南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 151-158.doi: 10.12302/j.issn.1000-2006.201912044
惠昊(), 关庆伟*(), 王亚茹, 林鑫宇, 陈斌, 王刚, 胡月, 胡敬东
收稿日期:
2019-12-23
接受日期:
2020-08-18
出版日期:
2021-07-30
发布日期:
2021-07-30
通讯作者:
关庆伟
基金资助:
HUI Hao(), GUAN Qingwei*(), WANG Yaru, LIN Xinyu, CHEN Bin, WANG Gang, HU Yue, HU Jingdong
Received:
2019-12-23
Accepted:
2020-08-18
Online:
2021-07-30
Published:
2021-07-30
Contact:
GUAN Qingwei
摘要:
【目的】探讨不同森林经营模式对土壤氮含量及相关酶活性的影响,为太湖沿岸防护林模式构建提供依据。【方法】在江苏省宜兴市周铁镇选取林龄相同的杨树纯林、杨树石楠混交林以及杨树女贞混交林3种森林经营模式,挖取1 m深的土壤剖面采集土壤样品,测定各模式下春季土壤的氮含量及相关酶活性,并分析其与土壤理化性质之间的关系。【结果】①试验地土壤全氮含量为0.17~1.35 g/kg,各森林经营模式之间土壤全氮含量存在显著差异(df=2,F=102.820,P<0.05),与杨树纯林相比,杨树女贞混交林和杨树石楠混交林土壤全氮含量分别增加了21.8%、69.7%;随着土层深度增加,2种混交林土壤全氮含量逐渐降低,各土层之间差异显著(df=3,F=108.289,P<0.05);土壤硝态氮、铵态氮含量分别为5.67~9.79、3.22~12.43 mg/kg,各森林经营模式之间差异显著(df=2,F=18.764,P<0.05;df=2,F=9.655,P<0.05),杨树女贞混交林和杨树石楠混交林土壤硝态氮含量相比杨树纯林分别降低了11.8%、27.3%,而杨树女贞混交林和杨树石楠混交林的土壤铵态氮含量在≥20~40、≥40~60和≥60~80 cm土层显著增加(df=3,F=106.230,P<0.05;df=3,F=119.794,P<0.05);随着土层深度的增加,3种经营模式土壤硝态氮和铵态氮含量逐渐降低;土壤微生物生物量氮含量为6.04~9.52 mg/kg,与杨树纯林相比,杨树女贞混交林土壤微生物生物量氮含量增加了7.5%;②土壤脲酶活性、硝酸还原酶活性和亚硝酸还原酶活性分别为3.43~9.16、0.16~1.04、0.15~0.25 mg/(g·d),与杨树纯林相比,杨树女贞混交林土壤脲酶活性在各土层均显著增加(df=2,F=19.600,P<0.05),而土壤硝酸还原酶活性在土壤表层则显著降低(df=3,F=43.637,P<0.05);杨树石楠混交林土壤脲酶活性在各土层均显著降低(df=3,F=17.825,P<0.05),而土壤硝酸还原酶活性则相反;3种森林经营模式下土壤亚硝酸还原酶活性无显著差异。表明脲酶和硝酸还原酶对经营模式的响应更敏感,可作为土壤氮变化的指标。此外,不同森林经营模式下土壤氮含量及酶活性与含水量、pH密切相关。【结论】与杨树纯林相比,杨树女贞混交林和杨树石楠混交林提高了土壤速效养分,有效吸收并削减土壤中的硝态氮含量,降低硝酸盐向土壤深层淋溶导致污染浅层地下水的风险。同时,土壤微生物量氮和酶活性变化加速了土壤氮转化和养分循环。建议在太湖沿岸防护林构建过程中,推广乔灌复层混交林。
中图分类号:
惠昊,关庆伟,王亚茹,等. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 151-158.
HUI Hao, GUAN Qingwei, WANG Yaru, LIN Xinyu, CHEN Bin, WANG Gang, HU Yue, HU Jingdong. Effects of different forest management modes on soil nitrogen content and enzyme activity[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 151-158.DOI: 10.12302/j.issn.1000-2006.201912044.
