南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2): 111-119.doi: 10.12302/j.issn.1000-2006.202002019
收稿日期:
2020-02-19
接受日期:
2020-06-20
出版日期:
2021-03-30
发布日期:
2021-04-09
基金资助:
HONG Zhen1(), LIU Shuxin2, HONG Conghao3, LEI Xiaohua4
Received:
2020-02-19
Accepted:
2020-06-20
Online:
2021-03-30
Published:
2021-04-09
摘要:
【目的】探究不同造林树种的抗旱性,为科学配置乡土树种和外来树种及困难立地造林提供依据。【方法】以5个树种,枫香(Liquidambar formosana)、黄连木(Pistacia chinesis)、长序榆(Ulmus elongata)、黄山栾树(Koelreuteria bipinnata )和娜塔栎(Quercus texana)1年生实生苗为试验材料,通过盆栽试验研究适宜水分、轻度干旱、中度干旱和重度干旱(即土壤含水量分别为田间持水量的75%~80%、55%~60%、40%~45%和30%~35%)条件下的生理响应及抗旱性差异。【结果】①随着干旱程度的增加,5个树种出现不同程度的干旱胁迫症状,主要表现为叶片发黄、萎蔫,严重时枝条顶端出现干枯。胁迫30 d时,重度胁迫下,长序榆和黄山栾树部分幼苗死亡,黄连木整株叶片变黄或变红;枫香和娜塔栎中下部叶片变黄干枯;②5个树种叶绿素总量与叶片相对含水量呈下降的趋势;相对电导率和丙二醛(MDA)含量呈上升的趋势;游离脯氨酸、可溶性糖和可溶性蛋白含量呈增加的趋势;③ 娜塔栎的超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性均升高;枫香、黄连木、黄山栾树的SOD、POD和CAT活性均呈现先升高后降低的变化趋势;长序榆的SOD和CAT活性呈现先升高后降低的变化趋势,而POD活性则是随着胁迫程度的增加而升高;④ 隶属函数分析表明,中度和重度胁迫条件下,5个树种抗旱能力由强到弱依次是娜塔栎、枫香、黄连木、长序榆、黄山栾树。【结论】娜塔栎在5个树种中抗旱性最强,可在干旱地区的造林中推广应用。
中图分类号:
洪震,刘术新,洪琮浩,等. 5种造林树种对干旱胁迫的抗性应答[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 111-119.
HONG Zhen, LIU Shuxin, HONG Conghao, LEI Xiaohua. Resistance response of five afforestation tree species under drought stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(2): 111-119.DOI: 10.12302/j.issn.1000-2006.202002019.
表1
干旱胁迫对5个树种苗木形态特征的影响"
树种 species | 处理 treatments | 形态特征 morphological characteristics | ||
---|---|---|---|---|
10 d | 20 d | 30 d | ||
枫香 L. formosana | T1 | 正常 | 3株老叶出现黄斑 | 6株老叶出现焦边 |
T2 | 正常 | 4株叶片萎蔫下垂, 顶部叶片脉间褶皱 | 9株叶片萎蔫下垂, 上部叶片脉间褶皱 | |
T3 | 正常 | 6株叶片萎蔫下垂, 顶部叶片脉间褶皱 | 9株老叶失绿黄化,叶缘出现坏死斑, 上部叶片脉间褶皱 | |
黄连木 P. chinensis | T1 | 正常 | 1株老叶变黄 | 3株下部叶片变黄,2株叶片全部变黄 |
T2 | 正常 | 2株老叶变黄 | 6株中下部叶片变黄变红, 4株全部叶片变黄变红 | |
T3 | 2株下部老叶出现萎蔫, 下部叶片开始变黄 | 2株中下部叶片全部变黄 | 全部株中下部叶片变黄,6株全部 叶片变黄变红,1株顶端干枯 | |
长序榆 U. elongata | T1 | 1株老叶出现黄化叶斑 | 2株老叶叶缘干枯 | 2株叶片全部黄化, 其余株全部叶片有黄化叶斑 |
T2 | 1株大部分老叶出现黄化叶斑 | 5株叶片全部出现 黄化叶斑,叶片不完整 | 2株死亡,其余株叶片黄化斑增多 | |
T3 | 2株下部老叶变黄,1株下部老叶 干枯,1株下部老叶出现黄化叶斑 | 5株老叶全部脱落, 顶部叶片萎蔫 | 3株死亡,其余株叶片黄斑焦灼 | |
黄山栾树 K. bipinnata | T1 | 3株中上部成熟叶片出现黄色 叶斑,其中1株全部叶片萎蔫 | 6株叶片失绿出现黄色叶斑 | 全部植株脉间失绿出现黄斑 |
T2 | 3株成熟叶片全部出现黄色 叶斑,并且新叶焦边 | 7株叶片脉间失绿严重, 叶斑数量增多 | 2株死亡,其余株叶片脉间 失绿黄斑增多 | |
T3 | 2株叶片全部变黄, 1株成熟叶片焦灼 | 8株叶片脉间失绿黄色叶斑多, 4株叶片全部变黄,下部叶片干枯 | 4株死亡,其余株叶片萎蔫, 中下部叶片变黄 | |
娜塔栎 Q. texana | T1 | 1株下部老叶萎蔫 | 1株下部老叶叶缘失绿 | 2株老叶叶缘焦边 |
T2 | 1株下部老叶萎蔫叶缘失绿 | 3株下部老叶枯黄 | 3株下部老叶干枯面积加大 | |
T3 | 1株下部老叶萎蔫失绿, 1株下部老叶边缘焦边 | 4株中下部叶片变黄, 下部老叶干枯,2株下部叶片焦边 | 6株中下部叶片变红, 下部老叶干枯 |
表2
干旱胁迫对5个树种叶片相对含水量、相对电导率和叶绿素含量的影响"
树种 species | 处理 treatments | 叶片相对含水量/% LRWC | 相对电导率/% REC | 叶绿素总含量/ (mg·g-1) total chlorophyll content |
