洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响

季淮, 韩建刚, 李萍萍, 朱咏莉, 郭俨辉, 郝达平, 崔皓

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1) : 141-150.

PDF(2661 KB)
PDF(2661 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1) : 141-150. DOI: 10.12302/j.issn.1000-2006.201909049
研究论文

洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响

作者信息 +

Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongze Lake Wetland

Author information +
文章历史 +

摘要

【目的】研究不同植被覆盖下湿地土壤有机碳组成、微生物群落结构的特征,为合理开发利用、恢复和保护湿地生态功能提供依据。【方法】以江苏洪泽湖与淮河交汇区湿地自然植被类型(湖草滩、芦苇滩)和人工植被类型(杨树林、柳树林)的土壤为研究对象,应用物理分组的方法研究土壤不同粒径 (<2 μm、≥2~63 μm、≥63~200 μm、≥200~2 000 μm) 组分分布、有机碳含量与分布情况,采用高通量测序技术对土壤微生物群落结构特征进行表征,运用聚类分析、冗余分析研究不同植被类型土壤中微生物物种丰度相似性、微生物群落结构与不同粒径组分土壤有机碳及土壤理化性质之间的关系。【结果】①洪泽湖与淮河交汇区湿地人工植被类型林地中土壤粒径≥200~2 000 μm组分分布最少,土壤粒径≥2~63和≥63~200 μm组分分布显著高于其他粒径组分;人工植被类型土壤总有机碳含量显著高于自然植被类型,其中各植被类型各粒径组分(除粒径≥2~63 μm组分)土壤有机碳含量大小顺序均为柳树林>杨树林>湖草滩>芦苇滩;粒径< 2 μm组分的土壤有机碳分布比例显著高于其他粒径组分的,粒径≥200~2 000 μm组分的土壤有机碳分布比例低于其他粒径组分的。②各植被类型土壤微生物群落多样性(Shannon 指数)大小顺序均为芦苇滩>湖草滩>柳树林>杨树林,变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)是样地土壤细菌的主要优势种群(50.21%~66.12%);子囊菌门(Ascomycota)、担子菌门(Basidiomycota)是土壤真菌的主要优势种群(68.32%~95.11%)。土壤细菌群落聚类分析相似性系数最高的是湖草滩和芦苇滩,这个聚类和杨树林的土壤细菌群落相似性较远;真菌群落聚类分析中,湖草滩和芦苇滩的真菌群落自成一族群;杨树林和柳树林的真菌群落聚为另一族群。③微生物群落结构与土壤理化性质相关性分析显示,土壤有机碳含量和含水量是影响土壤微生物群落结构的主要因子,细菌中的酸杆菌门(Acidobacteria)和真菌中的担子菌门(Basidiomycota)受粒径<2 μm、≥2~63 μm、≥63~200 μm组分的土壤有机碳分布影响很大。【结论】洪泽湖湿地4种植被覆盖下不同粒径组分土壤的质量和有机碳含量数值呈现两头小中间大趋势,不同粒径组分中有机碳分布比例随粒径的增加而降低。种植人工植被(柳树林、杨树林)有利于增加土壤有机碳的含量,但人工植被类型未增加土壤微生物的多样性,粒径<200 μm组分的土壤有机碳分布可能影响特定的优势微生物类群。

