短小芽孢杆菌LYMC-3菌株对拟茎点霉的拮抗作用

潘敏, 朱明龙, 谈家金, 李亮亮, 郝德君

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 151-156.

PDF(2449 KB)
PDF(2449 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3) : 151-156. DOI: 10.12302/j.issn.1000-2006.202001008
研究论文

短小芽孢杆菌LYMC-3菌株对拟茎点霉的拮抗作用

作者信息 +

The antagonism of Bacillus pumilus LYMC-3 strain on Phomopsis macrospora

Author information +
文章历史 +

摘要

【目的】短小芽孢杆菌LYMC-3菌株对稻瘟病、黄瓜枯萎病及棉花黄萎病等具有显著的防治效果,测定LYMC-3菌株对8种植物病原真菌的抑菌活性,检测其抑菌谱,为其推广应用提供依据。【方法】采用平板对峙法测定LYMC-3菌株对松球壳孢菌(Sphaeropsis sapinea)、松树脂溃疡病菌(Fusarium circinatum)、金黄壳囊孢菌(Cytospora chrysosperma)、拟茎点霉(Phomopsis macrospora)、七叶树壳梭孢菌(Fusicoccum aesculi)、拟盘多毛孢(Pestalotiopsis theae)、山茶炭疽菌(Guignardia camelliae)、葡萄座腔菌(Botryosphaeria dothiorella)8种植物病原真菌的抑菌活性,筛选出抑菌活性最强的病原真菌,进行菌丝生长和孢子萌发抑制试验。【结果】LYMC-3菌株对8种供试植物病原真菌均有抑制作用,抑菌带长度及抑菌活性大小依次为:拟茎点霉>拟盘多毛孢>葡萄座腔菌>松球壳孢菌>七叶树壳梭孢菌>金黄壳囊孢菌>松树脂溃疡病菌>山茶炭疽菌。LYMC-3菌株发酵滤液对拟茎点霉菌丝生长的抑制率为70.36%,对其分生孢子24 h萌发抑制率为88.16%。【结论】短小芽孢杆菌LYMC-3菌株抑菌谱广,其发酵滤液对拟茎点霉有较强的拮抗作用。

Abstract

【Objective】The Bacillus pumilus LYMC-3 strain has a considerable control effect on the rice blast, cucumber fusarium wilt, and cotton verticillium wilt. To further research on the biocontrol potential of this strain, the antibacterial spectrum was tested by measuring the antibacterial activity of LYMC-3 strain against eight types of plant pathogenic fungi to provide a reference for its subsequent popularization and application.【Method】The antibacterial activity of LYMC-3 strain against eight plant pathogenic fungi (Sphaeropsis sapinea, Fusarium circinatum, Cytospora chrysosperma, Phomopsis macrospora, Fusicoccum aesculi, Pestalotiopsis theae, Guignardia camelliae and Botryosphaeria dothiorella) was determined using the plate pairing method, and one of them was selected for the mycelial growth and spore germination inhibition tests.【Result】The LYMC-3 strain had a wide antimicrobial spectrum, with inhibitory effects on many plant pathogenic fungi that were tested. The length of the inhibitory zone and the magnitude of the antibacterial activity were in the following order: Phomopsis macrospora > Pestalotiopsis theae > Botryosphaeria dothiorella > Sphaeropsis sapinea > Fusicoccum aesculi > Cytospora chrysosperma > Fusarium circinatum > Guignardia camelliae. The inhibition rate of the fermentation broth of the LYMC-3 strain to the mycelial growth of Phomopsis macrospora was 70.36%, and the spore germination in 24 hours was 88.16%.【Conclusion】The Bacillus pumilus LYMC-3 strain has a wide antimicrobial spectrum. The fermentation filtrate broth of the strain has a high antagonistic effect on Phomopsis macrospora.

关键词

短小芽孢杆菌 / 抑菌谱 / 拟茎点霉 / 植物病原真菌

Key words

Bacillus pumilus / antimicrobial spectrum / Phomopsis macrospora / plant pathogenic fungi

引用本文

导出引用
潘敏, 朱明龙, 谈家金, . 短小芽孢杆菌LYMC-3菌株对拟茎点霉的拮抗作用[J]. 南京林业大学学报(自然科学版). 2022, 46(3): 151-156 https://doi.org/10.12302/j.issn.1000-2006.202001008
PAN Min, ZHU Minglong, TAN Jiajin, et al. The antagonism of Bacillus pumilus LYMC-3 strain on Phomopsis macrospora[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 151-156 https://doi.org/10.12302/j.issn.1000-2006.202001008
中图分类号: S763   

