南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5): 71-83.doi: 10.12302/j.issn.1000-2006.201912022
收稿日期:
2019-12-16
接受日期:
2020-04-08
出版日期:
2021-09-30
发布日期:
2021-09-30
通讯作者:
满秀玲
基金资助:
ZHU Jiaqi(), MAN Xiuling*(), WANG Fei
Received:
2019-12-16
Accepted:
2020-04-08
Online:
2021-09-30
Published:
2021-09-30
Contact:
MAN Xiuling
摘要:
【目的】 大兴安岭是我国唯一的寒温带地区,森林资源丰富,但大兴安岭地区土层较薄,且存在永冻层,对于该地区土壤结构、养分循环存在巨大影响。探讨该地区土壤团聚体的结构组成和有机碳、氮的含量与分布规律,了解不同粒径团聚体对土壤有机碳、氮的固存与保护作用,为深入研究我国寒温带地区土壤结构与碳氮循环提供依据。【方法】 在黑龙江大兴安岭地区,以我国寒温带4种主要森林类型(兴安落叶松林、樟子松林、山杨林、白桦林)为研究对象,测定生长季林地0~5、≥5~10和≥10~20 cm土层粒径<0.053、≥0.053~0.250、≥0.250~0.500、≥0.500~1.000和>1.000 mm水稳性团聚体的分配比例并结合有机碳、氮含量,分析各粒径团聚体有机碳、氮对土壤总有机碳、全氮的贡献率,进行多因素方差分析。【结果】 ①樟子松林、山杨林和白桦林0~10 cm土层和兴安落叶松林0~5 cm土层以大团聚体(粒径≥0.250 mm)为主,占50%以上,随着土层的加深,大团聚体质量分数下降,各个林型生长季中期大团聚体质量分数均高于初期和末期,且阔叶林大团聚体质量分数高于针叶林。②团聚体有机碳含量与全氮含量呈现出大致相同的变化规律,4种森林类型以粒径≥0.500 mm团聚体有机碳、全氮含量较高,大致表现为随粒径的减小含量递减。阔叶林团聚体有机碳、全氮含量比针叶林的高,且阔叶林的在生长季中后期含量相对较高,而兴安落叶松林的呈波动式变化趋势,樟子松林的则以生长季前期含量较高。③4种森林类型0~10 cm土层,团聚体有机碳、全氮以粒径≥0.500 mm团聚体贡献率较高,最高达到90%;随着土层的加深,≥0.250 mm的大团聚体的贡献率下降,≥10~20 cm土层以粒径<0.250 mm的微团聚体贡献率最高。④森林类型、土层和月份对土壤团聚体组成和团聚体有机碳、全氮含量均具有显著影响,且粒径≥0.500 mm团聚体有机碳、全氮含量与对应粒径团聚体含量呈正相关,粒径>1.000 mm团聚体有机碳、全氮含量与该粒径团聚体含量呈极显著正相关。【结论】 森林类型、土层和月份的变化均对土壤团聚体组成及其结合的有机碳、全氮含量产生影响,阔叶林大团聚体含量以及团聚体结合的有机碳氮含量均高于针叶林。4种森林类型以生长季中期大团聚体含量更高,阔叶林团聚体有机碳、全氮含量在生长季中后期较高,针叶林则在生长季内呈波动式变化趋势。随着土层的加深,大团聚体含量、团聚体有机碳、全氮含量以及大团聚体贡献率均逐渐降低。本研究区粒径≥0.500~1.000 m和>1.000 mm团聚体是有机碳和全氮的主要载体。由此可见,寒温带4种森林类型团聚体组成及其结合的有机碳、全氮特征各异,在一定程度上反映了寒温带主要森林类型下的土壤结构与碳氮固存特征。
中图分类号:
朱家琪,满秀玲,王飞. 寒温带4种森林类型土壤团聚体有机碳氮特征[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 71-83.
ZHU Jiaqi, MAN Xiuling, WANG Fei. Organic carbon and nitrogen characteristics of soil aggregates in four forest types in frigid temperate zone[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(5): 71-83.DOI: 10.12302/j.issn.1000-2006.201912022.