表1
试验地林分基本概况"
森林经营模式 forest management modes | 乔木层 arbor layer | 灌木层 shrub layer | 草本层 herb layer | |||||||
---|---|---|---|---|---|---|---|---|---|---|
林分密度/ (株·hm-2) stand density | 平均胸径/ cm mean DBH | 平均高/ m mean height | 郁闭度/ canopy density | 栽植密度/ (株·hm-2) planting density | 平均胸径/ cm mean DBH | 平均高/ m mean height | 平均高/ m mean height | 盖度/ % coverage | ||
杨树纯林PPP | 720 | 21.1±2.8 | 11.2±0.5 | 0.89 | - | - | - | 0.5 | 90.0 | |
杨树女贞混交林LMP | 720 | 20.3±2.3 | 10.6±0.4 | 0.85 | 37 500 | 2.6±0.6 | 2.3±0.2 | 0.2 | 18.0 | |
杨树石楠混交林PMP | 720 | 22.8±1.8 | 10.8±0.7 | 0.87 | 27 000 | 4.7±0.6 | 2.5±0.3 | 0.3 | 15.0 |
表2
试验地土壤理化性质"
森林经营模式 forest management modes | pH | 温度/ ℃ temperature | 含水率/ % water content | 土壤团聚体比例/% soil aggregate ratio | 全碳含量/ (g·kg-1) TC content | 全氮含量/ (g·kg-1) TN content | 凋落物生物量/ (t·hm-2) litter biomass | 草本生物量/ (t·hm-2) herb biomass | |
---|---|---|---|---|---|---|---|---|---|
>2 mm | 0.053~ 0.250 mm | ||||||||
杨树纯林PPP | 6.61±0.13 Aa | 26.7±0.76 Ab | 20.12±0.82 Aa | 4.6 | 27.8 | 9.65±0.91 Aa | 0.53±0.03 Aa | 0.37±0.05 Aab | 0.86±0.07 Aa |
杨树女贞混交林LMP | 6.29±0.37 Ba | 28.7±0.52 Ba | 23.68±0.51 Bb | 42.6 | 31.6 | 8.69±0.78 Ab | 0.65±0.06 Aa | 0.45±0.07 Bb | 0.40±0.08 Bc |
杨树石楠混交林PMP | 5.43±0.32 Cb | 29.6±0.81 Cc | 22.78±0.52 Cc | 6.7 | 27.9 | 15.38±1.05 Ba | 0.89±0.02 Bb | 0.58±0.04 Cc | 0.80±0.04 Aab |
表3
土壤理化性质与氮含量及相关酶活性之间的相关性"
指标 index | 脲酶 urease | 硝酸 还原酶 nitrate reductase | 亚硝酸 还原酶 nitrite reductase | 含水量 water content | pH |
---|---|---|---|---|---|
全氮 total nitrogen | -0.51** | 0.67** | 0.06 | 0.14 | -0.11* |
硝态氮 nitrate nitrogen | 0.18 | 0.24** | 0.10 | 0.03 | -0.12 |
铵态氮ammonium nitrogen | -0.23* | 0.47** | 0.54** | 0.63** | -0.73** |
微生物生物量氮 microbial biomass nitrogen | -0.20 | 0.07* | 0.13** | 0.21** | 0.12 |
[1] |
FANG X M, ZHANG X F, CHEN F S, et al. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest[J]. Soil Biology and Biochemistry, 2019, 133:119-128. DOI: 10.1016/j.soilbio.2019.03.005.
doi: 10.1016/j.soilbio.2019.03.005 |
[2] |
LEENA F, TIMO D, SEID M D, et al. Conifer proportion explains fine root biomass more than tree species diversity and site factors in major European forest types[J]. Forest Ecology and Management, 2017, 406:330-350. DOI: 10.1016/j.foreco.2017.09.017.
doi: 10.1016/j.foreco.2017.09.017 |
[3] |
TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898):671-677.DOI: 10.1038/nature01014.
doi: 10.1038/nature01014 |
[4] |
ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Mana-ging nitrogen for sustainable development[J]. Nature, 2015, 528(7580):51-59. DOI: 10.1038/nature15743.
