根系输入对森林土壤碳库及碳循环的影响研究进展

黄梓敬, 徐侠, 张惠光, 蔡斌, 李良彬

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 25-32.

PDF(1451 KB)
PDF(1451 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 25-32. DOI: 10.12302/j.issn.1000-2006.202002048
专题报道Ⅰ:“双碳”视域下的土壤碳(执行主编 阮宏华)

根系输入对森林土壤碳库及碳循环的影响研究进展

作者信息 +

Advances in effects of root input on forest soil carbon pool and carbon cycle

Author information +
文章历史 +

摘要

植物根系输入是森林土壤碳库的重要来源。全球气候变化可能引起森林地下部分碳通量改变,进而影响森林土壤碳库及碳循环。笔者综述了根系输入对土壤碳累积、土壤活性碳库(包括土壤微生物生物量碳和可溶性有机碳)和土壤碳库稳定性的影响,综合分析了森林土壤呼吸、土壤微生物和土壤酶活性对根系输入变化的响应。分析发现:①根系输入减少可能减弱根际的激发效应,使土壤有机碳(SOC)短期增加,但从长期来看根系输入的缺失会导致SOC的减少;②根系分泌的一些物质促进土壤初始团聚体的形成,但其对矿物-有机质结合物稳定性的影响还不完全清楚;③根系输入减少会降低土壤呼吸作用;④微生物群落结构对根系输入变化的响应主要取决于微生物对底物质量和数量的适应,而这些响应在不同森林生态系统间可能也有差异;另外,酶合成主要取决于与微生物生长相关的资源分配到酶生产中的成本效率。目前,关于根系输入对碳循环,特别是土壤呼吸的研究比较多,但根系输入物组成复杂,微生物与酶对不同根系输入物的响应机制尚不清楚,这些响应在不同森林生态系统中也有差异;此外,根系输入对土壤碳库稳定性的作用常被忽视,根系与微生物的相互作用对碳循环和土壤碳库稳定性的影响还有很大不确定性。建议加强植物根系、土壤和微生物的相互关系研究,以深入理解气候变化背景下森林生态系统碳循环。

Abstract

Plant root inputs are an essential source of forest soil carbon pools. Climate change may cause variations in the carbon flux below ground, affecting forest soil carbon pools and carbon cycles. In this article, we have reviewed the effects of root input on soil carbon accumulation, soil active carbon pools (including soil microbial biomass carbon and soluble organic carbon), and the stability of soil carbon pools. Furthermore, we have discussed the impacts of forest soil respiration, soil microorganisms, and soil enzyme activities on root inputs. We found that : (1) Decreased root input may reduce the priming effect of the rhizosphere and subsequently increase soil organic carbon in the short term but decrease it in the long term; (2) Root exudates may promote the initial formation of aggregates, but its effect on the stability of the metal-organic complex is unclear; (3) Decreased root input reduces soil respiration; (4) The response of the microbial community structure to root input mainly depends on the adaptation of microorganisms to substrate quality and quantity, which vary among forest ecosystems. In addition, whether enzyme synthesis is upregulated depends mainly on the cost efficiency of allocating resources for microbial growth to enzyme production. Many studies have investigated the carbon cycle of root input, especially soil respiration; however, the composition of root input is complex, and the response mechanisms of microorganisms and enzymes to different root inputs are unclear. These responses also differed among forest ecosystems. In addition, the effect of root input on the stability of the soil carbon pool is often neglected; the influence of the interaction between the root system and microorganisms on the carbon cycle and the stability of the soil carbon pool remains uncertain. We suggest strengthening the research on the links among plant roots, soil, and microorganisms, which would contribute to a deeper understanding of the carbon cycle of forest ecosystems in the context of climate change.

