[1] |
ENGEL P, MORAN N A. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiol Rev, 2013,37(5):699-735. DOI: 10.1111/1574-6976.12025.
|
[2] |
MORAN N A, PLAGUE G R, SANDSTROM J P, et al. A genomic perspective on nutrient provisioning by bacterial symbionts of insects[J]. Proc Natl Acad Sci USA, 2003,100(S 2):14543-14548. DOI: 10.1073/pnas.2135345100.
|
[3] |
KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016,165(6):1332-1345. DOI: 10.1016/j.cell.2016.05.041.
|
[4] |
SHIN S C, KIM S H, YOU H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling[J]. Science, 2011,334(6056):670-674. DOI: 10.1126/science.1212782.
|
[5] |
KIKUCHI Y, HAYATSU M, HOSOKAWA T, et al. Symbiont-mediated insecticide resistance[J]. Proc Natl Acad Sci USA, 2012,109(22):8618-8622. DOI: 10.1073/pnas.1200231109.
|
[6] |
BUCHON N, BRODERICK N A, CHAKRABARTI S, et al. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila[J]. Genes Dev, 2009,23(19):2333-2344. DOI: 10.1101/gad.1827009.
|
[7] |
DILLON R J, VENNARD C T, CHARNLEY A K. A Note:Gut bacteria produce components of a locust cohesion pheromone[J]. J Appl Microbiol, 2002,92(4):759-763. DOI: 10.1046/j.1365-2672.2002.01581.x.
|
[8] |
SHARON G, SEGAL D, RINGO J M, et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster[J]. Proc Natl Acad Sci USA, 2010,107(46):20051-20056. DOI: 10.1073/pnas.1009906107.
|
[9] |
BERASATEGUI A, SALEM H, PAETZ C, et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness[J]. Mol Ecol, 2017,26(15):4099-4110. DOI: 10.1111/mec.14186.
|
[10] |
刘群, 常虹, 陈娟, 等. 分月扇舟蛾与仁扇舟蛾的形态学和生物学区别及其进化关系[J]. 林业科学, 2014,50(1):97-102.
|
|
LIU Q, CHANG H, CHEN J, et al. Identification of Clostera anastomosis and C. restitura (Lepidoptera: Notodontidae) by morphological and biological characters and their evolutionary relationship[J]. Sci Silvae Sin, 2014,50(1):97-102. DOI: 10.11707/j.1001-7488.20140115.
|
[11] |
郑茂灿, 吴小芹, 钱范俊, 等. 上海地区分月扇舟蛾生物学特性和发生规律[J]. 南京林业大学学报(自然科学版), 2006,30(3):117-120.
|
|
ZHENG M C, WU X Q, QIAN F J, et al. Biological character and epidemic law of Clostera anastomosis in Shanghai[J]. J Nanjing For Univ (Nat Sci Ed), 2006,30(3):117-120. DOI: 10.3969/j.issn.1000-2006.2006.03.027.
|
[12] |
GU T Z, ZHANG C C, CHEN C Y, et al. Effects of exogenous methyl jasmonate-induced resistance in Populus×euramericana ‘Nanlin 895’ on the performance and metabolic enzyme activities of Clostera anachoreta[J]. Arthropod-Plant Interactions, 2018,12(2):247-255. DOI: 10.1007/s11829-017-9564-y.
|
[13] |
GU T Z, HUANG K R, TIAN S, et al. Antennal transcriptome analysis and expression profiles of odorant binding proteins in Clostera restitura[J]. Compara Biochem and Physic: Part D, 2019,29:211-220. DOI: 10.1016/j.cbd.2018.12.002.
|
[14] |
文竹, 姜义仁, 黄伶, 等. 栎黄掌舟蛾幼虫肠道好氧菌群分析及产纤维素酶菌的筛选[J]. 环境昆虫学报, 2015,37(6):1203-1212.
|
|
WEN Z, JIANG Y R, HUANG L, et al. Analysis of aerobic bacterial population and screening of the cellulose-producing bacteria from larval intestine of Phalera assimilis[J]. J Environ Entomol, 2015,37(6):1203-1212. DOI: 10.3969/j.issn.1674-0858.2015.06.12.
|
[15] |
PANIAGUA VOIROL L R, FRAGO E, KALTENPOTH M, et al. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host[J]. Front Microbiol, 2018,9:556-570. DOI: 10.3389/fmicb.2018.00556.
|
[16] |
SNYMAN M, GUPTA A K, BEZUIDENHOUT C C, et al. Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae)[J]. World J Microbiol Biotechnol, 2016,32(7):115-124. DOI: 10.1007/s11274-016-2066-8.
|
[17] |
BRODERICK N A, RAffA K F, GOODMAN R M, et al. Census of the bacterial community of the Gypsy moth larval midgut by using culturing and culture-independent methods[J]. Appl Environ Microbiol, 2004,70(1):293-300. DOI: 10.1128/aem.70.1.293-300.2004.
|
[18] |
BOECKLER G A, TOWNS M, UNSICKER S B, et al. Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera[J]. J Chem Ecol, 2014,40(2):150-158. DOI: 10.1007/s10886-014-0383-7.
|
[19] |
BHAT T K, SINGH B, SHARMA O P. Microbial degradation of tannins: a current perspective[J]. Biodegradation, 1998,9(5):343-357. DOI: 10.1023/a:1008397506963.
|