栓皮栎叶片和枝条非结构性碳水化合物调配关系研究

魏龙鑫, 章异平, 李艺杰, 张玉茹

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 96-102.

PDF(1592 KB)
PDF(1592 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 96-102. DOI: 10.12302/j.issn.1000-2006.201909029
研究论文

栓皮栎叶片和枝条非结构性碳水化合物调配关系研究

作者信息 +

Allocation of non-structural carbohydrates (NSC) contents in leaves and branches of Quercus variabilis during its growth process

Author information +
文章历史 +

摘要

【目的】探索非结构性碳水化合物(non-structural carbohydrates,NSC)在落叶树种栓皮栎(Quercus variabilis)不同器官间的分配格局与调配机制,为进一步掌握树木生长规律并评估栓皮栎群落的固碳潜力提供参考。【方法】2016年5月—2017年6月,以秦岭东段栓皮栎为研究对象,通过旬尺度和月尺度相结合的周期性采样方法取得栓皮栎1、2年生枝条以及当年生健康叶片样品,采用蒽酮浓硫酸法测定栓皮栎叶片和枝条NSC的组分含量及变化。此外,对栓皮栎叶片物候进行周期性观测,测量叶片长度,运用Gompertz函数拟合叶片生长曲线,得到叶片物候主要日期阶段的变化。【结果】①栓皮栎叶片和枝条的NSC组分含量均随时间呈明显的动态变化(P < 0.05),叶片的NSC含量(质量分数)均值(8.94%)高于枝条的(7.90%)。②栓皮栎叶片和枝条的NSC组成均以可溶性糖为主,分别占62.5%和63.5%,这可能是本研究区栓皮栎对暖干生境的生理生态适应的结果。③两器官间NSC及其组分含量的显著性差异,主要出现在生长季前期(4—6月)和后期(10月),主要原因是两器官在碳存储和碳消耗的阶段存在功能性差异。生长季前期,枝条为萌芽展叶消耗能量,而叶片通过光合作用积累NSC;生长季后期,枝条为下一年树冠重建储存能量,而叶片光合作用减弱。④除可溶性糖与淀粉比值外,NSC及其组分含量在两器官间的Pearson相关系数均不显著。在生长季前期(3—6月),叶片和枝条NSC含量高度极显著正相关(R = 0.986, P < 0.001),但存在15~20 d的滞后。【结论】栓皮栎生长过程中叶片和枝条器官的碳水化合物储量表现出动态调配变化,但并非线性关系,可能是受滞后因素影响的非线性关系。因此,在使用模型估算栓皮栎群落固碳潜力时,需综合考虑碳分配在不同器官间的时滞效应。

Abstract

【Objective】Non-structural carbohydrates (NSC) are important carbon reserves in trees, which are good indicators of tree carbon surplus or shortage stored. Research into the allocation of NSC contents among tree tissues will help to understand the mechanisms of carbon allocation within trees. This provides a scientific basis for further evaluation of the carbon sequestration potential of forest communities. 【Method】We conducted a field observational study by monitoring the NSC concentrations in the leaves and branches of Chinese cork oak (Quercus variabilis), and by synchronously observing the leaf phenology of those trees in some uneven-aged secondary oak forests growing in the east Qinling Mountain Range. By measuring the leaf length and fitting the leaf growth curve with the Gompertz function, the specific dates of the main phenological stages of leaves can be obtained. Sampling intervals were set semi-monthly/monthly during the leaf unfolding period from March to May, and monthly or bimonthly during the trees’ full growing season from June to November. The time series of observations and sampling spanned from May 2016 to June 2017. The content of NSC and its components in the leaves and branches of Q. variabilis was determined by the anthranone-sulfuric acid method. 【Result】① The dynamics of the content of NSC and its components in leaves and branches of Q. variabilis varied significantly with seasonal rhythms (P < 0.05). The average NSC content (mass fraction) in the leaves (8.94%) was higher than that in the branches (7.90%). ② The composition of NSC in leaves and branches of Q. variabilis was mainly soluble sugar, and comprised 62.5% and 63.5%, respectively. This physiological feature might be a life strategy for Q. variabilis, a deciduous tree species growing typically in the warm temperate zone, to survive in the local environment. ③ Significant differences in the NSC contents and their components between leaves and branches were observed mainly in the early (April-June) and late (October) growing seasons. Before entering the growing season, the NSC content of branches dropped rapidly to supply energy to bud-break and leaf development. In contrast, the leaves began to accumulate NSC by photosynthesis. In the late growing season, branches were inclined to store carbon to reconstruct the canopy for the next year. While, photosynthesis of leaves was reduced. ④ The Pearson correlation coefficients of the NSC content and their components between leaves and branches were not significant except for the ratio of soluble sugar to starch. The variation trend of NSC contents in leaves and branches was highly positive (R=0.986, P < 0.001) in the early growing season (March-June), but there was a time lag of 15-20 days.【Conclusion】It could be inferred that the distribution relationship of NSC contents between leaves and branches of Q. variabilis is not linear, but most likely non-linear. Therefore, when estimating the carbon sequestration potential of Q. variabilis, the nonlinear relationship of carbon distribution among different tissues should be comprehensively considered.