参考文献

[1]
靳泽星, 秦娅, 王洁丽, 等. 芽孢杆菌SK007的分类鉴定及其拮抗植物病原菌的功能分析[J]. 微生物学通报, 2019, 46(10):2591-2600.
JIN Z X, QIN Y, WANG J L, et al. Classification and identification of Bacillus sp.SK007 with biocontrol activity[J]. Mocrobiol Chin, 2019, 46(10):2591-2600.DOI: 10.13344/j.microbiol.china.180896.
[2]
朱録媛, 崔国兵, 孙文达, 等. 甘蔗内生解淀粉芽孢杆菌CGB15的分离、鉴定及生防活性[J]. 微生物学报, 2022, 62(5):1098-1670.
ZHU L Y, CUI G B, SUN W D, et al. Isolation, identification,and biocontrol activity of an endophytic strain Bacillus amyloliquefaciens CGB15 from sugarcane[J]. Acta Microbiol Sin, 2022, 62(5):1098-1670.DOI: 10.13343/j.cnki.wsxb.20210497.
[3]
肖爱萍, 游春平, 程亮. 拮抗细菌对稻瘟病的防治作用[J]. 江西植保, 2006, 29(2):51-54.
XIAO A P, YOU C P, CHENG L. Control efficacy of antagonistic bacterium to rice blast[J]. Jiangxi Plant Prot, 2006, 29(2):51-54.DOI: 10.3969/j.issn.2095-3704.2006.02.001.
[4]
AKHTAR M S, SIDDIQUI Z A. Glomus intraradices,Pseudomonas alcaligenes,and Bacillus pumilus:effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.)[J]. J Gen Plant Pathol, 2008, 74(1):53-60.DOI: 10.1007/s10327-007-0062-4.
[5]
张蕾, 石新丽, 李敏, 等. 短小芽孢杆菌TY079产抗菌物质的发酵培养基研究[J]. 河北省科学院学报, 2010, 27(2):47-50.
ZHANG L, SHI X L, LI M, et al. Optimization of fermentation medium for production of antibacterial substances by Bacillus pumilus TY079[J]. J Hebei Acad Sci, 2010, 27(2):47-50.DOI: 10.16191/j.cnki.hbkx.2010.02.008.
[6]
柳自清, 张博然, 刘叶, 等. 短小芽孢杆菌KX-33做种衣剂对棉花枯萎病的盆栽防效[J]. 新疆农业大学学报, 2020, 43(5):323-329.
LIU Z Q, ZHANG B R, LIU Y, et al. Effect of Bacillus pumilus KX-33 seed coating agent on Verticillium wilt of cotton[J]. J Xinjiang Agric Univ, 2020, 43(5):323-329.DOI: 10.3969/j.issn.1007-8614.2020.05.002.
[7]
李亮亮, 谈家金, 陈凤毛. GFP标记短小芽孢杆菌LYMC-3在马尾松体内的定殖[J]. 华中农业大学学报, 2016, 35(6):68-73.
LI L L, TAN J J, CHEN F M. Colonization of GFP-tagged Bacillus pumilus strain LYMC-3 in Masson pine[J]. J Huazhong Agric Univ, 2016, 35(6):68-73.DOI: 10.13300/j.cnki.hnlkxb.2016.06.011.
[8]
李亮亮, 谈家金, 陈凤毛. 两株松材线虫拮抗细菌的筛选和鉴定[J]. 南京林业大学学报(自然科学版), 2017, 41(4):37-41.
LI L L, TAN J J, CHEN F M. The screening and identification of two bacterial strains with nematicidal activity against Bursaphelenchus xylophilus[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(4):37-41.DOI: 10.3969/j.issn.1000-2006.201601057.
[9]
宋芳旭, 吴小芹, 赵群. 水拉恩氏菌JZ-GX1对杨树溃疡病菌的拮抗作用[J]. 南京林业大学学报(自然科学版), 2017, 41(4):42-48.
SONG F X, WU X Q, ZHAO Q. Antagonism of plant growth-promoting bacteria Rahnella aquatilis JZ-GX1 to canker in poplar[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(4):42-48.DOI: 10.3969/j.issn.1000-2006.201603054.
[10]
张扬, 郭春兰, 陈伏生, 等. 毛竹根际2株溶磷解钾促生细菌的筛选鉴定[J]. 江西农业大学学报, 2018, 40(4):759-768.
ZHANG Y, GUO C L, CHEN F S, et al. Isolation and identification of moso bamboo root-promoting rhizobacteria and their growth-promoting effect[J]. Acta Agric Univ Jiangxiensis (Nat Sci Ed), 2018, 40(4):759-768.DOI: 10.13836/j.jjau.2018096.
[11]
李平, 江幸福, 孟令贺, 等. 6龄黏虫幼虫受球孢白僵菌侵染后生长发育及体内成瘤反应的变化[J]. 植物保护, 2021, 47(5):11-18,51.
LI P, JIANG X F, MENG L H, et al. Changes in the development and nodule formation of the 6th-instar Mythimna separata larvae after infection by Beauveria bassiana[J]. Plant Prot, 2021, 47(5):11-18,51.DOI: 10.16688/j.zwbh.2020560.
[12]
焦鹏, 贾变桃, 孙颖, 等. 6种杀菌剂对兰花枯萎病菌抑制作用比较[J]. 山西农业大学学报(自然科学版), 2012, 32(2):154-157.
JIAO P, JIA B T, SUN Y, et al. Comparison of inhibition of six fungicides against Fusarium oxysporum f.sp.Cattleyae[J]. J Shanxi Agric Univ (Nat Sci Ed),2012, 32(2):154-157.DOI: 10.13842/j.cnki.issn1671-8151.2012.02.008.