关键词

森林生态系统 / 根系输入 / 土壤碳库 / 碳循环

Key words

forest ecosystem / root input / soil carbon pool / carbon cycle

引用本文

导出引用
黄梓敬, 徐侠, 张惠光, . 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版). 2022, 46(1): 25-32 https://doi.org/10.12302/j.issn.1000-2006.202002048
HUANG Zijing, XU Xia, ZHANG Huiguang, et al. Advances in effects of root input on forest soil carbon pool and carbon cycle[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 25-32 https://doi.org/10.12302/j.issn.1000-2006.202002048
中图分类号: S718.5   

参考文献

[1]
FAO. Global forest resources assessment 2010[M]. FAO, 2010.DOI: 10.4060/ca8753en.
[2]
PAN Y, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
[3]
LITTON C M, RAICH J W, RYAN M G. Carbon allocation in forest ecosystems[J]. Global Change Biology, 2007, 13(10):2089-2109.DOI: 10.1111/j.1365-2486.2007.01420.x.
[4]
YIN H, LI Y, XIAO J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming[J]. Global Change Biology, 2013, 19(7):2158-2167.DOI: 10.1111/gcb.12161.
[5]
BAI W M, WAN S Q, NIU S L, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling[J]. Global Change Biology, 2010, 16(4):1306-1316. DOI: 10.1111/j.1365-2486.2009.02019.x.
[6]
BRUNNER I, GODBOLD D L. Tree roots in a changing world[J]. Journal of Forest Research, 2007, 12(2):78-82.DOI: 10.1007/s10310-006-0261-4.
[7]
LUKAC M. Fine root turnover[M]// Measuring Roots.Berlin,Heidelberg:Springer Inc, 2011:363-373.DOI: 10.1007/978-3-642-22067-8_18.
[8]
DORNBUSH M E, ISENHART T M, RAICH J W. Quantifying fine-root decomposition:an alternative to buried litterbags[J]. Ecology, 2002, 83(11):2985-2990. DOI: 10.1890/0012-9658(2002)083[2985:QFRDAA]2.0.CO;2.
[9]
ARGIROFF W A, ZAK D R, UPCHURCH R A, et al. Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots[J]. Global Change Biology, 2019, 25(12):4369-4382. DOI: 10.1111/gcb.14770.
[10]
KÄTTERER T, BOLINDER M A, ANDRÉN O, et al. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment[J]. Agriculture, Ecosystems & Environment, 2011, 141(1/2):184-192. DOI: 10.1016/j.agee.2011.02.029.
[11]
XIA M X, TALHELM A F, PREGITZER K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytologist, 2015, 208(3):715-726. DOI: 10.1111/nph.13494.
[12]
RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Plant and Soil, 2005, 269(1/2):341-356. DOI: 10.1007/s11104-004-0907-y.
[13]
JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1/2):5-33. DOI: 10.1007/s11104-009-9925-0.
[14]
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38:298-310.
摘要
根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chin J Plan Ecolo, 2014, 38(3):298-310.DOI: 10.3724/SP.J.1258.2014.00027
[15]
王振宇, 吕金印, 李凤民, 等. 根际沉积及其在植物-土壤碳循环中的作用[J]. 应用生态学报, 2006, 17(10):1963-1968.
WANG Z Y, LYU E, LI F M, et al. Rhizodeposition and its role in carbon cycling in plant-soil system[J]. Chin J Appl Ecol, 2006, 17(10):1963-1968.
[16]
SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56. DOI: 10.1038/nature10386.
[17]
CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339(6127):1615-1618. DOI: 10.1126/science.1231923.
[18]
JACKSON O, QUILLIAM R S, STOTT A, et al. Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates[J]. Plant and Soil, 2019, 440(1/2):473-490. DOI: 10.1007/s11104-019-04072-3.
[19]