doi: 10.1038/nature15743 |
[5] |
VALVERDE-BARRANTES O J, ROCHA O J. Logging impacts on forest structure and seedling dynamics in a Prioria copaifera (Fabaceae) dominated tropical rain forest (Talamanca, Costa Rica)[J]. Revista De Biologia Tropical, 2014, 62(1):347-357. DOI: 10.15517/rbt.v62i1.8504.
doi: 10.15517/rbt.v62i1.8504 |
[6] |
RUEL J C, FORTIN D, POTHER D. Partial cutting in old-growth boreal stands: an integrated experiment[J]. The Forestry Chronicle, 2013, 89(3):360-369. DOI: 10.5558/tfc2013-066.
doi: 10.5558/tfc2013-066 |
[7] | 周焘, 王传宽, 周正虎, 等. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响[J]. 应用生态学报, 2019, 30(5):1651-1658. |
ZHOU T, WANG C K, ZHOU Z H, et al. Effects of thinning on soil carbon and nitrogen fractions in a Larix olgensis plantation[J]. Chin J Appl Ecol, 2019, 30(5):1651-1658.DOI: 10.13287/j.1001-9332.201905.020.
doi: 10.13287/j.1001-9332.201905.020 |
|
[8] |
WANG Q K, WANG S L. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations[J]. Journal of Forestry Research, 2008, 19(2):131-135.DOI: 10.1007/s11676-008-0022-7.
doi: 10.1007/s11676-008-0022-7 |
[9] |
CHEN X L, WANG D, CHEN X, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation[J]. Appl Soil Ecol, 2015, 92:35-44.DOI: 10.1016/j.apsoil.2015.01.018.
doi: 10.1016/j.apsoil.2015.01.018 |
[10] |
BOLAT I. The effect of thinning on microbial biomass C,N and basal respiration in black pine forest soils in Mudurnu,Turkey[J]. European Journal of Forest Research, 2014, 133(1):131-139.DOI: 10.1007/s10342-013-0752-8.
doi: 10.1007/s10342-013-0752-8 |
[11] |
BAI S H, DEMPSEY R, REVERCHON F, et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics[J]. Plant and Soil, 2017, 411(1/2):437-449. DOI: 10.1007/s11104-016-3052-5.
doi: 10.1007/s11104-016-3052-5 |
[12] | 吴殿鸣, 薛建辉, 罗英, 等. 杨麦间作系统硝态氮损失的原位研究[J]. 南京林业大学学报(自然科学版), 2012, 36(2):111-116. |
WU D M, XUE J H, LUO Y, et al. Study on nitrate nitrogen leaching in poplar-wheat intercropping ecosystem by in situ analysis[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(2):111-116. DOI: 10.3969/j.issn.1000-2006.2012.02.023.
doi: 10.3969/j.issn.1000-2006.2012.02.023 |
|
[13] | 武志杰, 隽英华, 陈利军, 等. 一种检测土壤硝酸还原酶活性的分析方法:CN101271060A[P]. 2008-09-24. |
WU Z J, JIU Y H, CHEN L J, et al. A modified method for measuring soil nitrate reductase activity: CN101271060A[P]. 2008-09-24. | |
[14] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
LU R K. Soil argrochemistry analysis protocols[M]. Beijing: China Agriculture Science Press. 2000. | |
[15] | 杨万勤, 王开运. 森林土壤酶的研究进展[J]. 林业科学, 2004, 40(2):152-159. |
YANG W Q, WANG K Y. Advances in Forest Soil Enzymology[J]. Sci Silvae Sin, 2004, 40(2):152-159. DOI: 10.11707/j.1001-7488.2004.02.027.
doi: 10.11707/j.1001-7488.2004.02.027 |
|
[16] |
鲍勇, 高颖, 曾晓敏, 等. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J]. 植物生态学报, 2018, 42(4)508-516.
doi: 10.17521/cjpe.2017.0311 |
BAO Y, GAO Y, ZENG X M, et al. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China[J]. Chin J of Plant Ecol, 2018, 42(4):508-516. DOI: 10.17521/cjpe.2017.0311.
