/j.issn.1003-6563.2004.02.001.
[13]
高振华, 张玉强, 田林土, 等. 不同造林密度杉木速生丰产林经济效益主成分分析及政策优化[J]. 南京林业大学学报, 1996,20(3):78-83.
GAO Z H, ZHANG Y Q, TIAN L T, et al. Principal component analysis and policy optimization for the economic effect of different density fast growth and high production Chinese fir forest[J]. J Nanjing For Univ, 1996,20(3):78-83.
[14]
徐廷志. 翅果形态及其在槭树科分类与演化上的意义[J]. 广西植物, 1996(2):109-122.
[15]
潘燕, 王帅, 王崇云, 等. 云南松与云南油杉种子风力传播特征比较[J]. 植物分类与资源学报, 2014,36(3):403-410.
PAN Y, WANG S, WANG C Y, et al. Comparison of seed weed-dispersed characteristics between Pinus yunnanensis and Keteleeria evelyniana[J]. Plant Divers Resour, 2014,36(3):403-410.
[16]
郭强, 朱敏, 徐勒, 等. 五种杂草种子沉降速度[J]. 生态学杂志, 2008,27(4):519-523.
GUO Q, ZHU M, XU L, et al. Seed settlement velocity of five weed species[J]. Chin J Ecol, 2008,27(4):519-523.
[17]
SCHULZ B, DÖRING J, GOTTSBERGER G. Apparatus for measuring the fall velocity of anemochorous diaspores,with results from two plant communities[J]. Oecologia, 1991,86(3):454-456.DOI: 10.1007/BF00317616.
[18]
COUSENS R, DYTHAM C, LAW R. Dispersal in plants: a population perspective[M]. New York: Oxford University Press, 2008.
[19]
诸葛晓龙, 朱敏, 郭强. 线性及机理模型的种子风传扩散距离预测[J]. 中国计量学院学报, 2011,22(2):181-184.
ZHUGE X L, ZHU M, GUO Q. Prediction of wind dispersal distance of seeds based on linear and mechanistic models[J]. J China Jiliang Univ, 2011,22(2):181-184.DOI: 10.3969/j.issn.1004-1540.2011.02.017.
[20]
杨允菲, 祝玲. 松嫩平原碱化草甸野大麦的种子散布格局[J]. 植物学报, 1994(8):636-644.
YANG Y F, ZHU L. Pattern of a seed dispersal of Hordeum brevisubulatum on alkalized meadow in the Songnen Plain of China[J]. Acta Bot Sin, 1994(8):636-644.
[21]
CAIN M L, DAMMAN H, MUIR A. Seed dispersal and the Holocene migration of woodland herbs[J]. Ecol Monogr, 1998,68(3):325-347.DOI: 10.1890/0012-9615(1998)068[0325:SDATHM]2.0.CO;2.
[22]
WERNER P A. A seed trap for determining patterns of seed deposition in terrestrial plants[J]. Can J Bot, 1975,53(8):810-813.DOI: 10.1139/b75-097.
[23]
HARPER J L. Population biology of plants[J]. Orlando, Florida: Academic Press, 1977.
[24]
HOWE H F, SMALLWOOD J. Ecology of seed dispersal[J]. Annu Rev Ecol Syst, 1982,13(1):201-228.DOI: 10.1146/annurev.es.13.110182.001221.
[25]
RABINOWITZ D. Abundance and diaspore weight in rare and common prairie grasses[J]. Oecologia, 1978,37(2):213-219.DOI: 10.1007/bf00344992.
[26]
罗靖德, 甘小洪, 贾晓娟, 等. 濒危植物水青树种子的生物学特性[J]. 云南植物研究, 2010,32(3):204-210.
LUO J D, GAN X H, JIA X J, et al. Biological characteristics of seeds of endangered plant Tetracentron sinense(Tetracentraceae)[J]. Acta Bot Yunnanica, 2010,32(3):204-210.DOI: 10.3724/SP.J.1143.2010.09233.
[27]
谭珂, 董书鹏, 卢涛, 等. 被子植物翅果的多样性及演化[J]. 植物生态学报, 2018,42(8):806-817.
TAN K, DONG S P, LU T, et al. Diversity and evolution of samara in angiosperm[J]. Chin J Plant Ecol, 2018,42(8):806-817.DOI: 10.17521/cjpe.2018.0053.

基金

江苏农牧科技职业学院科研项目(NSFPT201848)
山东省农业良种工程项目(2020LZGC009)
江苏省“青蓝工程”优秀教学团队项目(苏教师函[2020]10 号)
江苏省现代农业(花卉)产业技术体系泰州推广示范基地项目(JATS[2020]350)

编辑: 郑琰燚

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2026 KB)

Accesses

Citation

Detail

段落导航
相关文章

/