南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1): 131-140.doi: 10.12302/j.issn.1000-2006.202001025
于松平1,2(), 刘泽彬2, 郭建斌1,*(), 王彦辉2, 于澎涛2, 王蕾1
收稿日期:
2020-01-09
接受日期:
2020-05-13
出版日期:
2021-01-30
发布日期:
2021-02-01
通讯作者:
郭建斌
基金资助:
YU Songping1,2(), LIU Zebin2, GUO Jianbin1,*(), WANG Yanhui2, YU Pengtao2, WANG Lei1
Received:
2020-01-09
Accepted:
2020-05-13
Online:
2021-01-30
Published:
2021-02-01
Contact:
GUO Jianbin
摘要:
【目的】林分蒸腾作为土壤-植物-大气连续体的关键过程,是森林生态系统中重要的水分输出项,可占森林总蒸散的50%以上,探究林分蒸腾对环境因子的响应规律可为科学指导造林及林水综合管理提供理论依据和数据支持。【方法】以国家林业和草原局宁夏六盘山定位站为依托,在2016年生长季(5—9月),对六盘山半湿润区的华北落叶松(Larix principis-rupprechtii)林的树干液流进行观测,经尺度上推得到林分蒸腾量,并同步观测林外大气因子和林内土壤含水量,分析林分蒸腾对大气因子和根系层(0~60 cm土层)土壤含水量的响应。【结果】①研究期间,林分日蒸腾变化范围为0.005~1.866 mm/d,平均值为1.042 mm/d。不同月份的林分日蒸腾平均值从大到小依次为:6月(1.325 mm/d)、5月(1.099 mm/d)、7月(1.077 mm/d)、8月(1.009 mm/d)、9月(0.717 mm/d)。②通过各大气因子与林分日蒸腾的相关系数矩阵发现,影响林分日蒸腾的主要大气因子为太阳辐射强度(Rn)、饱和水汽压差(DVPD)及空气相对湿度(HRH),相关性从大到小依次为Rn(0.784)、DVPD(0.754)、HRH(-0.704)。③借助因子分析可将影响林分日蒸腾的大气因子降维成气候波动因子(44.9%)、蒸腾驱动因子(35.2%)和空气运动因子(15.7%)3个综合指标,其中构成蒸腾驱动因子的3个载荷因子(Rn、DVPD和HRH)均与林分日蒸腾显著相关,且蒸腾驱动因子与林分日蒸腾的拟合效果(R2=0.688)优于潜在蒸散(TPET)与林分日蒸腾的拟合效果(R2=0.649)。④通过多元回归拟合及偏相关系数的可比性得出,太阳辐射强度(Rn)和饱和水汽压差(DVPD)二者对林分日蒸腾的贡献率可达93%,其中Rn的贡献率为54.2%,DVPD的贡献率为38.8%。⑤基于脱耦联系数与林分蒸腾的日内变化曲线得到,Rn主导蒸腾的时间一般在太阳升起到净辐射最高的上午11:00,而DVPD主导蒸腾的时间一般是下午和夜间。⑥在土壤湿润条件下[根系层平均土壤相对可利用水分(WREW)>0.38],林分日蒸腾与≥40~60 cm土层WREW显著正相关(P<0.01),与其他土层WREW不相关或显著负相关。在土壤干旱条件下(根系层平均WREW≤0.38),林分日蒸腾与≥20~40和≥40~60 cm土层WREW显著正相关(P<0.01),与0~10和≥10~20 cm土层WREW显著负相关。【结论】影响华北落叶松林分日蒸腾的大气因子主要是Rn和DVPD,且在日内尺度上二者主导蒸腾的时段不同;本研究中提出的蒸腾驱动因子在反映大气因子对林分蒸腾综合影响上优于潜在蒸散(TPET);在土壤湿润条件下华北落叶松林蒸腾耗水主要利用深层(≥40~60 cm土层)土壤水分,而在土壤干旱条件下华北落叶松蒸腾耗水将利用≥20~60 cm土层的土壤水分。
中图分类号:
于松平,刘泽彬,郭建斌,等. 六盘山华北落叶松林分蒸腾特征及其影响因素[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 131-140.