表1
4种林型基本情况"
林型 forest type | 树种组成 tree species composition | 海拔/m altitude | 平均胸径/ cm mean DBH | 平均树高/m mean tree height | 郁闭度 canopy density |
---|---|---|---|---|---|
兴安落叶松(L) Larix gmelinii | 9L1Z | 305 | 14.1 | 19.2 | 0.8 |
樟子松(Z) Pinus sylvestris var. mongolica | 10Z | 290 | 27.3 | 21.6 | 0.6 |
山杨(S) Populus davidiana | 9S1B | 385 | 16.2 | 16.5 | 0.7 |
白桦(B) Betula platyphylla | 9B1S | 378 | 11.5 | 13.1 | 0.9 |
表2
4种森林类型各粒径土壤团聚体质量分数"
土层/cm soil layer | 月份 month | 林型 forest type | 各粒径团聚体质量分数/% concentration of different particle sizes aggregate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
>1.000 mm | ≥0.500~ 1.000 mm | ≥0.250~ 0.500 mm | ≥0.053~ 0.250 mm | <0.053 mm | ||||||||
0~5 | 5 | L | 55.40±2.43 Ab | 15.91±1.80 Bb | 7.57±0.85 Da | 8.49±0.36 Db | 12.63±2.25 Cc | |||||
Z | 52.74±1.45 Aa | 17.66±1.24 Bc | 7.77±0.50 Da | 8.13±1.44 De | 13.68±1.00 Ca | |||||||
S | 58.71±1.79 Ac | 12.00±0.85 Bc | 7.05±0.78 Cab | 9.12±0.56 Cab | 13.11±1.89 Ba | |||||||
B | 54.60±6.43 Ac | 14.84±1.57 Bc | 8.12±1.65 Ca | 11.29±1.12 BCb | 11.14±2.94 BCa | |||||||
6 | L | 25.13±2.79 Ad | 25.33±4.65 Aa | 8.93±1.16 Ca | 16.14±0.86 Ba | 24.47±2.19 Aa | ||||||
Z | 52.58±1.44 Aa | 26.91±0.94 Ba | 7.97±0.63 Ca | 9.89±1.34 Cde | 2.66±1.36 Dd | |||||||
S | 74.94±1.26 Aa | 12.82±1.51 Bc | 2.14±0.17 Dc | 5.75±1.80 Cd | 4.36±1.13 CDb | |||||||
B | 67.95±2.02 Ab | 11.44±1.17 Bd | 3.47±0.34 Dc | 9.56±0.76 BCbc | 7.57±0.94 Cb | |||||||
7 | L | 43.81±2.65 Ac | 13.58±0.16 Cb | 7.49±0.44 Da | 15.68±1.49 Ca | 19.45±0.81 Bb | ||||||
Z | 53.50±1.35 Aa | 22.79±2.11 Bb | 5.05±0.66 Db | 11.73±0.52 Ccd | 6.93±0.48 Dbc | |||||||
S | 65.85±3.21Ab | 18.93±2.28 Bab | 5.42±0.62 CDc | 6.74±1.06 Ccd | 3.05±0.49 Db | |||||||
B | 51.74±1.59 Ac | 26.21±1.10 Ba | 8.28±1.20 Da | 10.69±0.28 Cb | 3.08±1.19 Ec | |||||||
8 | L | 68.64±0.52 Aa | 15.84±1.48 Bb | 3.90±0.30 Db | 5.62±1.14 Cc | 6.00±0.25 Cd | ||||||
Z | 56.01±3.93 Aa | 16.82±0.85 Bc | 7.61±1.44 Ca | 14.30±1.17 Bb | 5.26±1.10 Cc | |||||||
S | 76.43±2.63 Aa | 13.40±0.81 Bc | 5.30±2.14 Cb | 3.90±1.01 CDe | 0.97±0.73 Cc | |||||||
B | 74.53±2.15 Aa | 14.71±0.92 Bc | 5.39±0.78 Cbc | 4.69±0.77 Cd | 0.68±0.29 Dc | |||||||
9 | L | 69.42±1.14 Aa | 11.76±1.45 Bb | 4.12±0.32 Eb | 8.53±0.37 Cb | 6.17±0.07 Db | ||||||
Z | 53.99±0.93 Aa | 17.36±1.69 Bc | 6.39±0.50 Eab | 13.58±0.44 Cbc | 8.68±1.72 Db | |||||||
S | 62.39±1.14 Abc | 20.89±0.88 Ba | 7.78±0.47 Ca | 8.11±0.09 Cbc | 0.83±0.12 Dc | |||||||
B | 63.54±4.03 Ab | 18.04±2.55 Bb | 7.40±1.73 Cb | 8.01±1.66 Cc | 3.02±0.33 Dc | |||||||
10 | L | 52.64±2.81 Ab | 23.50±2.47 Ba | 8.12±1.10 Ca | 9.61±1.31 Cb | 6.46±1.38 Cd | ||||||
Z | 48.99±0.76 Ab | 16.48±0.84 Cb | 6.94±1.18 Da | 19.72±1.99 Ba | 7.87±1.15 Db | |||||||
S | 62.70±1.91 Ab | 17.93±1.41 Bb | 7.87±0.49 Da | 10.64±0.81 Ca | 0.87±0.13 Ec | |||||||
B | 43.53±0.46 Ad | 23.98±0.62 Ba | 8.14±0.11 Da | 17.59±1.85 Ca | 6.76±1.02 Db | |||||||
≥5~10 | 5 | L | 24.48±0.74 Bb | 19.01±1.75 Ca | 12.63±1.85 Ea | 15.54±1.11 Dd | 28.34±1.00 Ab | |||||
Z | 22.25±1.16 Bc | 26.10±1.64 ABa | 13.63±2.29 Ca | 11.52±2.02 Cd | 26.51±3.36 Aa | |||||||
S | 42.25±2.11 Ac | 15.77±0.76 Bc | 11.76±0.52 Cab | 14.80±1.68 Bc | 15.42±0.72 Ba | |||||||
B | 30.21±3.34 Ad | 19.39±1.74 Cb | 11.21±0.66 Db | 14.30±3.02 Dd | 24.89±2.64 Ba | |||||||