OHASHI M, MAKITA N, KATAYAMA A, et al. Characteristics of root decomposition based on in situ experiments in a tropical rainforest in Sarawak,Malaysia:impacts of root diameter and soil biota[J]. Plant and Soil, 2019, 436(1/2):439-448. DOI: 10.1007/s11104-018-03929-3.
[20]
SOKOL N W, KUEBBING S E, KARLSEN-AYALA E, et al. Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J]. New Phytologist, 2019, 221(1):233-246. DOI: 10.1111/nph.15361.
[21]
SHAMOOT S, MCDONALD L, BARTHOLOMEW W V. Rhizo-deposition of organic debris in soil[J]. Soil Science Society of America Journal, 1968, 32(6):817. DOI: 10.2136/sssaj1968.03615995003200060031x.
[22]
BURTON A J, PREGITZER K S, HENDRICK R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000, 125(3):389-399. DOI: 10.1007/s004420000455.
[23]
MAJDI H, TRUUS L, JOHANSSON U, et al. Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden[J]. Forest ecology and management, 2008, 255(7):2109-2117. DOI: 10.1016/j.foreco.2007.12.017.
[24]
FINÉR L, OHASHI M, NOGUCHI K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest ecology and management, 2011, 261(2):265-277. DOI: 10.1016/j.foreco.2010.10.016.
[25]
CHAPIN F S, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York:Springer, 2002. DOI: 10.1007/b97397.
[26]
YANG Y S, CHEN G S, GUO J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics[J]. Ann For Sci, 2004, 61(1):65-72. DOI: 10.1051/forest:2003085.
[27]
BERG B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest ecology and management, 2000, 133(1/2):13-22. DOI: 10.1016/s0378-1127(99)00294-7.
[28]
林成芳, 郭剑芬, 陈光水, 等. 森林细根分解研究进展[J]. 生态学杂志, 2008, 27(6):1029-1036.
LIN C F, GUO J F, CHEN G S, et al. Research progress in fine root decomposition in forest ecosystem[J]. Chin J Ecol, 2008, 27(6):1029-1036.DOI: 10.13292/j.1000-4890.2008.0211.
[29]
PAUSCH J, KUZYAKOV Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale[J]. Global Change Biology, 2018, 24(1):1-12.DOI: 10.1111/gcb.13850.
[30]
尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究:问题与展望[J]. 植物生态学报, 2018, 42:1055-1070.
摘要
植物根际过程与调控机理研究已成为当前土壤学最活跃、最敏感的研究领域, 而根系分泌物作为根系-土壤-微生物界面物质能量交换和信息传递的重要媒介物质, 是构成根际微生态系统活力与功能特征的内在驱动因素, 是根际概念与根际过程存在的重要前提和基础。然而, 由于传统的根际过程研究更强调以实际生产问题为导向, 加之农作物生长周期较短、操作便利等诸多因素, 以往对植物根系分泌物研究主要聚焦在农业生态系统, 而有关根系分泌物在森林生态系统中的重要作用与调控机理研究甚少, 认识相对零散和片段化。基于此, 该文结合作者实际研究工作中的主要成果和该领域国际前沿动态, 综述了森林根系分泌物的生态重要性, 重点论述了目前森林根系分泌物生态学研究中存在的主要问题与不足, 在此基础上展望了未来森林根系分泌物生态学研究中值得关注的重点方向和研究内容。
YIN H J, ZHANG Z L, LIU Q. Root exudates and their ecological consequences in forest ecosystems: problems and perspective[J]. Chin J Plan Ecolo, 2018, 42(11):1055-1070.DOI: 10.17521/cjpe.2018.0156.
[31]
HÖGBERG P, HÖGBERG M N, GÖTTLICHER S G, et al. High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms[J]. New Phytologist, 2008, 177:220-228.DOI: 10.1111/j.1469-8137.2007.02238.x.
[32]
BAHN M, SCHMITT M, SIEGWOLF R, et al. Does photosynjournal affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale?[J]. New Phytologist, 2009, 182(2):451-460. DOI: 10.1111/j.1469-8137.2008.02755.x.
[33]
DAKORA F D, PHILLIPS D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil, 2002, 245(1):35-47. DOI: 10.1023/A:1020809400075.
[34]
HÖGBERG M N, BRIONES M J I, KEEL S G, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest[J]. New Phytologist, 2010, 187(2):485-493. DOI: 10.1111/j.1469-8137.2010.03274.x.