doi: 10.17521/cjpe.2017.0311 |
|
[17] | 王娟娟, 朱莎, 靳士科, 等. 上海市3种森林类型土壤微生物生物量碳和氮的时空格局[J]. 生态与农村环境学报, 2016, 32(4):615-621. |
WANG J J, ZHU S, JIN S K, et al. Spatio-temporal distribution of soil microbial biomass carbon and nitrogen in three types of urban forest soils in Shanghai[J]. J of Ecol and Rural Environ, 2016, 32(4):615-621. DOI: 10.11934/j.issn.1673-4831.2016.04.016.
doi: 10.11934/j.issn.1673-4831.2016.04.016 |
|
[18] | 李瑞霞. 间伐对马尾松细根生物量、形态和碳氮含量的影响[D]. 南京: 南京林业大学, 2014. |
LI R X. Effects of thinning on biomass, morphology and carbon and nitrogen content of fine roots of Pinus massoniana[D]. Nanjing: Nanjing Forestry University, 2014. | |
[19] | 张志铭, 赵河, 杨建涛, 等. 太行山南麓山区不同植被恢复类型土壤理化和细根结构特征[J]. 生态学报, 2018, 38(23):8363-8370. |
ZHNAG Z M, ZHAO H, YANG J T, et al. Soil physicochemical properties and fine root characteristics of different restored vegetation types in southern Taihang Mountain[J]. Acta Ecol Sin, 2018, 38(23):8363-8370.DOI: 10.5846 /stxb201801190150.
doi: 10.5846 /stxb201801190150 |
|
[20] |
ZHU F F, DAI L M, ERIK A, et al. Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of northeast China[J]. Frontiers in Plant Science, 2019, 10:799. DOI: 10.3389/fpls.2019.00799.
doi: 10.3389/fpls.2019.00799 |
[21] | 詹媛媛, 薛梓瑜, 任伟, 等. 干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J]. 生态学报, 2009, 29(1):59-66. |
ZHAN Y Y, XUE Z Y, REN W, et al. Characteristics of nitrogen content between rhizopshere and bulk soil under seven shrubs in arid desert area of China[J]. Acta Ecol Sin, 2009, 29(1):59-66. DOI: 10.3321 /j.issn:1000-0933.2009.01.008.
doi: 10.3321 /j.issn:1000-0933.2009.01.008 |
|
[22] | 冯烨, 张焕朝, 杨瑞珍, 等. 杨桤混交林及其凋落物对土壤氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2019, 43. |
FENG H, ZHANG H C, YANG R Z, et al. The influence of poplar-alder mixed forest and litter to soil nitrogen mineralization[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43. DOI: 10.3969/j.issn.1000-2006.201902025.
doi: 10.3969/j.issn.1000-2006.201902025 |
|
[23] | 叶钰倩, 赵家豪, 刘畅, 等. 间伐对马尾松人工林根际土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(3):193-198. |
YE Y Q, ZHAO J H, LIU C, et al. Effects of thinning on nitrogen contents and enzyme activities of rhizosphere soil in Pinus massoniana plantations[J]. J Nanjing For Univ(Nat Sci Ed), 2018, 42(3):193-198. DOI: 10.3969/j.issn.1000-2006.201709026.
doi: 10.3969/j.issn.1000-2006.201709026 |
|
[24] | 王卫国, 童根平, 徐温新, 等. 3种常见速生灌木吸收红壤氮磷能力的比较[J]. 浙江林学院学报, 2009, 26(3):346-350. |
WANG W G, TONG G P, XU W X, et al. Absorption of soil N and P by three fast growing bush species[J]. J Zhejiang For Coll, 2009, 26(3):346-350. DOI: 10.3969/j.issn.2095-0756.2009.03.009.
doi: 10.3969/j.issn.2095-0756.2009.03.009 |
|
[25] | 芦建国, 梁同江, 孔凡海. 8种灌木根系分布对高速公路生态边坡的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(5):155-159. |
LU J G, LIANG T J, KONG F H. Influence of eight species shrubs’ roots distribution on the ecological slope of highway[J]. J Nanjing For Univ(Nat Sci Ed), 2011, 35(5):155-159.DOI: 10.3969/j.issn.1000-2006.2011.05.035.