6 | L | 5.55±0.85 Dd | 11.04±1.13 Cb | 12.00±2.31 Ca | 29.86±2.92 Bc | 41.57±3.26 Aa | ||||||
Z | 17.43±0.11 Cd | 27.03±3.08 Ba | 13.88±1.10 CDa | 31.61±3.41 Aa | 10.05±1.48 Dc | |||||||
S | 35.94±4.06 Ad | 23.11±2.27 Bb | 11.21±0.92 Dab | 18.60±0.67 Cb | 11.14±2.37 Db | |||||||
B | 34.88±1.84 Ac | 15.12±2.61 Cc | 8.21±0.87 Dcd | 26.07±1.93 Ba | 15.72±3.09 Cbc | |||||||
7 | L | 15.93±1.25 Cc | 10.29±1.82 Db | 7.44±0.94 Db | 26.25±1.05 Bc | 39.09±2.58 Aa | ||||||
Z | 33.44±1.48 Ab | 21.61±1.00 Bb | 10.25±1.94 Db | 20.08±0.76 Bc | 14.62±1.81 Cb | |||||||
S | 28.04±2.16 Ae | 23.03±1.43 Bb | 13.53±2.17 Ca | 24.48±0.91 Ba | 10.92±1.72 Cb | |||||||
B | 29.87±0.77 Ad | 26.10±0.91 Ba | 13.16±0.74 Da | 17.05±0.34 Ccd | 13.82±1.03 Dc | |||||||
8 | L | 32.62±4.47 Aa | 11.16±2.32 Cb | 5.85±1.20 Cb | 27.43±5.11 ABc | 22.93±0.48 Bc | ||||||
Z | 35.40±1.80 Ab | 23.55±0.84 Bc | 11.85±1.30 Cab | 21.89±0.79 Bbc | 7.32±0.67 Dc | |||||||
S | 44.10±3.24 Abc | 27.02±3.25 Ba | 12.43±1.93 Cab | 12.76±1.45 Cc | 3.68±1.05 Dc | |||||||
B | 59.41±3.30 Aa | 18.60±0.75 Bbc | 6.83±1.00 CDd | 10.14±1.94 Ce | 5.02±1.01 De | |||||||
9 | L | 5.75±0.30 Cd | 6.37±0.97 Cc | 7.95±0.60 Cb | 53.59±2.32 Aa | 26.35±3.44 Bbc | ||||||
Z | 40.79±4.03 Aa | 10.92±1.02 Dd | 5.95±0.80 Ec | 24.80±2.15 Bb | 17.53±2.04 Cb | |||||||
S | 50.55±1.67 Aa | 20.99±2.25 Bb | 10.40±0.59 Db | 13.41±0.78 Cc | 4.65±1.06 Ec | |||||||
B | 41.56±0.85 Ab | 18.54±2.15 Bbc | 11.61±0.94 Cab | 18.60±0.73 Bc | 9.69±0.66 Cd | |||||||
10 | L | 25.31±1.04 Bb | 8.31±1.19 Cbc | 4.39±0.28 Db | 35.23±0.79 Ab | 26.76±1.59 Bbc | ||||||
Z | 43.09±2.95 Aa | 17.93±1.49 Cc | 9.34±0.82 Db | 22.03±2.83 Bbc | 7.60±0.60 Dc | |||||||
S | 48.82±3.61 Aab | 16.95±1.24 Bc | 11.54±1.54 Cab | 17.49±2.08 Bb | 5.20±0.84 Dc | |||||||
B | 32.61±3.00 Acd | 18.66±2.65 Bbc | 8.75±1.07 Cc | 22.10±1.11 Bb | 17.89±2.85 Bb | |||||||
≥10~20 | 5 | L | 5.75±0.38 Da | 14.36±1.02 Ba | 10.86±0.60 Cb | 13.03±0.94 Be | 56.00±1.09 Aa | |||||
Z | 18.64±1.37 Cb | 27.91±1.14 Aa | 14.85±1.05 Da | 19.33±3.66 BCc | 22.48±1.06 Bb | |||||||
S | 10.58±1.23 Dc | 19.29±0.67 Ba | 15.63±1.37 Ca | 21.41±0.72 Bd | 33.09±2.35 Aa | |||||||
B | 10.71±1.82 Db | 18.19±3.26 BCa | 13.82±1.48 CDb | 21.52±2.68 Bb | 35.75±2.38 Aa | |||||||
6 | L | 2.10±0.50 Db | 15.42±2.69 Ba | 18.80±3.08 Ba | 53.44±2.07 Ab | 10.23±3.45 Ce | ||||||
Z | 5.43±1.03 Cd | 16.11±1.63 Bb | 15.17±2.39 Ba | 44.20±3.62 Ab | 19.08±2.40 Bbc | |||||||
S | 5.78±0.50 Cd | 16.17±1.39 Bb | 15.29±2.34 Ba | 44.51±3.83 Ab | 18.58±0.37 Bc | |||||||
B | 7.32±1.23 Bc | 10.03±1.29 Bb | 7.26±0.55 Bc | 37.76±1.91 Aa | 37.63±2.36 Aa | |||||||
7 | L | - | 6.29±1.65 Cb | 5.74±1.06 Cc | 38.07±1.92 Bd | 49.90±4.05 Ab | ||||||
Z | 6.19±0.84 Dd | 6.05±0.48 Dd | 8.06±0.32 Cc | 41.49±0.72 Ab | 38.22±1.34 Ba | |||||||
S | 6.61±0.60 Dd | 11.34±1.23 Cc | 15.29±0.49 Ba | 53.69±2.44 Aa | 13.07±1.00 BCde | |||||||
B | 6.45±0.21 Ec | 18.75±0.96 Ca | 11.22±1.75 Db | 35.43±1.35 Aa | 27.83±2.10 Bb | |||||||
8 | L | - | 5.13±0.74 Cb | 5.53±0.86 Cc | 59.60±2.25 Aa | 29.74±2.47 Bd | ||||||
Z | 8.18±2.27 Bcd | 9.62±1.75 Bc | 12.08±1.55 Bb | 58.07±2.59 Aa | 12.05±2.45 Bd | |||||||
S | 13.53±1.67 Bb | 16.36±1.84 Bb | 17.24±0.40 Aa | 45.01±1.83 Ab | 7.86±3.07 Ce | |||||||