---|---|---|---|---|
枫香 L. formosana | CK | 71.45±0.93 a | 28.90±0.60 c | 4.45±0.14 a |
T1 | 70.87±0.74 a | 30.94±1.80 c | 3.97±0.27 b | |
T2 | 69.37±1.17 ab | 34.76±0.72 b | 3.62±0.15 c | |
T3 | 67.40±1.77 b | 39.83±1.03 a | 3.20±0.24 d | |
黄连木 P. chinensis | CK | 66.53±1.85 a | 25.77±0.67 d | 5.80±0.11 a |
T1 | 61.40±2.62 ab | 32.29±0.52 c | 5.32±0.18 b | |
T2 | 60.53±3.20 b | 34.36±0.59 b | 4.34±0.11 c | |
T3 | 58.84±3.76 c | 36.06±0.55 a | 3.12±0.40 d | |
长序榆 U. elongata | CK | 68.87±0.91 a | 43.13±2.26 c | 5.72±0.19 a |
T1 | 67.16±1.04 a | 47.85±2.33 b | 5.36±0.09 b | |
T2 | 63.92±0.59 c | 61.21±1.09 a | 5.03±0.12 c | |
T3 | 63.03±0.74 c | 62.01±0.71 a | 3.20±0.23 d | |
黄山栾树 K. bipinnata | CK | 68.04±0.67 a | 23.55±1.12 d | 5.86±0.12 a |
T1 | 66.83±0.82 a | 27.64±1.32 c | 4.07±0.08 b | |
T2 | 61.57±1.91 b | 30.16±0.45 a | 3.87±0.12 b | |
T3 | 59.23±2.50 b | 32.99±1.59 b | 3.45±0.19 c | |
娜塔栎 Q. texana | CK | 59.86±0.91 a | 35.10±0.80 c | 5.34±0.18 a |
T1 | 56.74±1.51 b | 38.39±0.75 b | 4.91±0.26 b | |
T2 | 55.23±2.63 b | 38.50±0.57 b | 4.90±0.04 b | |
T3 | 54.26±1.09 b | 50.54±2.17 a | 3.99±0.20 c |
表3
干旱胁迫对5个树种渗透调节物质含量的影响"
树种 species | 处理 treatments | 游离脯氨酸 freeproline | 可溶性糖 soluble sugar | 可溶性蛋白 soluble protein |
---|---|---|---|---|
枫香 L. formosana | CK | 0.05±0.00 c | 40.38±0.14 c | 17.05±1.93 c |
T1 | 0.08±0.00 c | 43.75±0.50 c | 20.64±1.08 b | |
T2 | 0.12±0.03 b | 55.70±1.46 b | 29.17±0.96 a | |
T3 | 0.18±0.01 a | 79.62±3.74 a | 29.75±2.17 a | |
黄连木 P. chinensis | CK | 0.95±0.02 b | 49.86±2.89 c | 24.05±3.07 d |
T1 | 0.96±0.00 ab | 57.43±0.56 b | 30.10±0.92 c | |
T2 | 0.97±0.00 ab | 58.45±0.34 b | 37.04±0.88 b | |
T3 | 0.98±0.01 a | 63.52±0.77 a | 42.09±2.92 a | |
长序榆 U. elongata | CK | 0.68±0.01 c | 26.44±0.81 c | 42.27±1.04 b |
T1 | 0.95±0.19 b | 28.77±4.14 c | 47.61±6.89 ab | |
T2 | 0.96±0.00 b | 65.72±2.49 b | 51.12±5.12 ab | |
T3 | 1.04±0.19 a | 84.82±4.59 a | 53.38±4.13 a | |
黄山栾树 K. bipinnata | CK | 0.16±0.00 c | 21.93±1.11 a | 39.64±5.41 c |
T1 | 0.21±0.01 b | 25.35±1.58 c | 47.64±2.14 b | |
T2 | 0.26±0.03 a | 34.79±2.29 b | 51.77±0.88 ab | |
T3 | 0.25±0.01 a | 53.83±0.24 a | 55.51±4.07 a | |
娜塔栎 Q. texana | CK | 0.09±0.02 d | 50.00±4.53 b | 41.49±1.33 c |
T1 | 0.15±0.03 c | 50.15±1.32 b | 45.76±0.60 b | |
T2 | 0.22±0.01 b | 57.08±4.33 b | 46.54±1.51 b | |
T3 | 0.27±0.01 a | 67.76±9.30 a | 51.35±2.05 a |
表4
干旱胁迫对5个树种叶片保护酶活性和丙二醛含量的影响"
树种 species | 处理 treatments | 丙二醛含量/ (mmol·g-1) MDA content | 超氧化物歧化酶活性/ (U·g-1) SOD activity | 过氧化物酶活性/ (μg·g-1·min-1) POD activity | 过氧化氢酶活性/ (U·g-1) CAT activity |
---|---|---|---|---|---|