Abstract

【Objective】This study was conducted to understand the effects of natural vegetation types (lake-grass marsh and reed marsh) and artificial vegetation types (poplar forest and willow forest) on soil organic carbon and microbial community structure in the intersection area of Hongze Lake.【Method】The particle size distribution, and the content and distribution of soil organic carbon (SOC) in different particle-size fractions of soils (<2, ≥2-63, ≥63-200 and ≥200-2 000 μm) were measured, and the soil microbial community structure was characterized by high-throughput sequencing. We utilized the cluster analysis to investigate the relationship of microbial species and the reliability analysis to examine the relationships between the microbial community structure, SOC and soil physical and chemical properties.【Result】① The particle size distribution was the lowest in the ≥200-2 000 μm fraction and was significantly higher in the ≥2-63 and ≥63-200 μm fractions. Distribution of SOC in the ≥200-2 000 μm fraction was lower than that in the other soil fractions. SOC from the artificial forest soil was significantly higher than that in soils covered by natural vegetation types, with the content of SOC in various particle size fractions decreasing in the order of willow > poplar > lake grass > reed. With respect to different particle size fractions (except for ≥2-63 μm), the SOC contents were the highest in soils under cover of willow and lowest in reed-covered soils, and the distribution of SOC in the <2 μm fraction was significantly higher than that in other fractions. ② The diversity of the soil bacterial community in the four sites decreased in the order of reed > lake grass > willow > poplar, and the diversity of the soil fungi community decreased in the order of reed > willow > lake grass > poplar. Proteobacteria and Acidobacteria were the dominant phyla of soil bacteria in the study area (accounting for 50.21%-66.12%), whereas Ascomycota and Basidiomycota were the dominant phyla of soil fungi (accounting for 68.32%-95.11%). The highest similarity coefficient obtained from the soil bacterial community cluster analysis was for lake-grass marsh and reed marsh. The soil bacterial community significantly differed from that of the poplar forest. The community clustering analysis revealed that fungal communities in the soils of lake-grass marsh and reed marsh formed similar communities, while fungal communities in the soils of the poplar forest and willow forest clustered into another group. ③ The correlation analysis of the microbial community structure and soil physical and chemical properties showed that the SOC content and water content were the main factors affecting the soil microbial community structure. Acidobacteria and Basidiomycota were positively correlated with the SOC content in the particle size fractions of <2, ≥2-63 and ≥63-200 μm. Basidiomycota showed a significant negative correlation with the soil moisture content, indicating that Basidiomycota abundance would increase with the increase in SOC particle size components when soil moisture was relatively low.【Conclusion】In soil fractions of different particle sizes under four different vegetation cover types in Hongze Lake Wetlands, both the particle size distribution and content of SOC showed a large trend of two small middles. All of them show an inverted “V” plot, and the distribution of SOC in soils with different particle sizes decreased with increasing particle sizes. We conclude that the establishment of artificial forests in the Hongze Lake Wetland has been conducive to the accumulation of SOC but has not affected the diversity of the microbial community. SOC components and their effectiveness may be the limiting factors for microbial diversity.

关键词

湿地 / 植被类型 / 土壤有机碳 / 粒径组分 / 微生物群落 / 高通量测序 / 洪泽湖

Key words

wetland / vegetation type / soil organic carbon (SOC) / particle size fraction / microbial community / high-throughput sequencing / Hongze Lake

引用本文

导出引用
季淮, 韩建刚, 李萍萍, . 洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版). 2021, 45(1): 141-150 https://doi.org/10.12302/j.issn.1000-2006.201909049
JI Huai, HAN Jiangang, LI Pingping, et al. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongze Lake Wetland[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(1): 141-150 https://doi.org/10.12302/j.issn.1000-2006.201909049
中图分类号: S718.5   