B | 10.18±1.65 Db | 20.97±1.10 Ba | 15.22±1.35 Ca | 40.54± 1.74 Aa | 13.09±0.58 Cd | |||||||
9 | L | - | 4.05±0.61 Cb | 4.16±0.71 Cc | 54.98± 1.62 Aab | 36.80±0.53 Bc | ||||||
Z | 9.97±0.55 Cc | 4.40±0.82 Dd | 7.73±0.34 Cc | 55.32±1.73 Aa | 22.58±2.64 Bb | |||||||
S | 22.12±0.51 Ba | 15.51±0.26 Cb | 11.33±0.73 Eb | 36.97±0.76 Ac | 14.08±0.49 Dcd | |||||||
B | 21.45±1.57 Ba | 10.83±0.98 Cb | 7.83±0.98 Dc | 38.79±1.12 Aa | 21.10±1.24 Bc | |||||||
10 | L | - | 6.12±1.21 Bb | 4.58±0.48 Bc | 45.96±5.83 Ac | 47.53±4.39 Ab | ||||||
Z | 21.56±2.34 Ba | 13.11±3.18 CDb | 10.31±1.56 Dbc | 39.39±2.45 Ab | 15.62±2.98 Ccd | |||||||
S | 11.12±1.15 Cc | 10.70±0.36 Cc | 10.96±1.76 Cb | 45.38±2.00 Ab | 25.96±5.99 Bb | |||||||
B | 10.14±0.67 Db | 12.82±1.02 Cb | 7.83±0.63 Ec | 38.68±1.12 Aa | 30.54±0.76 Bb |
表3
森林类型、土层、月份对团聚体组成及团聚体有机碳、全氮含量的多因素方差分析"
土壤团聚体粒径/mm soil aggregate particle size | 因素 factor | 森林类型 forest type | 土层 soil layer | 月份 month | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | F | P | F | P | F | ||||||||
>1.000 | A | 0.000 | 11.758 | 0.000 | 201.326 | 0.006 | 3.672 | ||||||
C | 0.000 | 21.606 | 0.000 | 133.783 | 0.121 | 1.829 | |||||||
N | 0.000 | 23.428 | 0.000 | 99.616 | 0.212 | 1.471 | |||||||
≥0.500~1.000 | A | 0.006 | 4.321 | 0.001 | 7.949 | 0.222 | 1.443 | ||||||
C | 0.000 | 8.111 | 0.000 | 157.853 | 0.000 | 6.977 | |||||||
N | 0.000 | 14.889 | 0.000 | 132.761 | 0.014 | 1.921 | |||||||
≥0.250~0.500 | A | 0.025 | 3.354 | 0.000 | 17.509 | 0.033 | 2.609 | ||||||
C | 0.000 | 7.816 | 0.000 | 150.235 | 0.000 | 6.557 | |||||||
N | 0.000 | 10.522 | 0.000 | 103.107 | 0.004 | 3.890 | |||||||
≥0.053~0.250 | A | 0.015 | 3.767 | 0.000 | 95.765 | 0.000 | 5.450 | ||||||
C | 0.000 | 15.911 | 0.000 | 182.350 | 0.000 | 6.452 | |||||||
N | 0.000 | 18.179 | 0.000 | 119.319 | 0.007 | 3.531 | |||||||
<0.053 | A | 0.000 | 18.731 | 0.000 | 44.419 | 0.000 | 6.064 | ||||||
C | 0.000 | 21.709 | 0.000 | 88.283 | 0.125 | 1.808 | |||||||
N | 0.000 | 25.262 | 0.000 | 77.911 | 0.105 | 1.911 |
表4
各林型土壤团聚体有机碳、氮全含量与对应粒径团聚体比例的相关系数"
土壤团聚体粒径/mm soil aggregate particle size | 兴安落叶松 Larix gmelinii | 樟子松 Pinus sylvestris var. mongolica | 山杨 Populus davidiana | 白桦 Betula platyphylla | |||||
---|---|---|---|---|---|---|---|---|---|
有机碳含量 organic carbon content | 全氮含量 total nitrogen content | 有机碳含量 organic carbon content | 全氮含量 total nitrogen content | 有机碳含量 organic carbon content | 全氮含量 total nitrogen content | 有机碳含量 organic carbon content | 全氮含量 total nitrogen content | ||
>1.000 | 0.841** | 0.794** | 0.810** | 0.748** | 0.877** | 0.833** | 0.839** | 0.836** | |
≥0.500~1.000 | 0.520* | 0.630** | 0.445 | 0.508* | 0.032 | 0.030 | 0.392 | 0.374 | |
≥0.250~0.500 | -0.236 | -0.168 | -0.487* | -0.406 | -0.063 | -0.143 | -0.201 | -0.168 | |
≥0.053~0.250 | -0.717** | -0.735** | -0.771** | -0.735** | -0.756** | -0.734** | -0.762** | -0.771** | |
<0.053 | -0.781** | -0.743** | -0.599** | -0.596** | -0.591** | -0.556** | -0.716** | -0.708** |
[1] | 刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 2011, 19(2):447-455. |
LIU Z L, YU W T. Advance in the study of organic carbon in soil aggregates[J]. Chin J Eco-Agric, 2011, 19(2):447-455. DOI: 10.3724/SP.J.1011.00447.