关键词

栓皮栎 / 非结构性碳水化合物(NSC) / 可溶性糖 / 淀粉 / 叶片 / 枝条 / 碳调配

Key words

Quercus variabilis / non-structural carbohydrates (NSC) / soluble sugar / starch / leaf / branch / carbon distribution

引用本文

导出引用
魏龙鑫, 章异平, 李艺杰, . 栓皮栎叶片和枝条非结构性碳水化合物调配关系研究[J]. 南京林业大学学报(自然科学版). 2021, 45(2): 96-102 https://doi.org/10.12302/j.issn.1000-2006.201909029
WEI Longxin, ZHANG Yiping, LI Yijie, et al. Allocation of non-structural carbohydrates (NSC) contents in leaves and branches of Quercus variabilis during its growth process[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 96-102 https://doi.org/10.12302/j.issn.1000-2006.201909029
中图分类号: S792.18   

参考文献

[1]
潘庆民, 韩兴国, 白永飞, 等. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报, 2002,19(1):30-38.
PAN Q M, HAN X G, BAI Y F, et al. Advances in physiology and ecology studies on stored non-structure carbohydrates in plants[J]. Chin Bull Bot, 2002,19(1):30-38. DOI: 10.3969/j.issn.1674-3466.2002.01.004.
[2]
张海燕. 中国温带森林12个树种树干和树枝的非结构性碳时空变异[D]. 哈尔滨: 东北林业大学, 2013.
ZHANG H Y. Spatiotemporal variability in non-structural carbohydrates of stem and branch for twelve tree species in Chinese temperate forest[D]. Harbin: Northeast Forestry University, 2013.
[3]
KÖRNER C. Carbon limitation in trees[J]. J Ecol, 2003,91(1):4-17. DOI: 10.1046/j.1365-2745.2003.00742.x.
[4]
LI M H, HOCH G, KÖRNER C. Spatial variability of mobile carbohydrates within Pinus cembra trees at the alpine tree line[J]. Phyton-Ann Rei Bot, 2001,41(2):203-213. DOI: 10.1078/0944-7113-00019.
[5]
FAJARDO A, PIPER F I, PFUND L, et al. Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control[J]. New Phytol, 2012,195(4):794-802. DOI: 10.1111/j.1469-8137.2012.04214.x.
[6]
MYERS J A, KITAJIMA K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. J Ecol, 2007,95(2):383-395. DOI: 10.1111/j.1365-2745.2006.01207.x.
[7]
王文娜, 李俊楠, 王会仁, 等. 不同树种叶片非结构性碳水化合物季节动态比较[J]. 东北林业大学学报, 2014,42(4):46-49,108.
WANG W N, LI J N, WANG H R, et al. Seasonal dynamics of leaf nonstructural carbohydrate content in four temperate tree species[J]. J Northeast For Univ, 2014,42(4):46-49,108. DOI: 10.13759/j.cnki.dlxb.2014.04.010.
[8]
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析[J]. 林业科学, 2017,53(6):1-9.
LIU W D, SU J R, LI S F, et al. Variation of non-structural carbohydrates for the dominant species in a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province[J]. Sci Silva Sin, 2017,53(6):1-9. DOI: 10.11707/j.1001-7488.20170601.
[9]
印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J]. 北京大学学报(自然科学版), 2009,45(3):519-527.
YIN J J, GUO D L, HE S Y, et al. Non-structural carbohydrate,N,and P allocation patterns of two temperate tree species in a semi-arid region of Inner Mongolia[J]. Acta Sci Nat Univ Pekin, 2009,45(3):519-527. DOI: 10.13209/j.0479-8023.2009.077.
[10]