参考文献

[1]
ERWIN K L. Wetlands and global climate change: the role of wetland restoration in a changing world[J]. Wet Ecol Manage, 2009,17(1):71. DOI: 10.1007/s11273-008-9119-1.
[2]
MA K, ZHANG Y, TANG S X, et al. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau.[J] Catena, 2016(144):102-108. DOI: 10.1016/j.catena.2016.05.014.
[3]
王丽丽, 宋长春, 葛瑞娟, 等. 三江平原湿地不同土地利用方式下土壤有机碳储量研究[J]. 中国环境科学, 2009,29(6):656-660.
摘要
选取东北三江平原沼泽湿地5种土地利用方式,共16个土壤剖面,对土壤有机碳储量分布特征进行了研究.结果表明,不同土地利用方式下,土壤剖面有机碳含量与有机碳密度均呈自上而下降低的趋势,且随着深度的增加,垂直差异变小.开垦降低了土壤有机碳含量和有机碳密度,并改变了其在表层的分布结构特征.初步估算5种土地利用方式下土壤有机碳储量分别为:沼泽湿地1.58×104t/km2、退耕还湿地1.23×104t/km2、林地1.01×104t/km2、水田0.85×104t/km2、旱田0.99×104t/km2.开垦降低了湿地土壤有机碳储量,且对耕地的影响大于林地,而退耕还湿有利于土壤有机碳的固定及储量的增加.
WANG L L, SONG C C, GE R J, et al. Soil organic carbon storage under different land-use types in Sanjiang Plain[J]. China Environ Sci, 2009,29(6):656-660. DOI: 10.3321/j.issn:1000-6923.2009.06.018.
[4]
CANADELL J, MOONEY H A, BALDOCCHI D D, et al. Commentary:carbon metabolism of the terrestrial biosphere:a multitechnique approach for improved understanding[J]. Ecosystems, 2000,3(2):115-130. DOI: 10.1007/s100210000014.
Understanding terrestrial carbon metabolism is critical because terrestrial ecosystems play a major role in the global carbon cycle. Furthermore, humans have severely disrupted the carbon cycle in ways that will alter the climate system and directly affect terrestrial metabolism. Changes in terrestrial metabolism may well be as important an indicator of global change as the changing temperature signal. Improving our understanding of the carbon cycle at various spatial and temporal scales will require the integration of multiple, complementary and independent methods that are used by different research communities. Tools such as air sampling networks, inverse numerical methods, and satellite data (top-down approaches) allow us to study the strength and location of the global- and continental-scale carbon sources and sinks. Bottom-up studies provide estimates of carbon fluxes at finer spatial scales and examine the mechanisms that control fluxes at the ecosystem, landscape, and regional scales. Bottom-up approaches include comparative and process studies (for example, ecosystem manipulative experiments) that provide the necessary mechanistic information to develop and validate terrestrial biospheric models. An iteration and reiteration of top-down and bottom-up approaches will be necessary to help constrain measurements at various scales. We propose a major international effort to coordinate and lead research programs of global scope of the carbon cycle.
[5]
LIANG C, BALSER T C. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool[J]. Nat Commun, 2012,3:1222. DOI: 10.1038/ncomms2224.