枫香 L. formosana | CK | 4.65±0.96 c | 446.88±11.76 a | 3.27 ±0.19 c | 129.91±6.98 d |
T1 | 7.84±0.87 b | 475.90±10.81 a | 5.81±1.16 a | 140.35±4.38 c | |
T2 | 10.57±0.85 a | 301.96±37.82 b | 5.26 ±0.53 ab | 164.78±2.21 a | |
T3 | 10.62±0.50 a | 270.80±36.28 b | 4.26 ±0.60 bc | 152.47±0.71b | |
黄连木 P. chinensis | CK | 3.59±0.23 b | 709.80±24.49 c | 3.67± 0.17 b | 60.83±0.29 c |
T1 | 4.42±0.36 b | 854.73±42.24 b | 4.32±0.86 b | 137.58±2.64 b | |
T2 | 5.78±1.23 ab | 1352.13±43.57 a | 5.87±1.07 a | 179.32±2.84 a | |
T3 | 6.79±1.89 a | 1287.30±24.51 a | 5.68±0.39 a | 168.61±22.19 a | |
长序榆 U. elongata | CK | 15.31±1.34 c | 388.62±23.55 b | 17.49±2.38 b | 40.45±2.00 c |
T1 | 16.74±2.07 c | 411.23±33.76 b | 20.43±6.68 ab | 49.26±2.38 b | |
T2 | 33.11±2.70 b | 560.64±47.62 a | 27.80±3.50 a | 59.65±4.00 a | |
T3 | 43.62±2.13 a | 510.08±46.63 a | 28.16±1.12 a | 57.39±3.71 a | |
黄山栾树 K. bipinnata | CK | 5.32±0.58 b | 1 007.64±58.02 c | 17.26±1.19 c | 250.30±23.70 b |
T1 | 7.95±2.80 b | 1 079.29±41.35 bc | 23.12±3.24 b | 284.21±14.36 a | |
T2 | 19.09±4.25 a | 1 264.01±119.46 a | 34.56±2.42 a | 287.16±18.56 a | |
T3 | 25.33±5.56 a | 1 173.25±24.50 ab | 26.23±1.48 b | 239.93±5.01b | |
娜塔栎 Q. texana | CK | 9.60±1.29 b | 608.33±89.93 c | 15.10±4.34 b | 26.54±2.45 c |
T1 | 12.55±3.50 ab | 781.17±45.60 b | 20.96±2.07b | 41.03±1.50 b | |
T2 | 12.99±3.48 ab | 784.31±58.03 b | 32.14±6.66 a | 45.13±3.07 b | |
T3 | 19.03±6.41 a | 827.62±78.35 a | 34.16±1.96 a | 53.80±1.12 a |
表5
5个造林树种隶属函数值比较及综合评价"
处理 treatments | 树种 species | 叶片相对 含水量+ leaf relative water content + | 相对 电导率- relative conductivity - | 叶绿素+ chloro- phyll + | 脯氨酸+ free pro- line+ | 可溶性糖+ soluble sugar + | 可溶性 蛋白质+ soluble protein+ | 过氧化物 酶活性+ POD activity+ | 超氧化物 歧化酶 活性+ SOD activity+ | 过氧化氢 酶活性+ CAT activity+ | 丙二醛- MDA- | 综合隶属 函数值 subordinate function values | 抗旱性 drought resistance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 枫香 L. formosana | 0.45 | 0.51 | 0.59 | 0.49 | 0.40 | 0.48 | 0.50 | 0.56 | 0.67 | 0.56 | 0.52 | 2 |
黄连木 P. chinesis | 0.46 | 0.44 | 0.38 | 0.33 | 0.62 | 0.59 | 0.60 | 0.60 | 0.59 | 0.55 | 0.52 | 2 | |
长序榆 U. elongata | 0.58 | 0.45 | 0.58 | 0.39 | 0.40 | 0.63 | 0.35 | 0.35 | 0.40 | 0.46 | 0.46 | 5 | |
黄山栾树 K. bipinnata | 0.49 | 0.37 | 0.35 | 0.42 | 0.64 | 0.47 | 0.42 | 0.52 | 0.53 | 0.62 | 0.48 | 4 | |
娜塔栎 Q. texana | 0.51 | 0.50 | 0.64 | 0.54 | 0.38 | 0.49 | 0.59 | 0.58 | 0.59 | 0.65 | 0.55 | 1 | |
T2 | 枫香 L. formosana | 0.41 | 0.55 | 0.56 | 0.51 | 0.66 | 0.37 | 0.66 | 0.61 | 0.60 | 0.54 | 0.55 | 2 |
黄连木 P. chinesis | 0.43 | 0.55 | 0.58 | 0.61 | 0.36 | 0.52 | 0.62 | 0.57 | 0.65 | 0.38 | 0.53 | 3 | |