[35]
王清奎. 碳输入方式对森林土壤碳库和碳循环的影响研究进展[J]. 应用生态学报, 2011, 22(4):1075-1081.
WANG Q K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input[J]. Chin J Appl Ecol, 2011, 22(4):1075-1081.DOI: 10.13287/j.1001-9332.2011.0111.
[36]
WEINTRAUB M N, SCOTT-DENTON L E, SCHMIDT S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity,dissolved organic carbon,and nutrient availability in a subalpine forest ecosystem[J]. Oecologia, 2007, 154(2):327-338. DOI: 10.1007/s00442-007-0804-1.
[37]
SUBKE J A, HAHN V, BATTIPAGLIA G, et al. Feedback interactions between needle litter decomposition and rhizosphere activity[J]. Oecologia, 2004, 139(4):551-559. DOI: 10.1007/s00442-004-1540-4.
[38]
FENG W T, ZOU X M, SCHAEFER D. Above-and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China[J]. Soil Biology and Biochemistry, 2009, 41(5):978-983. DOI: 10.1016/j.soilbio.2008.10.002.
[39]
JACKSON R B, LAJTHA K, CROW S E, et al. The ecology of soil carbon:pools,vulnerabilities,and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48(1):419-445. DOI: 10.1146/annurev-ecolsys-112414-054234.
[40]
FEKETE I, KOTROCZÓZ, VARGA C, et al. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest[J]. Soil Biology and Biochemistry, 2014, 74:106-114.DOI: 10.1016/j.soilbio.2014.03.006.
[41]
LAJTHA K, BOWDEN R D, NADELHOFFER K. Litter and root manipulations provide insights into soil organic matter dynamics and stability[J]. Soil Science Society of America Journal, 2014, 78(S1):S261-S269. DOI: 10.2136/sssaj2013.08.0370nafsc.
[42]
CHENG L, BOOKER F L, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337(6098):1084-1087. DOI: 10.1126/science.1224304.
[43]
FINZI A C, ABRAMOFF R Z, SPILLER K S, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 2015, 21(5):2082-2094. DOI: 10.1111/gcb.12816.
[44]
梁儒彪, 梁进, 乔明锋, 等. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5):466-476.
摘要
目前有关森林根系分泌物及其诱导的土壤生态学效应研究主要关注根系碳(C)源输入, 而极少关注根系分泌物氮(N)源输入及其伴随的C:N化学计量特征对土壤过程和功能的影响, 极大地限制了我们对森林根系-土壤-微生物互作机制的深入认识。该研究以川西亚高山天然林和云杉(Picea asperata)人工林土壤为对象, 模拟配制不同C:N化学计量特征(只有N、C:N = 10、C:N = 50、C:N = 100和只有C处理)的根系分泌物溶液进行人工添加试验, 以探究根系分泌物化学计量特征对两种林分土壤碳动态及其微生物群落结构的影响差异。结果表明: 模拟根系分泌物C添加总体促进了两种林分土壤有机质分解激发效应而降低了土壤总碳(TC)含量, 而N添加在一定程度上缓和了两种林分土壤TC含量的降低幅度, 且C添加导致天然林土壤TC含量的降低幅度明显低于土壤N有效性更低的人工林。几种根系分泌物添加处理对两种林分土壤活性和惰性碳库的影响无明显规律。另外, 根系分泌物C添加总体降低了天然林土壤微生物总磷脂脂肪酸(PLFA)含量和细菌、放线菌、真菌PLFA含量, 而总体增加人工林土壤微生物PLFA总量和细菌、放线菌、真菌PLFA含量, 并诱导两种林分土壤微生物群落结构(细菌:真菌相对丰度)也发生了各自不同的变化。上述结果表明森林根系分泌物N源输入和土壤N有效性共同调控根系C源输入对土壤有机质分解激发效应的方向和幅度。研究结果为深入揭示典型森林根系分泌物化学计量特征对土壤生物化学循环过程的调控机制提供了一定的理论依据。
LIANG R B, LIANG J, QIAO M F, et al. Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan,China[J]. Acta Phytoecol Sin, 2015, 39(5):466-476.DOI: 10.17521/cjpe.2015.0045.
[45]
CHEN D M, ZHOU L X, WU J P, et al. Tree girdling affects the soil microbial community by modifying resource availability in two subtropical plantations[J]. Applied Soil Ecology, 2012, 53:108-115. DOI: 10.1016/j.apsoil.2011.10.014.
[46]
JONES D L, HODGE A, KUZYAKOV Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist, 2004, 163(3):459-480. DOI: 10.1111/j.1469-8137.2004.01130.x.
[47]
VON LÜTZOW M, KÖGEL-KNABNER I, EKSCHMITT K, et al. SOM fractionation methods:relevance to functional pools and to stabilization mechanisms[J]. Soil Biology and Biochemistry, 2007, 39(9):2183-2207. DOI: 10.1016/j.soilbio.2007.03.007.