Microorganisms have a role as gatekeepers for terrestrial carbon fluxes, either causing its release to the atmosphere through their decomposition activities or preventing its release by stabilizing the carbon in a form that cannot be easily decomposed. Although research has focused on microbial sources of greenhouse gas production, somewhat limited attention has been paid to the microbial role in carbon sequestration. However, increasing numbers of reports indicate the importance of incorporating microbial-derived carbon into soil stable carbon pools. Here we investigate microbial residues in a California annual grassland after a continuous 9-year manipulation of three environmental factors (elevated CO(2), warming and nitrogen deposition), singly and in combination. Our results indicate that warming and nitrogen deposition can both alter the fraction of carbon derived from microbes in soils, though for two very different reasons. A reduction in microbial carbon contribution to stable carbon pools may have implications for our predictions of global change impacts on soil stored carbon.
[6]
LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015,528(7580):60-68. DOI: 10.1038/nature16069.
The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.
[7]
张俊华, 李国栋, 南忠仁, 等. 黑河绿洲区耕作影响下的土壤粒径分布及其与有机碳的关系[J]. 地理研究, 2012,31(4):608-618.
摘要
选取黑河绿洲区典型土壤类型为研究对象,分析耕作对土壤粒径分布及其与土壤总有机碳、活性有机碳、惰性有机碳关系的影响。结果显示:非耕地(灰钙土、灰褐土、栗钙土)转变为耕地后,改变了10~50&mu;m粗粉粒、50~250&mu;m细砂粒、250~1000&mu;m粗砂粒的含量,对<5&mu;m的粘粒含量影响小。而风沙土变为耕地土壤后,土壤颗粒出现了细化现象。土壤粒径分布的变化也波及到了土壤颗粒与有机碳的关系,耕地与非耕地中存在异同点。相同之处在于,以50&mu;m作为分界点,土壤总有机碳、活性有机碳、惰性有机碳与<50&mu;m的粉粒、粘粒土壤颗粒含量呈正相关,与>50&mu;m的砂粒呈负相关。不同之处为:耕地中土壤有机碳仅与5~10&mu;m、10~50&mu;m、50~250&mu;m有关;非耕地中土壤有机碳与<1&mu;m、1~5&mu;m、5~10&mu;m、10~50&mu;m、50~250&mu;m、250~1000&mu;m的含量有关。分析表明,耕作是引起土壤活性有机碳增加及土壤有机碳与土壤粒径之间的关系发生变化的内在原因。
ZHANG J H, LI G D, NAN Z R, et al. Research on soil particle size distribution and its relationship with soil organic carbon under the effects of tillage in the Heihe oasis[J]. Geogr Res, 2012,31(4):608-618.
[8]
刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007,27(6):2642-2650.
摘要
土壤有机碳的增加不仅有助于农业可持续发展,而且对缓解温室气体增加和全球气候变化等也具有重要意义。土壤有机碳的稳定机制决定着土壤固定和储备有机碳的能力,对有机碳稳定机制的研究,将为政府制定有效的温室气体减排措施提供依据。土壤有机碳的稳定机制主要包括:(1)有机碳的难降解性;(2)金属氧化物和粘土矿物与有机碳的相互作用;(3)土壤团聚体的物理保护导致的生物与有机碳空间隔离;(4)土壤生物学机制,主要指土壤生物自身对有机碳稳定性的直接贡献。至今,有机碳稳定性的主导机制尚不清楚,但影响因素与生态系统类型、土壤类型、土层深度、土壤管理措施、土壤生物活性及群落组成等有关。作者建议今后研究有机碳稳定性机制时,应同时考虑上述4种机制的综合作用,并加强探索土壤生物的贡献。
LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecol Sin, 2007,27(6):2642-2650. DOI: 10.3321/j.issn:1000-0933.2007.06.059.
[9]
LI Z W, LIU C, DONG Y T, et al. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China[J]. Soil Tillage Res, 2017,166:1-9. DOI: 10.1016/j.still.2016.10.004.
[10]
霍莉莉, 吕宪国. 垦殖方式对小叶章湿地表土团聚体有机碳分布的影响[J]. 中国环境科学, 2011,31(10):1711-1717.
摘要
研究了2种垦殖方式对三江平原小叶章湿地表土团聚体及其有机碳分布的影响.结果表明,垦殖后,粒径>0.25mm的大团聚体呈降低趋势,大豆田中0.053~0.25mm微团聚体增加;水稻田中主要增加的是1mm及0.053~0.25mm团聚体有机碳含量降幅均呈现大豆田大于水稻田,水稻田>大豆田,小叶章湿地>大豆田>水稻田.水稻田比大豆田土壤有机碳储量稍高,但其微团聚体有机碳储量及其占土壤有机碳储量的比例低于大豆田,开垦为大豆田比开垦为水稻田有利于土壤有机碳长期存留.
HUO L L, LÜ X G. Effect of different reclamation patterns on soil organic carbon distribution of aggregates in the topsoil of the Calamagrostis angustifolia wetland in Sanjiang Plain,China[J]. China Environ Sci, 2011,31(10):1711-1717.
[11]
BAUMANN K, MARSCHNER P, SMERNIK R J, et al. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues[J]. Soil Biology and Biochemistry, 2009,41(9):1966-1975. DOI: 10.1016/j.soilbio.2009.06.022.
[12]
SIX J, ELLIOTT E T, PAUSTIAN K . Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under o-tillage agriculture[J]. Soil Biology and Biochemistry, 2000,32(14):2099-2103. DOI: 10.1016/s0038-0717(00)00179-6.