长序榆 U. elongata | 0.44 | 0.64 | 0.59 | 0.60 | 0.49 | 0.39 | 0.45 | 0.42 | 0.46 | 0.47 | 0.49 | 4 | |
黄山栾树 K. bipinnata | 0.51 | 0.34 | 0.43 | 0.55 | 0.34 | 0.46 | 0.58 | 0.49 | 0.44 | 0.50 | 0.46 | 5 | |
娜塔栎 Q. texana | 0.43 | 0.50 | 0.58 | 0.51 | 0.64 | 0.47 | 0.53 | 0.63 | 0.65 | 0.65 | 0.56 | 1 | |
T3 | 枫香 L. formosana | 0.38 | 0.44 | 0.48 | 0.53 | 0.61 | 0.53 | 0.59 | 0.64 | 0.67 | 0.54 | 0.54 | 1 |
黄连木 P. chinesis | 0.42 | 0.52 | 0.63 | 0.45 | 0.49 | 0.56 | 0.56 | 0.58 | 0.50 | 0.56 | 0.53 | 3 | |
长序榆 U. elongata | 0.49 | 0.36 | 0.34 | 0.65 | 0.53 | 0.59 | 0.51 | 0.48 | 0.34 | 0.49 | 0.48 | 4 | |
黄山栾树 K. bipinnata | 0.51 | 0.58 | 0.47 | 0.54 | 0.51 | 0.41 | 0.40 | 0.42 | 0.38 | 0.52 | 0.47 | 5 | |
娜塔栎 Q. texana | 0.43 | 0.48 | 0.65 | 0.59 | 0.52 | 0.48 | 0.55 | 0.56 | 0.56 | 0.63 | 0.54 | 1 |
[1] | 洪震, 练发良, 刘术新, 等. 3 种乡土园林地被植物对干旱胁迫的生理响应[J]. 浙江农林大学学报, 2016,33(4):636-642. |
HONG Z, LIAN F L, LIU S X, et al. Physiological response of three native garden ground cover plant seedlings to increasing drought stress[J]. J Zhejiang A & F Univ, 2016,33(4):636-642. DOI: 10.11833/j.issn.2095-0756.2016.04.012. | |
[2] | 何小三, 徐林初, 龚春, 等. 干旱胁迫对‘赣无 12’苗期光合特性的影响[J]. 中南林业科技大学学报, 2018,38(12):52-61. |
HE X S, XU L C, GONG C, et al. Effects of drought stress on photosynthetic characteristics of Camellia oleifera seedlings of ‘GanWu 12’[J]. J Central South For Univ, 2018,38(12):52-61. DOI: 10.14067/j.cnki.1673-923x.2018.12.007. | |
[3] | 邓辉茗, 龙聪颖, 蔡仕珍, 等. 不同水分胁迫对绵毛水苏幼苗形态和生理特性的影响[J]. 西北植物学报, 2018,38(6):1099-1108. |
DENG H M, LONG C Y, CAI S Z, et al. Morphology and physiological characteristics of Stachys lanata seedling under water stress[J]. Acta Bot Boreali-Occidentalia Sin, 2018,38(6):1099-1108. DOI: 10.7606/j.issn.1000-4025.2018.06.1099. | |
[4] | 郑鹏丽, 黄晓蓉, 费永俊, 等. 水分胁迫对桢楠幼树光合生理特性的影响[J]. 中南林业科技大学学报, 2019,39(10):64-70. |
ZHENG P L, HUANG X R, FEI Y J, et al. Effects of water stress on photosynthetic physiology characteristics of Phoebe zhennan seedlings[J]. J Central South Univ For Technol, 2019,39(10):64-70. DOI: 10.14067/j.cnki.1673-923x.2019.10.010. | |
[5] | LIPIEC J, DOUSSAN C, NOSALEWICZ A, et al. Effect of drought and heat stresses on plant growth and yield: a review[J]. International Agrophysics, 2013,27(4):463-477. DOI: 10.2478/intag-2013-0017. |
[6] | FATHI A, TARI D B. Effect of drought stress and its mechanism in plants[J]. International Journal of Life Sciences, 2016,10(1):1-6. DOI: 10.3126/ijls.v10i1.14509. |
[7] | 刘盼盼, 许冲勇, 孙红梅, 等. 枫香优良无性系组织培养研究[J]. 林业与环境科学, 2019,35(2):14-19. |
LIU P P, XU C Y, SUN H M, et al. Tissue culture of superior clone of Liquidambar formosana[J]. For Environ Sci, 2019,35(2):14-19. DOI: 10.3969/j.issn.1006-4427.2019.02.003. | |