YU Songping, LIU Zebin, GUO Jianbin, WANG Yanhui, YU Pengtao, WANG Lei. Stand transpiration characteristics of Larix principis-rupprechtii plantation and their influencing factors in Liupan Mountain[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(1): 131-140.DOI: 10.12302/j.issn.1000-2006.202001025.
表2
各大气因子间的皮尔逊相关系数"
变量 variable | W | Rn | Ta | HRH | DVPD | Ta,min | Ta,max | T |
---|---|---|---|---|---|---|---|---|
W | 1 | |||||||
Rn | 0.287** | 1 | ||||||
Ta | 0.029 | -0.025 | 1 | |||||
HRH | -0.536** | -0.720** | 0.014 | 1 | ||||
DVPD | 0.402** | 0.730** | 0.410** | -0.841** | 1 | |||
Ta,min | 0.021 | -0.058 | 0.999** | 0.043 | 0.380** | 1 | ||
Ta,max | 0.042 | 0.017 | 0.999** | -0.023 | 0.446** | 0.996** | 1 | |
T | 0.219** | 0.784** | 0.144 | -0.704** | 0.754** | 0.118 | 0.177* | 1 |
表4
大气因子在综合因子上的因子载荷及标准化偏回归系数"
综合因子 comprehensive factor | Fac-1 | Fac-2 | Fac-3 | ||||
---|---|---|---|---|---|---|---|
Ta | Ta,min | Ta,max | Rn | DVPD | HRH | W | |
Fac-1 | 0.999 | 0.999 | 0.996 | -0.072 | 0.380 | 0.050 | 0.010 |
Fac-2 | 0.041 | 0.007 | 0.084 | 0.930 | 0.876 | -0.873 | 0.252 |
Fac-3 | 0.007 | 0.007 | 0.008 | 0.004 | 0.203 | -0.373 | 0.958 |
偏回归系数 partial regression coefficient | 2.736 | -0.521 | -1.218 | 0.485 | 0.347 | -0.063 | — |
综合贡献率 comprehensive contribution rate | 0.611 | 0.116 | 0.273 | 0.542 | 0.388 | 0.070 | 1 |
[1] |
ZHANG Y Q, PEÑA-ARANCIBIA J L, MCVICAR T R, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components[J]. Scientific Reports, 2016,6(6):19124. DOI: 10.1038/srep19124.
doi: 10.1038/srep19124 |
[2] |
MONTALDO N, CURRELI M, CORONA R, et al. Fixed and variable components of evapotranspiration in a Mediterranean wild-olive-grass landscape mosaic[J]. Agricultural and Forest Meteorology, 2020,280:107769. DOI: 10.1016/j.agrformet.2019.107769.
doi: 10.1016/j.agrformet.2019.107769 |
[3] | 王渝淞, 贾国栋, 张永娥, 等. 北京山区侧柏林蒸散拆分研究[J]. 水土保持学报, 2019,33(2):272-278. |
WANG Y S, JIA G D, ZHANG Y E, et al. Study on the separation of evapotranspiration of Platycladus orientalis forest in Beijing mountains area[J]. J Soil and Water Conservation, 2019,33(2):272-278. DOI: 10.13870/j.cnki.stbcxb. | |
[4] |
KSTNER B, GRANIER A, CERMAK J. Sapflow measurements in forest stands: methods and uncertainties[J]. Annales of Forest Sciences, 1998,55(1/2):13-27. DOI: 10.1051/forest:19980102.
doi: 10.1051/forest:19980102 |
[5] | 邵明安, 贾小旭, 王云强, 等. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016,31(1):14-22. |
SHAO M A, JIA X X, WANG Y Q, et al. A review of studies on dried soil layers in the Loess Plateau[J]. Advances in Earth Science, 2016,31(1):14-22. DOI: 10.11867/j.issn.1001-8166.2016.01.0014. | |
[6] | 孙慧珍, 周晓峰, 康绍忠. 应用热技术研究树干液流进展[J]. 应用生态学报, 2004,15(6):1074-1078. |
SUN H Z, ZHOU X F, KANG S Z. Research advance in application of heat technique in studying stem sap flow[J]. Chinese Journal of Applied Ecology, 2004,15(6):1074-1078. | |
[7] | 王韦娜, 张翔, 张立锋, 等. 蒸渗仪法和涡度相关法测定蒸散的比较[J]. 生态学杂志, 2019,38(11):3551-3559. |
WANG W N, ZHANG X, ZHANG L F, et al. A comparison study of the evapotranspiration measured by lysimeter and eddy covariance[J]. Chinese Journal of Ecology, 2019,38(11):3551-3559. DOI: 10.13292/j.1000-4890.201911.003. | |
[8] |
SWANSON R H, WHITFIELD D W A. A numerical analysis of heat pulse velocity theory and practice[J]. Journal of Experimental Botany, 1981,32(1):221-239. DOI: 10.1093/jxb/32.1.221.