[13]
刘驰, 李家宝, 芮俊鹏, 等. 16S rRNA基因在微生物生态学中的应用[J]. 生态学报, 2015,35(9):2769-2788.
LIU C, LI J B, RUI J P, et al. The applications of the 16S rRNA gene in microbial ecology:current situation and problems[J]. Acta Ecol Sin, 2015,35(9):2769-2788. DOI: 10.5846/stxb201306181726.
[14]
张杰, 胡维, 刘以珍, 等. 鄱阳湖湿地不同土地利用方式下土壤微生物群落功能多样性[J]. 生态学报, 2015,35(4):965-971.
ZHANG J, HU W, LIU Y Z, et al. Response of soil microbial functional diversity to different land-use types in wetland of Poyang Lake,China[J]. Acta Ecol Sin, 2015,35(4):965-971. DOI: 10.5846/stxb201306121688.
[15]
吴翼, 戴蓉, 徐勇峰, 等. 洪泽湖河湖交汇区土地利用时空动态[J]. 南京林业大学学报(自然科学版), 2016,40(4):22-28.
WU Y, DAI R, XU Y F, et al. Spatial and temporal changes in wetland use in the meeting place of Hung-tse Lake and Huaihe River[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(4):22-28. DOI: 10.3969/j.issn.1000-2006.2016.04.004.
[16]
付为国, 吴翼, 李萍萍, 等. 洪泽湖入湖河口滩涂植被分异特征[J]. 湿地科学, 2015,13(5):569-576.
FU W G, WU Y, LI P P, et al. Different characteristics of vegetation in estuary beaches of Hongze Lake[J]. Wetl Sci, 2015,13(5):569-576. DOI: 10.13248/j.cnki.wetlandsci.2015.05.008.
[17]
STEMMER M, GERZABEK M H, KANDELER E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication[J]. Soil Biol Biochem, 1998,30(1):9-17. DOI: 10.1016/S0038-0717(97)00093-X.
[18]
王鹏, 陈波, 张华. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 2017,37(5):1650-1658.
WANG P, CHEN B, ZHANG H. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland[J]. Acta Ecol Sin, 2017,37(5):1650-1658. DOI: 10.5846/stxb201510052000.
[19]
SHIAU Y J, CHEN J S, CHUNG T L, et al. 13C NMR spectroscopy characterization of particle-size fractionated soil organic carbon in subalpine forest and grassland ecosystems [J]. Bot Stud, 2017,58(1):23. DOI: 10.1186/s40529-017-0179-5.
BACKGROUND: Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state (13)C nuclear magnetic resonance spectroscopy in each fraction. RESULTS: The SOC content was higher in forest than grassland soil in the particle-size fraction samples. The O-alkyl-C content (carbohydrate-derived structures) was higher in the grassland than the forest soils, but the alkyl-C content (recalcitrant substances) was higher in forest than grassland soils, for a higher humification degree (alkyl-C/O-alkyl-C ratio) in forest soils for all the soil particle-size fractions. CONCLUSIONS: High humification degree was found in forest soils. The similar aromaticity between forest and grassland soils might be attributed to the fire-induced aromatic-C content in the grassland that offsets the original difference between the forest and grassland. High alkyl-C content and humification degree and low C/N ratios in the fine particle-size fractions implied that undecomposed recalcitrant substances tended to accumulate in the fine fractions of soils.
[20]
JOBBÁGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecol Appl, 2000,10(2):423-436. DOI: 10.1890/1051-0761(2000)010[0423:tvdoso]2. 0. co;2.
[21]
李典友, 潘根兴. 长江中下游地区湿地开垦及土壤有机碳含量变化[J]. 湿地科学, 2009,7(2):187-190.
LI D Y, PAN G X. Cultivation of wetlands and changes of soil organic carbon content in the middle and lower reaches of Yangtze River[J]. Wetl Sci, 2009,7(2):187-190. DOI: 10.13248/j.cnki.wetlandsci.2009.02.013.