doi: 10.3724/SP.J.1011.00447 |
|
[2] | 魏朝富, 谢德体, 李保国. 土壤有机无机复合体的研究进展[J]. 地球科学进展, 2003, 18(2):221-227. |
WEI C F, XIE D T, LI B G. Progress in research on soil organo-mineral complexes[J]. Adv Earth Scie, 2003, 18(2):221-227. DOI: 11867/j.issn.1001-8166.2003.02.0221.
doi: 11867/j.issn.1001-8166.2003.02.0221 |
|
[3] |
PULLEMAN M M, MARINISSEN J C Y. Physical protection of mineralizable C in aggregate from long-term pasture and arable soil[J]. Geoderma, 2004, 120(3/4):273-282. DOI: 10.1016/j.geoderma.2003.09.009.
doi: 10.1016/j.geoderma.2003.09.009 |
[4] |
SIX J, ELLIOTT E, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol Boichem, 2000, 32(14):2099-2103. DOI: 10.1016/s0038-0717(00)00179-6.
doi: 10.1016/s0038-0717(00)00179-6 |
[5] | 李鉴霖, 江长胜, 郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2014, 35(12):4695-4704. |
LI J L, JIANG C S, HAO Q J. Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain[J]. Chin J Environ Sci, 2014, 35(12):4695-4704. DOI: 10.13227/j.hjkx.2014.12.037.
doi: 10.13227/j.hjkx.2014.12.037 |
|
[6] | 武均, 蔡立群, 齐鹏, 等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报, 2015, 23(3):276-284. |
WU J, CAI L Q, QI P, et al. Distribution characteristics of organic carbon and total nitrogen in dry farm-land soil aggregates under different tillage methods in the Loess Plateau of central Gansu Province[J]. Chin J Eco-Agric, 2015, 23(3):276-284. DOI: 10.13930/j.cnki.cjea.140863.
doi: 10.13930/j.cnki.cjea.140863 |
|
[7] | 王富华, 吕盛, 黄容, 等. 缙云山4种森林植被土壤团聚体有机碳分布特征[J]. 环境科学, 2019, 40(3):1504-1511. |
WANG F H, LV S, HUANG R, et al. Distribution of organic carbon in soil aggregates from four kinds of forest vegetation on Jinyun Mountain[J]. Chin J of Environ Sci, 2019, 40(3):1504-1511. DOI: 10.13227/j.hjkx.201807097.
doi: 10.13227/j.hjkx.201807097 |
|
[8] | 李秋嘉, 薛志婧, 周正朝. 宁南山区植被恢复对土壤团聚体养分特征及微生物特性的影响[J]. 应用生态学报, 2019, 30(1):137-145. |
LI Q J, XUE Z J, ZHOU Z C. Effects of vegetation restoration on nutrient and microbial properties of soil aggregates with different particle sizes in the loess hilly regions of Ningxia, northwest China[J]. Chin J Appl Ecol, 2019 30(1):137-145. DOI: 10.13287/j.1001-9332.201901.022.
doi: 10.13287/j.1001-9332.201901.022 |
|
[9] | 王小红, 杨智杰, 刘小飞, 等. 天然林转换成人工林对土壤团聚体稳定性及有机碳分布的影响[J]. 水土保持学报, 2014, 28(6):177-182,189. |
WANG X H, YANG Z J, LIU X F, et al. Effects of natural forest converted to plantations on soil organic carbon distribution and stability of aggregates in middle-subtropics of China[J]. J Soil Water Conserv, 2014, 28(6):177-182,189. DOI: 10.13870/j.cnki.stbcxb.2014.06.033.