[13]
姚岚. 一株水稻纹枯病拮抗细菌及其抗菌物质的研究[D]. 杭州: 浙江大学, 2011.
YAO L. Study on an antagonistic bacterium and its antagonistic substance with antifungal activity against rice sheath blight[D]. Hangzhou: Zhejiang University, 2011.
[14]
何礼远. 细菌在植物病害生物防治上应用研究的进展[J]. 生物防治通报, 1985, 1(3):28-31.
HE L Y. Advances of research and application of bacteria in biological control of plant diseases[J]. Chin J Biol Control, 1985, 1(3):28-31.DOI: 10.16409/j.cnki.2095-039x.1985.03.011.
[15]
颜爱勤, 吴小芹, 叶建仁, 等. 短小芽孢杆菌JK-SX001非蛋白抗菌物质研究[J]. 南京林业大学学报(自然科学版), 2012, 36(3):13-16.
YAN A Q, WU X Q, YE J R, et al. Isolation, antifungal effect and characteristics of non-protein substances produced by Bacillus pumilus JK-SX001[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(3) :13-16.DOI: 10.3969/j.issn.1000-2006.2012.03.004.
[16]
程丹丹. 水稻纹枯病生防潜力菌株短小芽孢杆菌223的初步研究[D]. 杭州: 浙江大学, 2008.
CHENG D D.Preliminary study on Bacillus pumilus 223 as potential biocontrol bacteria to rice sheath blight[D]. Hangzhou: Zhejiang University, 2008.
[17]
王静, 田华, 孔凡玉, 等. 短小芽孢杆菌AR03对烟草赤星病菌和白粉病菌的防治[J]. 应用生态学报, 2015, 26(10):3167-3173.
WANG J, TIAN H, KONG F Y, et al. Inhibition of Bacillus pumilus AR03 on Alternaria alternata and Erysiphe cichoracearum on tobacco[J]. Chin J Appl Ecol, 2015, 26(10):3167-3173.DOI: 10.13287/j.1001-9332.20150921.022.
[18]
曹舜. 短小芽孢杆菌BS-4菌株对大豆疫病的生防作用及其机制研究[D]. 合肥: 安徽农业大学, 2015.
CAO S. Biological control and mechanism of Bacillus pumilus strain BS-4 against soybean blight(Phytophthora sojae)[D]. Hefei: Anhui Agricultural University, 2015.
[19]
李宁. 短小芽孢杆菌NDY-10对稻瘟病菌的抑菌特性及其全基因组分析[D]. 呼和浩特: 内蒙古大学, 2021.
LI N. Antibacterial characteristics of Bacillus pumilus NDY-10 against Magnaporthe grisea and its genome-wide analysis[D]. Hohhot: Inner Mongolia University, 2021.
[20]
KUZIN A I, TAGAEV A A, OVCHINNIKOVA T V, et al. Study of the strain Bacillus pumilus B-13176 and its metabolites with fungicidal and antibacterial activities against Aspergillus niger and Staphylococcus aureus (MRSA)[J]. Appl Biochem Microbiol, 2019, 55(7):748-755.DOI: 10.1134/s0003683819070056.
[21]
连玲丽, 谢荔岩, 郑璐平, 等. 短小芽孢杆菌EN16诱导番茄对细菌性青枯病的抗性[J]. 福建农林大学学报(自然科学版), 2009, 38(5):460-464.
LIAN L L, XIE L Y, ZHENG L P, et al. Induced resistance to bacterial wilt of tomato by Bacillus pumilus strain EN16[J]. J Fujian Agric For Univ (Nat Sci Ed), 2009, 38(5):460-464. DOI: 10.13323/j.cnki.j.fafu (nat. sci.).2009.05.012.
[22]
SHAHZAD A, QIN M Z, ELAHIE M, et al. Bacillus pumilus induced tolerance of Maize (Zea mays L.) against cadmium (Cd) stress[J]. Sci Rep, 2021, 11(1):17196.DOI: 10.1038/s41598-021-96786-7.
[23]
ZHANG X H, XIE Z C, LANG D Y, et al. Bacillus pumilus improved drought tolerance in Glycyrrhiza uralensis G5 seedlings through enhancing primary and secondary metabolisms[J]. Physiol Plant, 2021, 171(3) :388-399.DOI: 10.1111/ppl.13236.
[24]
XIE Z C, CHU Y K, ZHANG W J, et al. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environ Exp Bot, 2019, 158:99-106.DOI: 10.1016/j.envexpbot.2018.11.021
[25]
FARID A E K, IBRAHIM E E, MAHFOUZ M M A E. Application of Bacillus pumilus isolates for management of black rot disease in strawberry[J]. Egypt J Biol Pest Co, 2021, 31(1):25.DOI: 10.1186/s41938-021-00371-z.

基金

国家重点研发计划(2018YFC1200400)

编辑: 郑琰燚 孟苗婧
PDF(2449 KB)

Accesses

Citation

Detail

段落导航
相关文章

/