[22]
JOHN B, YAMASHITA T, LUDWIG B, et al. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use[J]. Geoderma, 2005,128(1/2):63-79. DOI: 10.1016/jgeoderma.2004.12.013.
[23]
张悦, 冯会丽, 王维枫, 等. 洪泽湖地区杨树人工林碳水通量昼夜和季节变化特征[J]. 南京林业大学学报(自然科学版), 2019,43(5):113-120.
ZHANG Y, FENG H L, WANG W F, et al. Diurnal and seasonal changes of fluxes over a poplar plantation in Hongze Lake Basin[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(5):113-120. DOI: 10.3969/j.issn.1000-2006.201806032.
[24]
唐光木, 徐万里, 盛建东, 等. 新疆绿洲农田不同开垦年限土壤有机碳及不同粒径土壤颗粒有机碳变化[J]. 土壤学报, 2010,47(2):279-285.
TANG G M, XU W L, SHENG J D, et al. The variation of soil organic carbon and soil particle-size in Xinjiang oasis farmland of different years[J]. Acta Pedol Sin, 2010,47(2):279-285.
[25]
李文华, 邵学新, 吴明, 等. 杭州湾生长不同植物的潮滩土壤微生物群落特征[J]. 湿地科学, 2013,11(4):413-420.
LI W H, SHAO X X, WU M, et al. Microbial community characteristic of soils with different vegetation in tidal flat in Hangzhou Bay[J]. Wetl Sci, 2013,11(4):413-420. DOI: 10.3969/j.issn.1672-5948.2013.04.002.
[26]
LIGI T, OOPKAUP K, TRUU M, et al. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing[J]. Ecol Eng, 2014,72:56-66. DOI: 10.1016/j.ecoleng.2013.09.007.
[27]
JANSSEN P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J]. Appl Environ Microbiol, 2006,72(3):1719-1728. DOI: 10.1128/aem.72.3.1719-1728.2006.
[28]
杜紫贤, 曾宏达, 黄向华, 等. 城市沿江芦苇湿地土壤呼吸动态及影响因子分析[J]. 亚热带资源与环境学报, 2010,5(3):49-55.
DU Z X, ZENG H D, HUANG X H, et al. Soil respiration and controlling factors at Phragmites communis community in riverside wetlands[J]. J Subtrop Resour Environ, 2010,5(3):49-55. DOI: 10.19687/j.cnki.1673-7105.2010.03.007.
[29]
杨凯, 朱教君, 张金鑫, 等. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2009,29(10):5500-5507.
YANG K, ZHU J J, ZHANG J X, et al. Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China[J]. Acta Ecol Sin, 2009,29(10):5500-5507. DOI: 10.3321/j.issn:1000-0933.2009.10.039.
[30]
李吉平, 徐勇峰, 陈子鹏, 等. 洪泽湖地区麦稻两熟农田和杨树林地氮磷径流流失特征研究[J]. 南京林业大学学报(自然科学版), 2019,43(1):98-104.
LI J P, XU Y F, CHEN Z P, et al. Characteristics of nitrogen and phosphorus runoff of wheat-rice double cropping field and poplar forest land in intersection area of Hung-tse Lake[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(1):98-104. DOI: 10.3969/j.issn.1000-2006.201806022.
[31]
王国兵, 王瑞, 徐瑾, 等. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019,43(2):1-6.
WANG G B, WANG R, XU J, et al. Effects of biochar application on microbial biomass C, N, P and stoichiometry characteristics of poplar plantation soil[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(2):1-6.DOI: 10.3969/j.issn.1000-2006.201803022.
[32]
何冬梅, 王琳飞, 祝亚云, 等. 江苏滨海湿地土壤可溶性有机碳的分布和季节动态[J]. 江苏林业科技, 2020,47(3):11-15.
HE D M, WANG L F, ZHU Y Y, et al. Distribution and seasonal dynamics of soil dissolved organic carbon in coastal wetlands of Jiangsu Province[J]. Journal of Jiangsu Forestry Science & Technology, 2020,47(3):11-15.DOI: 10.3969/j.issn.1001-7380.2020.03.003.
[33]
李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究[J]. 生态环境学报, 2013,22(9):1625-1632.
LI N, HAN X Z, YOU M Y, et al. Research review on soil aggregates and microbes[J]. Ecol Environ Sci, 2013,22(9):1625-1632. DOI: 10.16258/j.cnki.1674-5906.2013.09.019.