[8] | 庞宏东, 胡兴宜, 胡文杰, 等. 淹水胁迫对枫杨等 3 个树种生理生化特性的影响[J]. 中南林业科技大学学报, 2018,38(10):15-20,26. |
PANG H D, HU X Y, HU W J, et al. Effects of waterlogging stress on the physiological and biochemical characteristics of three tree species[J]. J Central South Univ For Technol, 2018,38(10):15-20, 26. DOI: 10.14067/j.cnki.1673-923x.2018.10.003. | |
[9] | 胡文杰, 庞宏东, 胡兴宜, 等. 9 年生枫香种源变异及优良种源选择[J]. 中南林业科技大学学报, 2019,39(3):40-46. |
HU W J, PANG H D, HU X Y, et al. Variation and selection of Liquidambar formosana based on a nine-year-old provenance test[J]. J Central South Univ For Technol, 2019,39(3):40-46. DOI: 10.14067/j.cnki.1673-923x.2019.03.007. | |
[10] | 郭欢欢, 刘勇, 姚飞, 等. 黄连木苗期年生长节律、生物量分配及养分积累[J]. 中南林业科技大学学报, 2018,38(7):71-75. |
GUO H H, LIU Y, YAO F, et al. Seedling growth rhythm, biomass allocation and nutrient accumulation of Pistacia chinensis[J]. J Central South Univ For Technol, 2018,38(7):71-75.DOI: 10.14067/j.cnki.1673-923x.2018.07.012. | |
[11] | 丁锡珍. 彩叶树种娜塔栎的繁育与栽培技术[J]. 现代园艺, 2017(16):38. |
DING X Z. Breeding and cultivation techniques of Quercus texana with colorful leaves[J]. Xiandai Hortic, 2017(16):38. DOI: CNKI:SUN:JXYA.O.2017-16-029. | |
[12] | 李峰卿, 王秀花, 楚秀丽, 等. 缓释肥 N/P 比及加载量对浙江楠等 5 种珍贵树种 1 年生容器苗生长和养分库构建的影响[J]. 南京林业大学学报(自然科学版), 2020,44(1):72-80. |
LI F Q, WANG X H, CHU X L, et al. Effects of N/P ratio and loading on growth and construction of nutrients reserves of one-year-old seedlings for five kinds of precious tree species[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(1):72-80. DOI: 10.3969/j.issn.1000-2006.201902007. | |
[13] | 罗喻才, 陈琳, 彭巧华, 等. 我国极小种群野生植物长序榆(Ulmus elongate)的分布格局和群落调查[J]. 南方林业科学, 2018,46(1):1-4. |
LUO Y C, CHEN L, PENG Q H, et al. Distribution pattern and community survey of Ulmus elongate, one of plant species with extremely small populations in China[J]. Jiangxi For Sci Technol, 2018,46(1):1-4. DOI: 10.16259/j.cnki.36-1342/s.2018.01.001. | |
[14] | 陈琳, 余泽平, 聂堂杰, 等. 江西官山8种珍贵野生植物资源及保护策略[J]. 中国野生植物资源, 2018,37(6):63-67. |
CHEN L, YU Z P, NIE T J, et al. Eight kinds of precious wild plant resources and protection strategies in Guanshan Nature Reserve,Jiangxi[J]. Chin Wild Plant Resour, 2018,37(6):63-67. DOI: 10.3969/j.issn.1006-9690.2018.06.016. | |
[15] | 黄利斌, 梁珍海, 窦全琴, 等. 观赏栾树新品种‘金焰彩栾’[J]. 林业科学, 2015,51(5):165. |
HUANG L B, LIANG Z H, DOU Q Q, et al. A new variety of ornamental Koelreuteria bipinnata var.integrifoliola‘Jinyan’[J]. Sci Silvae Sin, 2015,51(5):165. DOI: 10.11707/j.1001-7488.20150520. | |
[16] | 吕运舟, 董筱昀, 黄利斌. 黄山栾树实时荧光定量 PCR 内参基因的筛选[J]. 分子植物育种, 2019,17(2):553-560. |