doi: 10.3969/j.issn.1000-2006.2011.05.035 |
|
[26] | 薛建辉, 阮宏华, 刘金根, 等. 太湖流域水岸生态防护林体系建设技术与对策[J]. 南京林业大学学报(自然科学版), 2008, 32(5):13-18. |
XUE J H, RUAN H H, LIU J G, et al. The construction techniques and strategies of riparian shelterbelt systems surrounding Taihu Lake watershed[J]. J Nanjing For Univ(Nat Sci Ed), 2008, 32(5):13-18. DOI: 10.3969/j.issn.1000-2006.2008.05.004.
doi: 10.3969/j.issn.1000-2006.2008.05.004 |
|
[27] | 周石磊, 孙悦, 黄廷林, 等. 周村水库大气湿沉降氮磷及溶解性有机物特征[J]. 水资源保护, 2020, 36(3):52-59. |
ZHOU S L, SUN Y, HUANG T L, et al. Characteristics of nitrogen, phosphorus and dissolved organic matter in atmospheric wet deposition of Zhoucun Reservoir[J]. Water Resour Prot, 2020, 36(3):52-59. DOI: 10.3880/j.issn.1004-6933.2020.03.010.
doi: 10.3880/j.issn.1004-6933.2020.03.010 |
|
[28] | 朱兆良, 文启孝. 中国土壤氮素[M]. 南京: 江苏科学技术出版社, 1992. |
ZHU Z L, WEN Q X. Nitrogen in soil of China[M]. Nanjing: Jiangsu Science and Technology Press, 1992. | |
[29] |
XU X, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6):737-749. DOI: 10.1111/geb.12029.
doi: 10.1111/geb.12029 |
[30] | 董敏慧, 张良成, 文丽, 等. 松树-樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究[J]. 中南林业科技大学学报, 2017, 37(11):146-153. |
DONG H M, ZHANG L C, WEN L, et al. Soil microbial biomass C, N and diversity characteristics in pure and mixed forest of Pinus and Cinnamomun[J]. J Central South Univ For Technol, 2017, 37(11):146-153. DOI: 10.14067/j.cnki.1673-923x.2017.11.024.
doi: 10.14067/j.cnki.1673-923x.2017.11.024 |
|
[31] | 田大伦, 项文化, 闫文德. 马尾松与湿地松人工林生物量动态及养分循环特征[J]. 生态学报, 2004, 24(10):2207-2210. |
TIAN D L, XIANG W H, YAN W D, et al. Biomass dynamics and nutrient cycling characteristics of Pinus massoniana and Pinus elliottii plantations[J]. Acta Ecol Sin, 2004, 24(10):2207-2210. DOI: 10.3321/j.issn:1000-0933.2004.10.017.
doi: 10.3321/j.issn:1000-0933.2004.10.017 |
|
[32] | 胡亚林, 汪思龙, 颜绍馗, 等. 杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J]. 应用生态学报, 2005, 16(8):1411-1416. |
HU Y L, WANG S L, YAN S K, et al. Effect of Chinese fir plantation replacing natural secondary broad-leaved forest on soil biological activity[J]. Chin J Appl Ecol, 2005, 16(8):1411-1416. DOI: 10.13287/j.1001-9332.2005.0167.
doi: 10.13287/j.1001-9332.2005.0167 |
|
[33] | 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4):406-410. |
SUN R L, ZHAO B Q, ZHU L S, et al. Effects of long-term fertilization on soil enzyme activity and its regulation of soil fertility[J]. Plant Nutr Fertil Sci, 2003, 9(4):406-410. DOI: 10.3321/j.issn:1008-505X.2003.04.005.
doi: 10.3321/j.issn:1008-505X.2003.04.005 |
|
[34] | 刘捷豹, 陈光水, 郭剑芬, 等. 森林土壤酶对环境变化的响应研究进展[J]. 生态学报, 2017, 37(1):110-117. |
LIU J B, CHEN G S, GUO J F, et al. Advances in research on the responses of forest soil enzymes to environmental change[J]. Acta Ecol Sin, 2017, 37(1):110-117. DOI: 10.5846/stxb201608011581.
doi: 10.5846/stxb201608011581 |
|
[35] | 彭春菊, 李全, 顾鸿昊, 等. 模拟氮沉降及经营方式对毛竹林土壤酶活性的影响[J]. 应用生态学报, 2017, 28(2):423-429. |
PENG C J, LI Q, GU H H, et al. Effects of simulated nitrogen deposition and management type on soil enzyme activities in Moso bamboo forest[J]. Chin J Appl Ecol, 2017, 28(2):423-429.DOI: 10.13287/j.1001-9332.201702.001.