doi: 10.13870/j.cnki.stbcxb.2014.06.033 |
|
[10] | 李平, 王国兵, 郑阿宝, 等. 苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J]. 南京林业大学学报(自然科学版), 2012, 36(4):79-83. |
LI P, WANG G B, ZHENG A B, et al. The variations of soil labile organic carbon in four plantations in south of Jiangsu Province[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(4):79-83. DOI: 10.3969/j.issn.1000-2006.2012.04.016.
doi: 10.3969/j.issn.1000-2006.2012.04.016 |
|
[11] | 聂富育, 杨万勤, 杨开军, 等. 四川盆地西缘4种人工林土壤团聚体及有机碳特征[J]. 应用与环境生物学报, 2017, 23(3):542-547. |
NIE F Y, YANG W Q, YANG K J, et al. Soil aggregates and organic carbon in four plantations on the western edge of the Sichuan basin[J]. Chin J Appl and Environ Biol, 2017, 23(3):542-547. DOI: 10.3724/SP.J.1145.2016.07003.
doi: 10.3724/SP.J.1145.2016.07003 |
|
[12] | 孙颖, 徐嘉晖, 高菲, 等. 长白山森林土壤有机碳及其在团聚体密度组分中的分布[J]. 森林工程, 2018, 34(2):1-5. |
SUN Y, XU J H, GAO F, et al. Organic carbon content and its distribution in aggregate-density fractions of forest soils in Changbai Mountain[J]. For Eng, 2018, 34(2):1-5. DOI: 10.16270/j.cnki.slgc.2018.02.013.
doi: 10.16270/j.cnki.slgc.2018.02.013 |
|
[13] | 赵友朋, 孟苗婧, 张金池, 等. 凤阳山主要林分类型土壤团聚体及其稳定性研究[J]. 南京林业大学学报(自然科学版), 2018, 42(5):84-90. |
ZHAO Y P, MENG M J, ZHANG J C, et al. Study on the composition and stability of soil aggregates of the main forest stands in Fengyang Mountain, Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(5):84-90. DOI: 10.3969/j.issn.1000-2006.201801013.
doi: 10.3969/j.issn.1000-2006.201801013 |
|
[14] | 盛后财, 蔡体久, 李奕, 等. 大兴安岭北部兴安落叶松林降雨截留再分配特征[J]. 水土保持学报, 2014, 27(6):101-105. |
SHENG H C, CAI T J, LI Y, et al. Rainfall redistribution in larix gmelinii forest on northern of Daxing’an Mountains, northeast of China[J]. J Soil Water Conserv, 2014, 27(6):101-105. DOI: 10.13870/j.cnki.stbcxb.2014.06.019.
doi: 10.13870/j.cnki.stbcxb.2014.06.019 |
|
[15] | 陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J]. 中国农业科学, 2013, 46(5):950-960. |
CHEN X F, LI Z P, LIU M, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China[J]. Sci Agric Sin, 2013, 46(5):950-960. DOI: 10.3864/j.issn.0578-1752.2013.05.010.
doi: 10.3864/j.issn.0578-1752.2013.05.010 |
|
[16] | 程欢, 宫渊波, 付雨欣, 等. 四川盆地西南缘不同林分类型土壤团聚体稳定性及有机碳组分特征[J]. 水土保持学报, 2018, 32(5):109-115. |
CHENG H, GONG Y B, FU Y X, et al. Soil aggregate stability and characteristics of organic carbon components in three forests of the southwest edge of Sichuan basin[J]. J Soil and Water Conserv, 2018, 32(5):109-115. DOI: 10.13870/j.cnki.stbcxb.2018.05.018.
doi: 10.13870/j.cnki.stbcxb.2018.05.018 |
|
[17] | 字洪标, 向泽宇, 王根绪, 等. 青海不同林分土壤微生物群落结构(PLFA)[J]. 林业科学, 2017, 53(3):21-32. |
ZI H B, XIANG Z Y, WANG G X, et al. Profile of soil microbial community under different stand types in Qinghai Province[J]. Sci Silvae Sin, 2017, 53(3):21-32. DOI: 10.11707/j.1001-7488.20170303.
doi: 10.11707/j.1001-7488.20170303 |
|
[18] | 董宾芳, 石辉, 傅瓦利. 黄土丘陵区不同植被根系数量特征及离散程度[J]. 生态学杂志, 2007, 26(12):1947-1953. |
DONG B F, SHI H, FU W L. Quantitative characteristics and scattering degree of differrent vegetation root systems in hilly regions of Loess Plateau[J]. Chin J of Ecol, 2007, 26(12):1947-1953. DOI: 10.13292/j.1000-4890.2007.0352.
doi: 10.13292/j.1000-4890.2007.0352 |
|
[19] | 黄诚诚, 王迎春, 张渐飞, 等. 东北黑土典型坡耕地土壤呼吸特征的研究[J]. 中国生态农业学报, 2018, 26(1):1-7. |
HUANG C C, WANG Y C, ZHANG J F, et al. Characteristics of soil respiration on typical cropland slope in mollisol region of northeast China[J]. Chin J of Eco-Agric, 2018, 26(1):1-7. DOI: 10.13930/j.cnki.cjea.170569.