LYU Y Z, DONG X Y, HUANG L B. The screening of reference genes for real-time fluorescent quantitative PCR of Koelreuteria bipinnata[J]. Mol Plant Breed, 2019,17(2):553-560. DOI: 10.13271/j.mpb.017.000553. | |
[17] | 洪震, 刘术新, 练发良, 等. 4 个小叶蚊母树无性系幼苗在不同土壤类型上的生长差异[J]. 浙江农林大学学报, 2018,35(2):380-386. |
HONG Z, LIU S X, LIAN F L, et al. Growth difference of four Distylium buxifolium clone seedlings in different soil types[J]. J Zhejiang For Coll, 2018,35(2):380-386. DOI: 10.11833/j.issn.2095-0756.2018.02.025. | |
[18] | 李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009. |
LI L. Plant physiology module lab guide[M]. Beijing: Science Press, 2009. | |
[19] | 娄晓瑞. 干旱胁迫对 10 种不同种源地墨西哥柏的影响[D]. 南京: 南京林业大学, 2012. |
LOU X R. The effect of drought stress on 10 different provenances Mexican cypress[D]. Nanjing: Nanjing Forest University, 2012. | |
[20] | 刘菲, 周隆腾, 蒋燚, 等. 不同种源江南油杉幼苗对干旱胁迫的生理响应[J]. 中南林业科技大学学报, 2018,38(11):35-45. |
LIU F, ZHOU L T, JIANG Y, et al. Physiological response from different provenances of Keteleeria fortunei seedlings to drought stress[J]. J Central South Univ For Technol, 2018,38(11):35-45. DOI: 10.14067/j.cnki.1673-923x.2018.11.006. | |
[21] | 赵琳, 郎南军, 温绍龙, 等. 云南干热河谷4种植物抗旱机理的研究[J]. 西部林业科学, 2006,35(2):9-16. |
ZHAO L, LANG N J, WEN S L, et al. A study on drought resistance mechanism of four kinds of plants in dry and hot valley of Yunnan Province[J]. J West China For Sci, 2006,35(2):9-16.DOI: 10.3969/j.issn.1672-8246.2006.02.002. | |
[22] | 蒋志荣, 杨占彪, 汪君, 等. 兰州九州台四种绿化树种抗旱性机理比较研究[J]. 中国沙漠, 2006,26(4):553-558. |
JIANG Z R, YANG Z B, WANG J, et al. Comparison of drought resistant mechanism between four virescence species in Jiuzhoutai of Lanzhou City[J]. J Desert Res, 2006,26(4):553-558. DOI: 10.3321/j.issn:1000-694X.2006.04.009. | |
[23] | 马书尚, 杨淑慎. 不良环境对植物细胞膜的伤害[J]. 植物生理学实验技术, 2000,1(1):199-201. |
MA S S, YANG S S. Damage to plant cell membrane by adverse environment[J]. Experimental techniques in plant physiology, 2000,1(1):199-201. | |
[24] | 张海燕, 李贵全. 大豆抗旱性与生理生态指标关系的研究[J]. 中国农学通报, 2005,21(8):140-142. |
ZHANG H Y, LI G Q. Study on the relationships between soybean drought-resistance and physiological and ecological indicators[J]. Chin Agric Sci Bull, 2005,21(8):140-142.DOI: 10.3969/j.issn.1000-6850.2005.08.040. | |
[25] | 王爱国, 邵从本, 罗广华, 等. 丙二醛作为植物脂质过氧化指标的探讨[J]. 植物生理学通讯, 1986,22(2):55-57. |
WANG A G, SHAO C B, LUO G H, et al. Study on malondialdehyde as a lipid peroxidation index in plants[J]. Plant Physiology Communications. 1986,22(2):55-57. DOI: CNKI:SUN:ZWSL.0.1986-02-034. | |
[26] | GOMEZDELCAMPO M, RUIZ C, LISSARRAGUE J R. Effect of water stress on leaf area development, photosynjournal, and productivity in Chardonnay and Airén grapevines[J]. American Journal of Enology & Viticulture, 2002,53(2):138-143. DOI: 10.1016/S0304-4238(01)00277-1. |