doi: 10.13287/j.1001-9332.201702.001 |
|
[36] | 万欣, 李文斌, 黄海涛, 等. 扬州茱萸湾风景区森林土壤质量状况[J]. 江苏林业科技, 2020, 47(2):40-43,47. |
WAN X, LI W B, HUANG H T, et al. Soil quality of urban forest in different vegetationtypes in Zhuyuwan Scenic Spot, Yangzhou[J]. Journal of Jiangsu Forestry Science & Technology, 2020, 47(2):40-43,47. DOI: 10.3969/j.issn.1001-7380.2020.02.008.
doi: 10.3969/j.issn.1001-7380.2020.02.008 |
|
[37] | 杨万勤, 宋光煜, 韩玉萍. 土壤生态学的理论体系及其研究领域[J]. 生态学杂志, 2000, 19(4):53-56. |
YANG W Q, SONG G Y, HAN Y P. Theoretical system and research fields of soil ecology[J]. Chin J Ecol, 2000, 19(4):53-56. DOI: 10.13292/j.1000-4890.2000.0058.
doi: 10.13292/j.1000-4890.2000.0058 |
|
[38] | 周礼恺. 土壤的酶活性[J]. 土壤学进展, 1980, (4):9-15. |
ZHOU L K. Enzyme activity of soil[J]. Progress in Soil Science, 1980, (4):9-15. | |
[39] |
TABATABAI M A, DICK W A. Distribution and stability of pyrophosphatase in soils[J]. Soil Biol and Biochem, 1979, 11(6):655-659. DOI: 10.1016/0038-0717(79)90035-x.
doi: 10.1016/0038-0717(79)90035-x |
[40] |
VERES Z, KOTROCZÓ Z, FEKETE I, et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability[J]. Appl Soil Ecol, 2015, 92:18-23. DOI: 10.1016/j.apsoil.2015.03.006.
doi: 10.1016/j.apsoil.2015.03.006 |
[41] | 孟立君, 吴凤芝. 土壤酶研究进展[J]. 东北农业大学学报, 2004, 35(5):622-626. |
MENG L J, WU F Z, et al. Research progress of soil enzymes[J]. J Northeast Agric Univ, 2004, 35(5):622-626. DOI: 10.3969/j.issn.1005-9369.2004.05.024.
doi: 10.3969/j.issn.1005-9369.2004.05.024 |
[1] | 谢燕燕, 郭子武, 林树燕, 左珂怡, 杨丽婷, 徐森, 谷瑞, 陈双林. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. |
[2] | 纪昕雨, 于悦, 张思帆, 刘媛媛. 基于CSLE模型的大连市果园土壤侵蚀特征研究[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 117-124. |
[3] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[4] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[5] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[6] | 孙劲伟, 王圣燕, 范弟武, 朱咏莉. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 140-146. |
[7] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[8] | 董玉洁, 毛岭峰, 张敏, 鲁旭东, 吴秀萍. 华东地区亚热带典型常绿阔叶林地上生物量与环境因子的关系[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 74-80. |
[9] | 杨瑞, 吴朝明, 朱骊, 胡海波. 苏南丘陵区坡面经济林土壤侵蚀特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 70-76. |
[10] | 郭聪聪, 沈永宝, 史锋厚. 温度对白皮松种子萌发过程中储藏物质代谢及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 25-34. |
[11] | 于悦, 赵丽君, 张威, 张科利, 刘亮. 东北黑土区不同开垦年限坡耕地坡面土壤磁化率特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 51-60. |
[12] | 陈明, 刘亮. 采样间隔对城市表土剖面磁化率变化的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 61-69. |
[13] | 张相, 丁鸣鸣, 林杰, 李卓远, 崔琳琳, 郭赓, 杨皓. 水蚀作用下红壤丘陵区土壤特性的空间分异特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 77-84. |
[14] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[15] | 王纪, 方升佐. 不同抗褐化剂对青钱柳愈伤组织酶活性和生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 167-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||