doi: 10.13930/j.cnki.cjea.170569 |
|
[20] |
LEHRSCH G A. Freeze-thaw cycles increase near-surface aggregate stability[J]. Soil Sci, 1998, 163(1):63-70. DOI: 10.1097/00010694-199801000-00009.
doi: 10.1097/00010694-199801000-00009 |
[21] | 尹宝丝, 史常青, 贺康宁, 等. 高寒区华北落叶松林生长季内地表凋落物层碳氮磷化学计量特征[J]. 应用与环境生物学报, 2019, 25(2):268-274. |
YIN B S, SHI C Q, HE K N, et al. Litter carbon, nitrogen, and phosphorus stoichiometry of Larix principis-rupprechtii in alpine region during growing season[J]. Chin J of Appl Environ Biol, 2019, 25(2):268-274. DOI: 10.19675/j.cnki.1006-687x.2018.05025.
doi: 10.19675/j.cnki.1006-687x.2018.05025 |
|
[22] | 郭菊花, 陈小云, 刘满强, 等. 不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响[J]. 土壤, 2007, 39(5):787-793. |
GUO J H, CHEN X Y, LIU M J, et al. Effects of fertilizer management practice on distribution of aggregates and content of organic carbon and nitrogen in red paddy soil[J]. Soils, 2007, 39(5):787-793. DOI: 10.13758/j.cnki.tr.2007.05.005.
doi: 10.13758/j.cnki.tr.2007.05.005 |
|
[23] | 何冬梅, 王磊, 冯育青, 等. 不同土地利用类型对土壤可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(6):15-19. |
HE D M, WANG L, FENG Y Q, et al. Effects of land use type on soil dissolved organic carbon in a land reclamation area from lake[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(6):15-19. DOI: 10.3969/j.issn.1000-2006.2016.06.003.
doi: 10.3969/j.issn.1000-2006.2016.06.003 |
|
[24] | 罗晓虹, 王子芳, 陆畅, 等. 土地利用方式对土壤团聚体稳定性和有机碳含量的影响[J]. 环境科学, 2019, 40(8):3816-3824. |
LUO X H, WANG Z F, LU C, et al. Effects of land use type on the content and stability of organic carbon in soil aggregates[J]. Chin J of Environ Sci, 2019, 40(8):3816-3824. DOI: 10.13227/j.hjkx.201812140.
doi: 10.13227/j.hjkx.201812140 |
|
[25] | 马志良, 赵文强. 植物群落向土壤有机碳输入及其对气候变暖的响应研究进展[J]. 生态学杂志, 2020, 39(1):270-281. |
MA Z L, ZHAO W Q. Research progress on input of plant community-derived soil organic carbon and its responses to climate warming[J]. Chin J of Ecol, 2020, 39(1):270-281. DOI: 10.13292/j.1000-4890.202001.009.
doi: 10.13292/j.1000-4890.202001.009 |
|
[26] | 刘艳, 查同刚, 王伊琨, 等. 北京地区栓皮栎和油松人工林土壤团聚体稳定性及有机碳特征[J]. 应用生态学报, 2013, 24(3):607-613. |
LIU Y, ZHA T G, WANG Y K, et al. Soil aggregate stability and soil organic carbon characteristics in Quercus variabilis and Pinus tabulaeformis plantations in Beijing area[J]. Chin J Appl Ecol, 2013, 24(3):607-613. DOI: 10.13287/j.1001-9332.2013.0201.
doi: 10.13287/j.1001-9332.2013.0201 |
|
[27] | 于法展, 张茜, 张忠启, 等. 庐山不同森林植被对土壤团聚体及其有机碳分布的影响[J]. 水土保持研究, 2016, 31(6):15-19. |
YU F Z, ZHANG Q, ZHANG Z Q, et al. Effects of different types of forest vegetation on the distribution of soil aggregate and its organic carbon on Lushan mountain[J]. Resear Soil Water Conserv, 2016, 31(6):15-19. DOI: 10.13869/j.cnki.rswc.2016.06.001.
doi: 10.13869/j.cnki.rswc.2016.06.001 |
|
[28] | 魏亚伟, 苏以荣, 陈香碧, 等. 人为干扰对喀斯特土壤团聚体及其有机碳稳定性的影响[J]. 应用生态学报, 2011, 22(4):971-978. |
WEI Y W, SU Y R, CHEN X B, et al. Effects of human disturbance on soil aggregates content and their organic C stability in Karst regions[J]. Chin J of Appl Ecol, 2011, 22(4):971-978. DOI: 10.13287/j.1001-9332.2011.0096.
doi: 10.13287/j.1001-9332.2011.0096 |
|
[29] | 权伟, 戎建涛, 郑方东. 乌岩岭不同林分土壤有机碳含量及分布特征[J]. 南京林业大学学报(自然科学版), 2018, 42(4):198-202. |
QUAN W, RONG J T, ZHENG F D. Distribution of soil organic carbon among different forest types in Wuyanling Nature Reserve[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):198-202. DOI: 10.3969/j.issn.1000-2006.201710031.