王彪, 江源, 王明昌, 等. 芦芽山不同海拔白杄非结构性碳水化合物含量动态[J]. 植物生态学报, 2015,39(7):746-752.
WANG B, JIANG Y, WANG M C, et al. Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain,China[J]. Chin J Plant Ecol, 2015,39(7):746-752. DOI: 10.17521/cjpe.2015.0071.
[11]
邓云鹏. 不同纬度栓皮栎非结构性碳水化合物和营养元素含量研究[D]. 北京: 中国林业科学研究院, 2016.
DENG Y P. Nonstructural carbohydrates and nutrient element concentrations of Quercus variabilis of different latitude[D]. Beijing: Chinese Academy of Forestry, 2016.
[12]
KLEIN T, VITASSE Y, HOCH G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest[J]. Tree Physiol, 2016,36(7):847-855. DOI: 10.1093/treephys/tpw030.
[13]
PALACIO S, MILLA R, ALBUIXECH J, et al. Seasonal variability of dry matter content and its relationship with shoot growth and nonstructural carbohydrates[J]. New Phytol, 2008,180(1):133-142. DOI: 10.1111/j.1469-8137.2008.02569.x.
[14]
ZHANG Y P, XU J L, SU W, et al. Spring precipitation effects on formation of first row of earlywood vessels in Quercus variabilis at Qinling Mountain (China)[J]. Trees, 2019,33(2):457-468. DOI: 10.1007/s00468-018-1792-y.
[15]
欧阳明, 杨清培, 祁红艳, 等. 亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较[J]. 南京林业大学学报(自然科学版), 2014,38(2):105-110.
OUYANG M, YANG Q P, QI H Y, et al. A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region,China[J]. J Nanjing For Univ (Nat Sci Ed), 2014,38(2):105-110. DOI: 10.3969/j.issn.1000-2006.2014.02.020.
[16]
徐钰, 许凯, 王文娟, 等. 不同林龄杨树细根糖化学组分对氮沉降的响应[J]. 南京林业大学学报(自然科学版), 2014,38(3):13-18.
XU Y, XU K, WANG W J, et al. The response of carbohydrates compositions in fine root of poplar at different ages to nitrogen depositions[J]. J Nanjing For Univ (Nat Sci Ed), 2014,38(3):13-18. DOI: 10.3969/j.issn.1000-2006.2014.03.003.
[17]
李娜妮, 何念鹏, 于贵瑞. 中国4种典型森林中常见乔木叶片的非结构性碳水化合物研究[J]. 西北植物学报, 2015,35(9):1846-1854.
LI N N, HE N P, YU G R. Non-structural carbohydrates in leaves of tree species from four typical forests in China[J]. Acta Bot Boreali-Occidentalia Sin, 2015,35(9):1846-1854. DOI: 10.7606/j.issn.1000-4025.2015.09.1846.
[18]
白婷, 喻方圆, ROBERT D G. 不同种源北美香脂杨苗木碳水化合物积累差异分析[J]. 西南林业大学学报, 2014,34(1):27-30.
BAI T, YU F Y, ROBERT D G. Analysis on difference in carbohydrate accumulation in Populus balsamifera seedlings among different provenance[J]. J Southwest For Univ, 2014,34(1):27-30. DOI: 10.3969/j.issn.2095-1914.2014.01.005.
[19]
曹新向, 丁圣彦, 李昊民. 河南省洛宁县全宝山国有林场植被的调查分析[J]. 河南科学, 2003,21(2):183-186.
CAO X X, DING S Y, LI H M. A study on vegetation in the state-owned tree farm of Quanbao Mountain in Luoning County,Henan Province[J]. Henan Sci, 2003,21(2):183-186. DOI: 10.13537/j.issn.1004-3918.2003.02.016.
[20]
ROSSI S, RATHGEBER C B K, DESLAURIERS A. Comparing needle and shoot phenology with xylem development on three conifer species in Italy[J]. Ann For Sci, 2009,66:206-213. DOI: 10.1051/forest/2008088.