doi: 10.1093/jxb/32.1.221 |
[9] |
赵秀华, 赵平, 周娟, 等. 热消散法(TDP)在5种竹子蒸腾耗水测定中的适用性评价[J]. 热带亚热带植物学报, 2015(5):567-575.
doi: 10.11926/j.issn.1005-3395.2015.05.012 |
ZHAO X H, ZHAO P, ZHOU J, et al. Applicability evaluation of transpiration of five bamboo species by using TDP (Thermal Dissipation Probe) method[J]. Journal of Tropical and Subtropical Botany, 2015(5):567-575. DOI: 10.11926/j.issn.1005-3395.2015.05.012. | |
[10] | 李海涛, 陈灵芝. 用于测定树干木质部蒸腾液流的热脉冲技术研究概况[J]. 植物学通报, 1997,14(4):24-29. |
LI H T, CHEN L Z. A introduction to the Heat-Pulse technique and its application to measuring the stem-sapflow in trees[J]. Chinese Bulletin of Botany, 1997,14(4):24-29. | |
[11] | LIU Z B, WANG Y H, TIAN A, et al. Modeling the response of daily evapotranspiration and its components of a larch plantation to the variation of weather, soil moisture and canopy leaf area index[J]. Journal of Geophysical Research: Atmospheres, 2018,123(14):7354-7374. DOI: 10.1029/2018JD028384. |
[12] |
莫康乐, 陈立欣, 周洁, 等. 永定河沿河沙地杨树人工林蒸腾耗水特征及其环境响应[J]. 生态学报, 2014,34(20):5812-5822.
doi: 10.5846/stxb201301280172 |
MO K L, CHEN L X, ZHOU J, et al. Transpiration responses of a poplar plantation to the environmental conditions on a floodplain in northern China[J]. Acta Ecologica Sinica, 2014,34(20):5812-5822. DOI: 10.5846/stxb201301280172. | |
[13] |
HUANG J, ZHOU Y, YIN L, et al. Climatic controls on sap flow dynamics and used water sources of Salix psammophilain a semi-arid environment in northwest China[J]. Environmental Earth Sciences, 2015,73(1):289-301. DOI: 10.1007/s12665-014-3505-1.
doi: 10.1007/s12665-014-3505-1 |
[14] | 胡静霞, 杨新兵. 清水河流域典型林分类型土壤水分特征研究[J]. 西南农业学报, 2018,31(1):118-125. |
HU J X, YANG X B. Study on soil water characteristics of typical forest types in Qingshui River Basin[J]. Southwest China Journal of Agricultural Sciences, 2018,31(1):118-125. DOI: 10.16213/j.cnki.scjas.2018.1.021. | |
[15] | 罗超, 查同刚, 朱梦洵, 等. 浅层地下水对华北地区河岸杨树林树干液流的影响[J]. 应用生态学报, 2016,27(5):1401-1407. DOI: 10.13287/j.1001-9332.201605.025. |
LUO C, ZHA T G, ZHU M X, et al. Influences of shallow groundwater on sap flow of riparian poplar plantations in northern China[J]. Chinese Journal of Applied Ecology, 2016,27(5):1401-1407. DOI: 10.13287/j.1001-9332.201605.025. | |
[16] |
ZHANG X M, LI X Y, ZENG F J, et al. Water use by perennial plants in the transition zone between river oasis and desert in NW China[J]. Basic and Applied Ecology, 2006,7(3):253-267. DOI: 10.1016/j.baae.2005.07.008.
doi: 10.1016/j.baae.2005.07.008 |
[17] |
TIAN A, WANG Y H, ASHLEY A W, et al. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China[J]. Journal of Hydrology, 2019,571:503-515. DOI: 10.1016/j.jhydrol.2019.02.004.