[48]
PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5):1173-1179. DOI: 10.2136/sssaj1987.03615995005100050015x.
[49]
KORANDA M, SCHNECKER J, KAISER C, et al. Microbial processes and community composition in the rhizosphere of European beech: the influence of plant C exudates[J]. Soil Biology and Biochemistry, 2011, 43(3):551-558. DOI: 10.1016/j.soilbio.2010.11.022.
[50]
SCOTT-DENTON L E, ROSENSTIEL T N, MONSON R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration[J]. Global Change Biology, 2006, 12(2):205-216. DOI: 10.1111/j.1365-2486.2005.01064.x.
[51]
GÖTTLICHER S G, STEINMANN K, BETSON N R, et al. The dependence of soil microbial activity on recent photosynthate from trees[J]. Plant and Soil, 2006, 287(1/2):85-94. DOI: 10.1007/s11104-006-0062-8.
[52]
HÖGBERG M N, HÖGBERG P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces,together with associated roots,half the dissolved organic carbon in a forest soil[J]. New Phytologist, 2002, 154(3):791-795. DOI: 10.1046/j.1469-8137.2002.00417.x.
[53]
SMITH J L, PAUL E A. The significance of soil microbial biomass estimations[M]// Soil biochemistry. New York: Marcel Dekker, 2017:357-386. DOI: 10.1201/9780203739389-7.
[54]
HÖGBERG M N, HÖGBERG P, MYROLD D D. Is microbial community composition in boreal forest soils determined by pH,C-to-N ratio,the trees,or all three?[J]. Oecologia, 2007, 150(4):590-601. DOI: 10.1007/s00442-006-0562-5.
[55]
ZELLER B, LIU J X, BUCHMANN N, et al. Tree girdling increases soil N mineralisation in two spruce stands[J]. Soil Biology and Biochemistry, 2008, 40(5):1155-1166. DOI: 10.1016/j.soilbio.2007.12.009.
[56]
SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter:implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176. DOI: 10.1023/A:1016125726789.
[57]
JASTROW J D, AMONETTE J E, BAILEY V L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration[J]. Climatic Change, 2007, 80(1/2):5-23.DOI: 10.1007/s10584-006-9178-3.
[58]
THEVENOT M, DIGNAC M F, RUMPEL C. Fate of lignins in soils: a review[J]. Soil Biology and Biochemistry, 2010, 42(8):1200-1211.DOI: 10.1016/j.soilbio.2010.03.017.
[59]
LORENZ K, LAL R, PRESTON C M, et al. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules[J]. Geoderma, 2007, 142(1):1-10. DOI: 10.1016/j.geoderma.2007.07.013.
[60]
SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1):7-31.DOI: 10.1016/j.still.2004.03.008.
[61]
RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171(1):41-53. DOI: 10.1111/j.1469-8137.2006.01750.x.
[62]
宋日, 刘利, 吴春胜, 等. 大豆根系分泌物对土壤团聚体大小和稳定性的影响[J]. 东北林业大学学报, 2009, 37(7):84-86.
SONG R, LIU L, WU C S, et al. Effect of soybean root exudates on soil aggregate size and stability[J]. J Northeast For Univ, 2009, 37(7):84-86.DOI: 10.3969/j.issn.1000-5382.2009.07.028.
[63]
苑亚茹, 韩晓增, 李禄军, 等. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J]. 水土保持学报, 2011, 25(6):96-99.
YUAN Y R, HAN X Z, LI L J, et al. Effects of soluble root exudates on microbial activity and aggregate stability of black soils[J]. J Soil Water Conserv, 2011, 25(6):96-99.DOI: 10.13870/j.cnki.stbcxb.2011.06.036.
[64]
李杨, 仲波, 陈冬明, 等. 不同浓度和多样性的根系分泌物对土壤团聚体稳定性的影响[J]. 应用与环境生物学报, 2019, 25(5):1061-1067.