doi: 10.3969/j.issn.1000-2006.201710031 |
|
[30] | 苟小林, 吴福忠, 杨万勤, 等. 季节性冻融格局变化对高山森林土壤DOC淋洗的影响[J]. 水土保持学报, 2013, 27(6):205-210. |
GOU X L, WU F Z, YANG W Q, et al. Effect of changes in seasonal freeze-thaw pattern on DOC loss from leaching in the alpine forest soil[J]. J Soil Water Conserv, 2013, 27(6):205-210. DOI: 10.13870/j.cnki.stbcxb.2013.06.055.
doi: 10.13870/j.cnki.stbcxb.2013.06.055 |
|
[31] | 何冬梅, 王琳飞, 祝亚云, 等. 江苏滨海湿地土壤可溶性有机碳的分布和季节动态[J]. 江苏林业科技, 2020, 47(3):11-15. |
HE D M, WANG L F, ZHU Y Y, et al. Distribution and seasonal dynamics of soil dissolved organic carbon in coastal wetlands of Jiangsu Province[J]. J Jiangsu For Sci & Technol, 2020, 47(3):11-15. DOI: 10.3969/j.issn.1001-7380.2020.03.003.
doi: 10.3969/j.issn.1001-7380.2020.03.003 |
|
[32] | 叶钰倩, 赵家豪, 刘畅, 等. 间伐对马尾松人工林根际土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(3):193-198. |
YE Y Q, ZHAO J H, LIU C, et al. Effects of thinning on nitrogen contents and enzyme activities of rhizosphere soil in Pinus massoniana plantations[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(3):193-198. DOI: 10.3969/j.issn.1000-2006.201709026.
doi: 10.3969/j.issn.1000-2006.201709026 |
|
[33] | 高会议, 郭胜利, 刘文兆, 等. 不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响[J]. 土壤学报, 2010, 47(5):931-938. |
GAO H Y, GUO S L, LIU W Z, et al. Effect of fertilization on organic carbon distribution in various fractions of aggregates in caliche soils[J]. Acta Pedol Sin, 2010, 47(5):931-938. DOI: 10.11766/trxb200908110343.
doi: 10.11766/trxb200908110343 |
|
[34] | 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6):2642-2650. |
LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecol Sin, 2007, 27(6):2642-2650. DOI: 10.3321/j.issn:1000-0933.2007.06.059.
doi: 10.3321/j.issn:1000-0933.2007.06.059 |
|
[35] | 关松, 窦森, 胡永哲, 等. 添加玉米秸秆对黑土团聚体碳氮分布的影响[J]. 水土保持学报, 2010, 24(4):187-191. |
GUAN S, DOU S, HU Y Z, et al. Effects of application of corn stalk on distribution of C and N in black soil aggregates[J]. J Soil Water Conserv, 2010, 24(4):187-191.DOI: 10.13870/j.cnki.stbcxb.2010.04.031.
doi: 10.13870/j.cnki.stbcxb.2010.04.031 |
|
[36] | 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 2006, 26(2):364-372. |
QIU L P, ZHANG X C, ZHANG J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization[J]. Acta Ecol Sin, 2006, 26(2):364-372. DOI: 10.3321/j.issn:1000-0933.2006.02.008.
doi: 10.3321/j.issn:1000-0933.2006.02.008 |
[1] | 陈科屹, 何友均, 张立文, 才琪. 黑龙江大兴安岭国有林区发展进程评价及其政策调节响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 257-267. |
[2] | 萨如拉, 王子瑞, 滑永春, 呼日查, 刘磊, 高明龙, 于晓雨. 基于结构方程模型的大兴安岭北部天然林森林生态系统恢复能力评价研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 196-204. |
[3] | 董灵波, 唐亚如, 田栋元, 刘兆刚, 蔺雪莹. 大兴安岭中部地区不同林分类型结构复杂性评价[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 147-155. |
[4] | 袁莹, 王雪峰, 王甜, 陈飞飞, 黄川腾, 林玲, 董晓娜. 基于多图像特征的幼龄沉香全氮估测[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 19-28. |
[5] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[6] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[7] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[8] | 林杰, 张相, 姜姜, 蒯杰, 郭赓, 孟苗婧, 李肖. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194. |
[9] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[10] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
[11] | 刘珂, 李明阳, 李灵, 田康, 樊亚男, 王志刚, 瞿明凯, 黄标. 南水北调中线工程水源地土壤有机碳密度空间分异及驱动因素研究[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 35-43. |
[12] | 范之馨, 王艮梅, 张焕朝, 陈捷. 添加有机肥对滨海盐渍土壤溶解性有机碳特征的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 15-24. |
[13] | 朱珠, 徐侠, 杨赛兰, 彭凡茜, 张惠光, 蔡斌. 陆地生态系统土壤有机碳分解温度敏感性研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 33-39. |
[14] | 蔡龙涛, 邢涛, 邢艳秋, 丁建华, 黄佳鹏, 崔阳, 秦磊. 基于ICESat-GLAS数据和模糊模式识别算法识别森林类型[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 33-40. |
[15] | 王冰, 张鹏杰, 张秋良. 不同林型兴安落叶松林土壤团聚体及其有机碳特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 15-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||