doi: 10.1016/j.jhydrol.2019.02.004 |
[18] |
LI Z H, YU P T, WANG Y H, et al. A model coupling the effects of soil moisture and potential evaporation on the tree transpiration of a semi-arid larch plantation[J]. Ecohydrology, 2017,10(1):e1764. DOI: 10.1002/eco.1764.
doi: 10.1002/eco.v10.1 |
[19] | 刘泽彬, 王彦辉, 徐丽宏, 等. 六盘山华北落叶松林坡面的土壤含水量时间稳定性[J]. 水土保持学报, 2017,31(1):153-159. |
LIU Z B, WANG Y H, XU L H, et al. Temporal Stability of soil moisture on a slope covered by Larix principis-rupprechtii plantation in Liupan Mountains[J]. Journal of Soil and Water Conservation, 2017,31(1):153-159. DOI: 10.13870/j.cnki.stbcxb.2017.01.026. | |
[20] |
HONG L, GUO J B, LIU Z B, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii Mayr[J]. Forests, 2019,10(11):971. DOI: 10.3390/f10110971.
doi: 10.3390/f10110971 |
[21] | 赵平. 整树水力导度协同冠层气孔导度调节森林蒸腾[J]. 生态学报, 2011,31(4):1164-1173. |
ZHAO P. On the coordinated regulation of forest transpiration by hydraulic conductance and canopy stomatal conductance[J]. Acta Ecologica Sinica, 2011,31(4):1164-1173. | |
[22] |
贾国栋, 陈立欣, 李瀚之, 等. 北方土石山区典型树种耗水特征及环境影响因子[J]. 生态学报, 2018,38(10):3441-3452.
doi: 10.5846/stxb201703310559 |
JIA G D, CHEN L X, LI H Z, et al. The effect of environmental factors on plant water consumption characteristics in a northern rocky mountainous area[J]. Acta Ecologica Sinica, 2018,38(10):3441-3452. DOI: 10.5846/stxb201703310559. | |
[23] |
GUO Q Q, ZHANG W H. Sap flow of Abies georgei var. smithii and its relationship with the environment factors in the Tibetan Subalpine region, China[J]. Journal of Mountain Science, 2015,12(6):1373-1382. DOI: 10.1007/s11629-015-3618-3.
doi: 10.1007/s11629-015-3618-3 |
[24] |
HAN C, CHEN N, ZHANG C K, et al. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong Mountain, northwestern China[J]. Forest Ecology and Management, 2019,451:117519. DOI: 10.1016/j.foreco.2019.117519.
doi: 10.1016/j.foreco.2019.117519 |
[25] | MEINZER F C, HINCKLEY T M, CEULEMANS R. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy[J]. Plant Cell & Environment, 2010,20(10):1301-1308. DOI: 10.1046/j.1365-3040.1997.d01-18.x. |
[26] | 陈立欣, 李湛东, 张志强, 等. 北方四种城市树木蒸腾耗水的环境响应[J]. 应用生态学报, 2009,20(12):2861-2870. DOI: 10.13287/j.1001-9332.2009.0426. |
CHEN L X, LI Z D, ZHANG Z Q, et al. Environmental responses of four urban tree species transpiration in northern China[J]. Chinese Journal of Applied Ecology, 2009,20(12):2861-2870. DOI: 10.13287/j.1001-9332.2009.0426. | |
[27] | 韩磊, 孙兆军, 展秀丽, 等. 宁夏河东沙区柠条植株叶片蒸腾对干旱胁迫的响应[J]. 生态环境学报, 2015,24(5):756-761. |
HAN L, SUN Z J, ZHAN X L, et al. Research on leaf transpiration response to soil water stress of Caragana korshinskii Kom. in Hedong sandy land of Ningxia[J]. Ecology and Environment Sciences, 2015,24(5):756-761. DOI: 10.16258/j.cnki.1674-5906.2015.05.005. | |
[28] |
GUAN D X, ZHANG X J, YUAN F H, et al. The relationship between sap flow of intercropped young poplar trees (Populus×euramericana cv. N3016) and environmental factors in a semiarid region of northeastern China[J]. Hydrological Processes, 2012,26(19):2925-2937. DOI: 10.1002/hyp.8250.