[27] | 王宇超, 王得祥, 彭少兵, 等. 干旱胁迫对木本滨藜生理特性的影响[J]. 林业科学, 2010,46(1):61-67. |
WANG Y C, WANG D X, PENG S B, et al. Effects of drought stress on physiological characteristics of woody saltbush[J]. Sci Silvae Sin, 2010,46(1):61-67. DOI: 10.11707/j.1001-7488.20100110. | |
[28] | 文瑛, 廖飞勇, 刘智慧. 不同水分胁迫对黄枝槐生理特性的影响研究[J]. 中国农学通报, 2012,28(13):47-52. |
WEN Y, LIAO F Y, LIU Z H. The effect of water stress on the physiology of Sophora japonica ‘Golden stem’[J]. Chin Agric Sci Bull, 2012,28(13):47-52. DOI: 10.3969/j.issn.1000-6850.2012.13.008. | |
[29] | 刘锦春, 钟章成, 何跃军. 干旱胁迫及复水对喀斯特地区柏木幼苗活性氧清除系统的影响[J]. 应用生态学报, 2011,22(11):2836-2840. |
LIU J C, ZHONG Z C, HE Y J. Effects of drought stress and re-watering on the active oxygen scavenging system of Cupressus funebris seedlings in Karst area[J]. Chin J App Ecol, 2011,22(11):2836-2840. DOI: CNKI:SUN:YYSB.0.2011-11-009. | |
[30] | 任文伟, 钱吉, 马骏, 等. 不同地理种群羊草在聚乙二醇胁迫下含水量和游离脯氨酸含量的比较[J]. 生态学报, 2000,20(2):349-352. |
REN W W, QIAN J, MA J, et al. Comparative study of Leymus chinensis’s water content and free proline of different geographic populations under the force of different consistency PEG[J]. Acta Ecol Sin, 2000,20(2):349-352. DOI: 10.3321/j.issn:1000-0933.2000.02.028. | |
[31] | VERBRUGGEN N, HERMANS C. Proline accumulation in plants: a review[J]. Amino Acids, 2008,35(4):753-759. DOI: 10.1007/s00726-008-0061-6. |
[32] | 罗杰, 周光良, 胡庭兴, 等. 干旱胁迫对润楠幼苗生长和生理生化指标的影响[J]. 应用与环境生物学报, 2015,21(3):563-570. |
LUO J, ZHOU G L, HU T X, et al. Effects of drought stress on growth and physiological parameters of drought stress on growth and physiological parameters of Machilus achilus pingii seedlings[J]. Chin J Appl Environ Biol, 2015,21(3):563-570. DOI: 10.3724/SP.J.1145.2014.11005. | |
[33] | 姜英淑, 陈书明, 王秋玉, 等. 干旱胁迫对 2 个欧李种源生理特征的影响[J]. 林业科学, 2009,45(6):6-10. |
JIANG Y S, CHEN S M, WANG Q Y, et al. Effects of the drought stress on physiological characteristics of two Cerasus humilis provenances[J]. Sci Silvae Sin, 2009,45(6):6-10. DOI: 10.3321/j.issn:1001-7488.2009.06.002.https://doi.org/10.1007/s00726-008-0061-6. | |
[34] | 刘方春, 邢尚军, 马海林, 等. 干旱对侧柏容器苗和裸根苗生长、营养及生理特性的影响[J]. 北京林业大学学报, 2014,36(5):68-73. |
LIU F C, XING S J, MA H L, et al. Effects of drought stress on growth, nutrition and physiological characteristics of Platycladus orientalis container and bareroot seedlings[J]. J Beijing For Univ, 2014,36(5):68-73. DOI: 10.13332/j.cnki.jbfu.2014.05.020. | |
[35] | 崔婷茹, 于慧敏, 李会彬, 等. 干旱胁迫及复水对狼尾草幼苗生理特性的影响[J]. 草业科学, 2017,34(4):788-793. |