LI Y, ZHONG B, CHEN D M, et al. Effects of root exudates of different carbon concentrations and sources on soil aggregate stability[J]. Chin J Appl Environ Biol, 2019, 25(5):1061-1067.DOI: 10.19675/j.cnki.1006-687x.2018.12036.
[65]
BARDGETT R D, MOMMER L, DE VRIES F T. Going underground:root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12):692-699. DOI: 10.1016/j.tree.2014.10.006.
[66]
BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57:233-266. DOI: 10.1146/annurev.arplant.57.032905.105159.
[67]
LEIFHEIT E F, VERESOGLOU S D, LEHMANN A, et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation:a meta-analysis[J]. Plant and Soil, 2014, 374(1/2):523-537. DOI: 10.1007/s11104-013-1899-2.
[68]
FAUCON M P, HOUBEN D, LAMBERS H. Plant functional traits:soil and ecosystem services[J]. Trends in Plant Science, 2017, 22(5):385-394. DOI: 10.1016/j.tplants.2017.01.005.
[69]
RILLIG M C, RAMSEY P W, MORRIS S, et al. Glomalin,an arbuscular-mycorrhizal fungal soil protein,responds to land-use change[J]. Plant and Soil, 2003, 253(2):293-299. DOI: 10.1023/A:1024807820579.
[70]
KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7:13630. DOI: 10.1038/ncomms13630.
[71]
PETT-RIDGE J, FIRESTONE M K. Using stable isotopes to explore root-microbe-mineral interactions in soil[J]. Rhizosphere, 2017, 3:244-253. DOI: 10.1016/j.rhisph.2017.04.016.
[72]
KLEBER M, SOLLINS P, SUTTON R. A conceptual model of organo-mineral interactions in soils:self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1):9-24. DOI: 10.1007/s10533-007-9103-5.
[73]
KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6):588-595. DOI: 10.1038/nclimate2580.
[74]
HÖGBERG P, NORDGREN A, BUCHMANN N, et al. Large-scale forest girdling shows that current photosynjournal drives soil respiration[J]. Nature, 2001, 411(6839):789-792. DOI: 10.1038/35081058.
[75]
AHMED M A, SANAULLAH M, BLAGODATSKAYA E, et al. Soil microorganisms exhibit enzymatic and priming response to root mucilage under drought[J]. Soil Biology and Biochemistry, 2018, 116:410-418. DOI: 10.1016/j.soilbio.2017.10.041.
[76]
HÖGBERG P, BHUPINDERPAL-SINGH, LÖFVENIUS M O, et al. Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest[J]. Forest Ecology and Management, 2009, 257(8):1764-1767. DOI: 10.1016/j.foreco.2009.01.036.
[77]
FREY B, HAGEDORN F, GIUDICI F. Effect of girdling on soil respiration and root composition in a sweet chestnut forest[J]. Forest Ecology and Management, 2006, 225(1/2/3):271-277. DOI: 10.1016/j.foreco.2006.01.003.
[78]
LI Y Q, XU M, SUN O J, et al. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests[J]. Soil Biology and Biochemistry, 2004, 36(12):2111-2114. DOI: 10.1016/j.soilbio.2004.06.003.
[79]
HUANG W J, HAN T F, LIU J X, et al. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics[J]. Functional Ecology, 2016, 30(8):1466-1474. DOI: 10.1111/1365-2435.12624.
[80]
BRANT J B, MYROLD D D, SULZMAN E W. Root controls on soil microbial community structure in forest soils[J]. Oecologia, 2006, 148(4):650-659. DOI: 10.1007/s00442-006-0402-7.
[81]
BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3):738-744. DOI: 10.1128/AEM.02188-07.
[82]
HASSELQUIST N J, METCALFE D B, INSELSBACHER E, et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest[J]. Ecology, 2015:15-1222.1. DOI: 10.1890/15-1222.1.
[83]