[34]
LI F, CHEN L, ZHANG J B, et al. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations[J]. Front Microbiol, 2017,8:187. DOI: 10.3389/fmicb.2017.00187.
Fertilization has a large impact on the soil microbial communities, which play pivotal roles in soil biogeochemical cycling and ecological processes. While the effects of changes in nutrient availability due to fertilization on the soil microbial communities have received considerable attention, specific microbial taxa strongly influenced by long-term organic and inorganic fertilization, their potential effects and associations with soil nutrients remain unclear. Here, we use deep 16S amplicon sequencing to investigate bacterial community characteristics in a fluvo-aquic soil treated for 24 years with inorganic fertilizers and organics (manure and straw)-inorganic fertilizers, and uncover potential links between soil nutrient parameters and specific bacterial taxa. Our results showed that combined organic-inorganic fertilization increased soil organic carbon (SOC) and total nitrogen (TN) contents and altered bacterial community composition, while inorganic fertilization had little impact on soil nutrients and bacterial community composition. SOC and TN emerged as the major determinants of community composition. The abundances of specific taxa, especially Arenimonas, Gemmatimonas, and an unclassified member of Xanthomonadaceae, were substantially increased by organic-inorganic amendments rather than inorganic amendments only. A co-occurrence based network analysis demonstrated that SOC and TN had strong positive associations with some taxa (Gemmatimonas and the members of Acidobacteria subgroup 6, Myxococcales, Betaproteobacteria, and Bacteroidetes), and Gemmatimonas, Flavobacterium, and an unclassified member of Verrucomicrobia were identified as the keystone taxa. These specific taxa identified above are implicated in the decomposition of complex organic matters and soil carbon, nitrogen, and phosphorus transformations. The present work strengthens our current understanding of the soil microbial community structure and functions under long-term fertilization management and provides certain theoretical support for selection of rational fertilization strategies.
[35]
迟琦, 吴迪, 王月, 等. 小兴安岭森林湿地不同过渡带土壤微生物群落结构研究[J]. 森林工程, 2018,34(3):6-13.
CHI Q, WU D, WANG Y, et al. Research on soil microbial community structure of different forest-wetland ecotones in Xiaoxing’an Mountain[J]. Forest Engineering, 2018,34(3):6-13. DOI: 10.16270/j.cnki.slgc.2018.03.019.
[36]
李金前, 王吉, 刘亚军, 等. 水位高程变化对湿地土壤微生物代谢功能的影响研究:以蚌湖为例[J]. 长江流域资源与环境, 2017,26(5):730-737.
LI J Q, WANG J, LIU Y J, et al. Effect of water level elevation on soil microbial metabolic function of wetlands:a case study of Bang Lake[J]. Resour Environ Yangtze Basin, 2017,26(5):730-737. DOI: 10.11870/cjlyzyyhj201705010.
[37]
MA L, GUO C, X, et al. Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China[J]. Biogeosciences, 2015,12(8):2585-2596. DOI: 10.5194/bg-12-2585-2015.

基金

国家自然科学基金项目(41375149)
江苏省“青蓝工程”资助项目(201615)
江苏高校优势学科建设工程资助项目(PAPD)
淮阴工学院青年科研基金项目(HGC1205)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/