CUI T R, YU H M, LI H B, et al. Effect of drought stress and rewatering on physiological characteristics of Pennisetum alopecuroides seedlings[J]. Pratacultural Sci, 2017,34(4):788-793. DOI: 10.11829/j.issn.1001-0629.2016-0535. | |
[36] | 冯晓敏, 张永清. 水分胁迫下不同耐旱性糜子叶片保护酶活性及膜脂过氧化特性[J]. 干旱地区农业研究, 2019,37(1):200-207. |
FENG X M, ZHANG Y Q. Characteristics of protective enzyme activities and lipid peroxidation in broomcorn millet leaves under soil water stress[J]. Agric Res Arid Areas, 2019,37(1):200-207. DOI: 10.7606/j.issn.1000-7601.2019.01.28. | |
[37] | 刘遵春, 包东娥. 水分胁迫对金光杏梅幼苗生长及其生理指标的影响[J]. 河北农业大学学报, 2007,30(5):28-31, 88. |
LIU Z C, BAO D E. Effect of water stress on growth and physiological indexes in Jinguang plum seedlings[J]. J Agric Univ Hebei, 2007,30(5):28-31, 88. DOI: 10.3969/j.issn.1000-1573.2007.05.008. | |
[38] | 赵兰, 邢新婷, 聂庆娟, 等. 4种地被观赏竹抗旱性综合评价研究[J]. 西北林学院学报, 2011,26(1):18-21. |
ZHAO L, XING X T, NIE Q J, et al. Comprehensive evaluation on drought resistance of four dwarf ornamental bamboo species[J]. J Northwest For Univ, 2011,26(1):18-21. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[3] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[4] | 张赟齐, 董宁光, 郝艳宾, 陈永浩, 张俊佩, 侯智霞, 苏淑钗, 吴佳庆, 齐建勋. 109份丰产核桃单株坚果表型多样性分析及性状评价[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 87-96. |
[5] | 母洪娜, 王炜, 樊蕾, 吴楚, 郭晓华, 孙陶泽. 印度梨形孢对干旱胁迫下桂花生长及抗旱性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 101-106. |
[6] | 黎梦娟, 朱礼明, 霍俊男, 张景波, 施季森, 成铁龙. 唐古特白刺NtCBL1、NtCBL2基因克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 93-99. |
[7] | 石欣隆, 杨月琴, 薛娴, 刘伟, 宋程威, 郭丽丽, 侯小改. 壳寡糖对干旱胁迫下‘凤丹’幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 120-126. |
[8] | 马娟娟, 赵斌, 陈颖, 凌熙晨, 俞婕, 陈茜. 4个北美冬青品种苗对低温胁迫的生理响应及抗寒性比较[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 34-40. |
[9] | 张庆, 魏树和, 代惠萍, 贾根良. 硒对茶树镉毒害的缓解作用研究[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 200-204. |
[10] | 马洁怡,王金平,张金池,朱凌骏,袁钟鸣. 沿海造林树种根际丛枝菌根真菌与土壤因子的通径分析[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 139-147. |
[11] | 董珊珊,李宁冉,杨海燕,吴文龙,闾连飞,李维林. 蓝莓根系对土壤锰胁迫的生理响应[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 169-174. |
[12] | 李大培,王艺,张尚昆,赵翔,赵焕元,刘玉梅,杨桂燕1,2*. 核桃V-ATPase c亚基基因(JrVHAc4)的克隆和抗旱功能分析[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 79-85. |
[13] | 陈燕琼,沈,范佳露,陈茜,许欣玥,张迪,钱钢,陈颖. 茉莉酸甲酯对干旱及复水下落叶冬青苗叶片抗氧化水平的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 35-43. |
[14] | 叶波,张玲,王国明. 舟山海岛主要造林树种幼苗的光合特性[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 105-110. |
[15] | 倪霞,吴思思,周本智,鲁小珍,曹永慧. 模拟干旱处理下毛竹光响应特征分析[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 47-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||