SIIRA-PIETIKÄINEN A, HAIMI J, FRITZE H. Organisms,decomposition,and growth of pine seedlings in boreal forest soil affected by sod cutting and trenching[J]. Biology and Fertility of Soils, 2003, 37(3):163-174. DOI: 10.1007/s00374-002-0571-4.
[84]
WANG Q K, HE T X, WANG S L, et al. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest[J]. Agricultural and Forest Meteorology, 2013, 178/179:152-160. DOI: 10.1016/j.agrformet.2013.04.021.
[85]
PISANI O, LIN L H, LUN O O, et al. Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks[J]. Biogeochemistry, 2016, 127(1):1-14. DOI: 10.1007/s10533-015-0171-7.
[86]
MA X M, ZAREBANADKOUKI M, KUZYAKOV Y, et al. Spatial patterns of enzyme activities in the rhizosphere:effects of root hairs and root radius[J]. Soil Biology and Biochemistry, 2018, 118:69-78. DOI: 10.1016/j.soilbio.2017.12.009.
[87]
KUZYAKOV Y, BLAGODATSKAYA E. Microbial hotspots and hot moments in soil:concept & review[J]. Soil Biology and Biochemistry, 2015, 83:184-199. DOI: 10.1016/j.soilbio.2015.01.025.
[88]
BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment:current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58:216-234. DOI: 10.1016/j.soilbio.2012.11.009.
[89]
HARDER W, DIJKHUIZEN L. Physiological responses to nutrient limitation[J]. Annual Review of Microbiology, 1983, 37:1-23. DOI: 10.1146/annurev.mi.37.100183.000245.
[90]
阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020, 57(4):954-962.
RUAN C Y, LIU X F, LÜ M K, et al. Effects of litter carbon, nitrogen and enzyme activity in soil under Chinese fir[J]. Acta Pedologica Sinica, 2020, 57(4):954-962.DOI: 10.11766/trxb201808060408.
[91]
PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation[J]. Ecology Letters, 2011, 14(2):187-194. DOI: 10.1111/j.1461-0248.2010.01570.x.
[92]
SINSABAUGH R L, BELNAP J, FINDLAY S G, et al. Extracellular enzyme kinetics scale with resource availability[J]. Biogeochemistry, 2014, 121(2):287-304. DOI: 10.1007/s10533-014-0030-y.
[93]
CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7):2356-2367. DOI: 10.1111/gcb.12475.
[94]
STOCK S, KOSTER M, DIPPOLD M A, et al. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale[J]. Geoderma, 2019, 337:973-982. DOI: 10.1016/j.geoderma.2018.10.030.
[95]
KAISER C, KORANDA M, KITZLER B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil[J]. New Phytologist, 2010, 187(3):843-858. DOI: 10.1111/j.1469-8137.2010.03321.x.
[96]
BUÉE M, BOER W, MARTIN F, et al. The rhizosphere zoo:an overview of plant-associated communities of microorganisms,including phages,bacteria,archaea,and fungi,and of some of their structuring factors[J]. Plant and Soil, 2009, 321(1/2):189-212. DOI: 10.1007/s11104-009-9991-3.
[97]
MOORHEAD D L, LASHERMES G, SINSABAUGH R L. A theoretical model of C-and N-acquiring exoenzyme activities,which balances microbial demands during decomposition[J]. Soil Biology and Biochemistry, 2012, 53:133-141. DOI: 10.1016/j.soilbio.2012.05.011.
[98]
SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43(1):313-343. DOI: 10.1146/annurev-ecolsys-071112-124414.

基金

国家自然科学基金青年科学基金项目(31700376)
江苏省高等学校自然科学研究重大项目(17KJA180006)
江苏省“六大人才高峰”计划(JY-041&TD-XYDXX-006)
江苏高校优势学科建设工程资助项目(PAPD)
南京林业大学“5151”人才计划项目(2018)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1451 KB)

Accesses

Citation

Detail

段落导航
相关文章

/