[21]
ZHANG Y P, JIANG Y, WEN Y, et al. Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an alpine habitat[J]. Forests, 2019,10:574-588. DOI: 10.3390/f10070574.
[22]
章异平, 曹鹏鹤, 徐军亮, 等. 秦岭东段栓皮栎叶片非结构性碳水化合物含量的季节动态[J]. 生态学报, 2019,39(19):7274-7282.
ZHANG Y P, CAO P H, XU J L, et al. Seasonal dynamics of non-structural carbohydrate contents in leaves of Quercus variabilis growing in the east Qinling Mountain range[J]. Acta Ecol Sin, 2019,39(19):7274-7282. DOI: 10.5846/stxb201808091693.
[23]
姚光刚, 李国雷, 郑永林, 等. 缓释肥施用量对槲栎容器苗苗木质量的影响[J]. 南京林业大学学报(自然科学版), 2019,43(1):69-75.
YAO G G, LI G L, ZHENG Y L, et al. Effects of slow-release fertilizer rate on the quality of Quercus aliena container seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(1):69-75. DOI: 10.3969/j.issn.1000-2006.201801025.
[24]
汤绍虎, 罗充. 植物生理学实验教程[M]. 重庆: 西南师范大学出版社, 2012.
TANG S H, LUO C. Plant physiology experiment[M]. Chongqing: Southwest China Normal University Press, 2012.
[25]
KEEL S G, SCHÄDEL C. Expanding leaves of mature deciduous forest trees rapidly become autotrophic[J]. Tree Physiol, 2010,30(10):1253-1259.DOI: 10.1093/treephys/tpq071.
[26]
MARTÍNEZ-VILALTA J, SALA A, ASENSIO D, et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synjournal[J]. Ecol Monogr, 2016,86(4):495-516. DOI: 10.1002/ecm.1231.
[27]
于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011,35(12):1245-1255.
YU L M, WANG C K, WANG X C. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China[J]. Chin J Plant Ecol, 2011,35(12):1245-1255. DOI: 10.3724/SP.J.1258.2011.01245.
[28]
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林不同林层非结构性碳水化合物特征[J]. 应用生态学报, 2018,29(3):775-782.
LIU W D, SU J R, LI S F, et al. Non-structural carbohydrates characteristics of different forest layers in monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province[J]. Chin J Appl Ecol, 2018,29(3):775-782. DOI: 10.13287/j.1001-9332.201803.005.
[29]
SALA A, WOODRUff D R, MEINZER F C. Carbon dynamics in trees: feast or famine?[J]. Tree Physiol, 2012,32(6):764-775. DOI: 10.1093/treephys/tpr143.
[30]
SCHELLENBAUM L, SPRENGER N, SCHÜEPP H. Effects of drought, transgenic expression of a fructan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants[J]. New Phytol, 1999,142(1):67-77. DOI: 10.1046/j.1469-8137.1999.00376.x.
[31]
周永斌, 吴栋栋, 于大炮, 等. 长白山不同海拔岳桦非结构碳水化合物含量的变化[J]. 植物生态学报, 2009,33(1):118-124.
ZHOU Y B, WU D D, YU D P, et al. Variations of nonstructural carbohydrate content in Betula ermanii at different elevations of Changbai Mountain, China[J]. Chin J Plant Ecol, 2009,33(1):118-124. DOI: 10.3773/j.issn.1005-264x.2009.01.013.

基金

国家自然科学基金项目(41801026)
国家自然科学基金项目(41401063)
国家留学基金项目(201808410575)
国家留学基金项目(201908410061)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1592 KB)

Accesses

Citation

Detail

段落导航
相关文章

/