doi: 10.1002/hyp.v26.19 |
[29] | FLETCHER A L, SINCLAIR T R, ALLEN L H JR. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean[J]. Environmental & Experimental Botany, 2007,61(2):145-151. DOI: 10.1016/j.envexpbot.2007.05.004. |
[30] | 刘文娜, 贾剑波, 余新晓, 等. 华北山区侧柏冠层气孔导度特征及其对环境因子的响应[J]. 应用生态学报, 2017,28(10):3217-3226. |
LIU W N, JIA J B, YU X X, et al. Characteristics of canopy stomatal conductance of Platycladus orientalis and its responses to environmental factors in the mountainous area of north China[J]. Chinese Journal of Applied Ecology, 2017,28(10):3217-3226. DOI: 10.13287/j.1001-9332.201710.027. | |
[31] |
熊伟, 王彦辉, 徐德应. 宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J]. 林业科学, 2003,39(2):1-6.
doi: 10.11707/j.1001-7488.20030201 |
XIONG W, WANG Y H, XU D Y. Regulations of water use for transpiration of Larix principi-rupprechtii plantation and its response on environment factors in southern Ningxia hilly area[J]. Scientia Silvae Sinicae, 2003,39(2):1-6. DOI: 10.3321/j.issn:1001-7488.2003.02.001. | |
[32] |
赵春彦, 司建华, 冯起, 等. 风对极端干旱区胡杨蒸腾速率的影响[J]. 冰川冻土, 2015,37(4):1104-1111.
doi: 10.7522/j.issn.1000-0240.2015.0123 |
ZHAO C Y, SI J H, FENG Q, et al. Effect of wind speed on transpiration rate of Populus euphratica in extreme arid deserts[J]. Journal of Glaciology and Geocryology, 2015,37(4):1104-1111. DOI: 10.7522/j.issn.1000-0240.2015.0123. | |
[33] |
SCHYMANSKI S J. Wind effects on leaf transpiration challenge the concept of “potential evaporation”[J]. Proceedings of the International Association of Hydrological Sciences, 2015,371:99-107. DOI: 10.5194/piahs-371-99-2015.
doi: 10.5194/piahs-371-99-2015 |
[34] | 王小菲, 孙永玉, 李昆, 等. 山合欢树干液流的季节变化[J]. 生态学杂志, 2013,32(3):597-603. |
WANG X F, SUN Y Y, LI K, et al. Seasonal dynamics of Albizia kalkora stem sap flow in Yunmou dry-hot valley of southwest China[J]. Chinese Journal of Ecology, 2013,32(3):597-603. DOI: 10.13292/j.1000-4890.2013.0106. | |
[35] |
ZHANG R F, XU X L, LIU M X, et al. Hysteresis in sap flow and its controlling mechanisms for a deciduous broad-leaved tree species in a humid Karst region[J]. Science China (Earth Sciences), 2019,62(11):1744-1755. DOI: 10.1007/s11430-018-9294-5.
doi: 10.1007/s11430-018-9294-5 |
[36] | 刘泽彬. 六盘山坡面华北落叶松林水文影响的时空变化及尺度转换[D]. 北京:中国林业科学研究院, 2018. |
LIU Z B. Spatio-temporal variations and scale transition of hydrological impact of Larix principis-ruprechrii plantation on a slope of Liupan Mountains, China[D]. Beijing: Chinese Academy of Forestry, 2018. | |
[37] |
ALLEN C D, BRESHEARS D D. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(25):14839-14842.DOI: 10.1073/pnas.95.25.14839.
doi: 10.1073/pnas.95.25.14839 pmid: 9843976 |
[38] | 刘潇潇, 何秋月, 闫美杰, 等. 黄土丘陵区辽东栎群落优势种和主要伴生种树干液流动态特征[J]. 生态学报, 2018,38(13):4744-4751. |
LIU X X, HE Q Y, YAN M J, et al. Characteristics of sap flow dynamics in dominant and companion trees in a natural secondary oak forest in the loess hilly region[J]. Acta Ecologica Sinica, 2018,38(13):4744-4751. DOI: 10.5846/stxb201707131269. | |
[39] |
汤鹏程, 徐冰, 高占义, 等. 西藏高海拔地区气象数据缺失条件下的ET0计算研究[J]. 水利学报, 2017,48(9):1055-1063.
doi: 10.13243/j.cnki.slxb.20170002 |
TANG P C, XU B, GAO Z Y, et al. Simplified limited data ET0 equation adapted for high-elevation locations in Tibet[J]. Journal of Hydraulic Engineering, 2017,48(9):1055-1063. DOI: 10.13243/j.cnki.slxb.20170002. | |
[40] | 曹恭祥, 熊伟, 王彦辉, 等. 宁夏六盘山华山松树干液流的动态研究[J]. 内蒙古农业大学学报(自然科学版), 2010,31(2):42-47. |
CAO G X, XIONG W, WANG Y H, et al. A research on stem sap flow dynamics of Pinus Armandii in Liupan Mountains of Ningxia[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2010,31(2):42-47. | |
[41] | JARVIS P G. Stomatal control of transpiration: scaling up from leaf to region[J]. Advances in Ecological Research, 1986,15(15):1-49. DOI: 10.1016/S0065-2504(08)60119-1. |
[42] |
LLORENS P, POYATOS R, LATRON J, et al. A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean mountain conditions[J]. Hydrological Processes, 2010,24(21):3053-3064. DOI: 10.1002/hyp.7720.
doi: 10.1002/hyp.v24:21 |
[43] | 陈亚宁, 李卫红, 陈亚鹏, 等. 荒漠河岸林建群植物的水分利用过程分析[J]. 干旱区研究, 2018,35(1):130-136. |
CHEN Y N, LI W H, CHEN Y P, et al. Water use process of constructive plants in desert riparian forest[J]. Arid Zone Research, 2018,35(1):130-136.DOI: 10.13866/j.azr.2018.01.16. | |
[44] |
ZHAO Y L, WANG Y Q, HE M N, et al. Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a water-limited region[J]. Forest Ecology and Management, 2020,457:117727. DOI: 10.1016/j.foreco.2019.117727.
doi: 10.1016/j.foreco.2019.117727 |
[1] | 王云霓, 曹恭祥, 徐丽宏, 陈胜楠. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156. |
[2] | 林雯淇, 贾国栋. 基于稳定同位素的SPAC系统水分转化研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 234-242. |
[3] | 盛后财, 姚月锋, 蔡体久, 郭娜, 琚存勇. 物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 143-150. |
[4] | 惠昊, 关庆伟, 王亚茹, 林鑫宇, 陈斌, 王刚, 胡月, 胡敬东. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 151-158. |
[5] | 任世奇, 朱原立, 梁燕芳, 陈健波, 卢翠香, 伍琪, 韦振道. 基于PM模型的广西南宁尾巨桉中龄林蒸散特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 127-134. |
[6] | 吴丹,曹巍,邵全琴,赵志平. 三江源地区草地退化对土壤含水量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 182-186. |
[7] | 刘延惠,丁访军,舒德远,崔迎春,侯贻菊,赵文君. 茂兰喀斯特原生林细叶青冈树干液流环境响应特征[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 77-85. |
[8] | 俞正祥,韩广忠,蔡体久,琚存勇,朱宾宾. 基于GF-1遥感数据的大兴安岭林区雪水当量反演[J]. 南京林业大学学报(自然科学版), 2017, 41(03): 105-111. |
[9] | 石磊,盛后财,满秀玲,蔡体久. 兴安落叶松林降雨再分配及其穿透雨的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 90-96. |
[10] | 万艳芳,刘贤德,于澎涛,马瑞,王顺利,王彦辉,李晓青. 祁连山鲜黄小檗灌丛穿透雨特征及其影响因素[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 97-102. |
[11] | 陶吉兴,王文武,徐达,张国江,季碧勇,吴伟志,谭莹. 基于固定样地连续监测数据的林木蓄积生长率月际分布[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 111-116. |
[12] | 朱宾宾,满秀玲,俞正祥,胡悦,马培文. 大兴安岭北部森林小流域融雪径流特征[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 69-75. |
[13] | 刘玉杰,满秀玲. 修正Gash模型在兴安落叶松天然林林冠截留中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 81-88. |
[14] | 石磊,盛后财,满秀玲,蔡体久. 不同尺度林木蒸腾耗水测算方法述评[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 149-156. |
[15] | 张乾,居为民,杨风亭,曹林,冯永康. 森林冠层多角度高光谱观测系统的实现与分析[J]. 南京林业大学学报(自然科学版), 2016, 40(03): 101-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||