南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 25-32.doi: 10.12302/j.issn.1000-2006.202002048
所属专题: "双碳”视域下的土壤碳
• 专题报道Ⅰ:“双碳”视域下的土壤碳(执行主编 阮宏华) • 上一篇 下一篇
黄梓敬1(), 徐侠1,*(), 张惠光2, 蔡斌2, 李良彬2
收稿日期:
2020-02-28
接受日期:
2020-09-22
出版日期:
2022-01-30
发布日期:
2022-02-09
通讯作者:
徐侠
基金资助:
HUANG Zijing1(), XU Xia1,*(), ZHANG Huiguang2, CAI Bin2, LI Liangbin2
Received:
2020-02-28
Accepted:
2020-09-22
Online:
2022-01-30
Published:
2022-02-09
Contact:
XU Xia
摘要:
植物根系输入是森林土壤碳库的重要来源。全球气候变化可能引起森林地下部分碳通量改变,进而影响森林土壤碳库及碳循环。笔者综述了根系输入对土壤碳累积、土壤活性碳库(包括土壤微生物生物量碳和可溶性有机碳)和土壤碳库稳定性的影响,综合分析了森林土壤呼吸、土壤微生物和土壤酶活性对根系输入变化的响应。分析发现:①根系输入减少可能减弱根际的激发效应,使土壤有机碳(SOC)短期增加,但从长期来看根系输入的缺失会导致SOC的减少;②根系分泌的一些物质促进土壤初始团聚体的形成,但其对矿物-有机质结合物稳定性的影响还不完全清楚;③根系输入减少会降低土壤呼吸作用;④微生物群落结构对根系输入变化的响应主要取决于微生物对底物质量和数量的适应,而这些响应在不同森林生态系统间可能也有差异;另外,酶合成主要取决于与微生物生长相关的资源分配到酶生产中的成本效率。目前,关于根系输入对碳循环,特别是土壤呼吸的研究比较多,但根系输入物组成复杂,微生物与酶对不同根系输入物的响应机制尚不清楚,这些响应在不同森林生态系统中也有差异;此外,根系输入对土壤碳库稳定性的作用常被忽视,根系与微生物的相互作用对碳循环和土壤碳库稳定性的影响还有很大不确定性。建议加强植物根系、土壤和微生物的相互关系研究,以深入理解气候变化背景下森林生态系统碳循环。
中图分类号:
黄梓敬,徐侠,张惠光,等. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32.
HUANG Zijing, XU Xia, ZHANG Huiguang, CAI Bin, LI Liangbin. Advances in effects of root input on forest soil carbon pool and carbon cycle[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 25-32.DOI: 10.12302/j.issn.1000-2006.202002048.
[1] |
FAO. Global forest resources assessment 2010[M]. FAO, 2010.DOI: 10.4060/ca8753en.
doi: 10.4060/ca8753en |
[2] |
PAN Y, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
doi: 10.1126/science.1201609 |
[3] |
LITTON C M, RAICH J W, RYAN M G. Carbon allocation in forest ecosystems[J]. Global Change Biology, 2007, 13(10):2089-2109.DOI: 10.1111/j.1365-2486.2007.01420.x.
doi: 10.1111/j.1365-2486.2007.01420.x |
[4] |
YIN H, LI Y, XIAO J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming[J]. Global Change Biology, 2013, 19(7):2158-2167.DOI: 10.1111/gcb.12161.
doi: 10.1111/gcb.12161 |
[5] |
BAI W M, WAN S Q, NIU S L, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling[J]. Global Change Biology, 2010, 16(4):1306-1316. DOI: 10.1111/j.1365-2486.2009.02019.x.
doi: 10.1111/j.1365-2486.2009.02019.x |
[6] |
BRUNNER I, GODBOLD D L. Tree roots in a changing world[J]. Journal of Forest Research, 2007, 12(2):78-82.DOI: 10.1007/s10310-006-0261-4.
doi: 10.1007/s10310-006-0261-4 |
[7] |
LUKAC M. Fine root turnover[M]// Measuring Roots.Berlin,Heidelberg:Springer Inc, 2011:363-373.DOI: 10.1007/978-3-642-22067-8_18.
doi: 10.1007/978-3-642-22067-8_18 |
[8] |
DORNBUSH M E, ISENHART T M, RAICH J W. Quantifying fine-root decomposition:an alternative to buried litterbags[J]. Ecology, 2002, 83(11):2985-2990. DOI: 10.1890/0012-9658(2002)083[2985:QFRDAA]2.0.CO;2.
doi: 10.1890/0012-9658(2002)083 |
[9] |
ARGIROFF W A, ZAK D R, UPCHURCH R A, et al. Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots[J]. Global Change Biology, 2019, 25(12):4369-4382. DOI: 10.1111/gcb.14770.
doi: 10.1111/gcb.14770 |
[10] |
KÄTTERER T, BOLINDER M A, ANDRÉN O, et al. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment[J]. Agriculture, Ecosystems & Environment, 2011, 141(1/2):184-192. DOI: 10.1016/j.agee.2011.02.029.
doi: 10.1016/j.agee.2011.02.029 |
[11] |
XIA M X, TALHELM A F, PREGITZER K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytologist, 2015, 208(3):715-726. DOI: 10.1111/nph.13494.
doi: 10.1111/nph.13494 |
[12] |
RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Plant and Soil, 2005, 269(1/2):341-356. DOI: 10.1007/s11104-004-0907-y.
doi: 10.1007/s11104-004-0907-y |
[13] |
JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1/2):5-33. DOI: 10.1007/s11104-009-9925-0.
doi: 10.1007/s11104-009-9925-0 |
[14] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38:298-310.
doi: 10.3724/SP.J.1258.2014.00027 |
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chin J Plan Ecolo, 2014, 38(3):298-310.DOI: 10.3724/SP.J.1258.2014.00027
doi: 10.3724/SP.J.1258.2014.00027 |
|
[15] | 王振宇, 吕金印, 李凤民, 等. 根际沉积及其在植物-土壤碳循环中的作用[J]. 应用生态学报, 2006, 17(10):1963-1968. |
WANG Z Y, LYU E, LI F M, et al. Rhizodeposition and its role in carbon cycling in plant-soil system[J]. Chin J Appl Ecol, 2006, 17(10):1963-1968. | |
[16] |
SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56. DOI: 10.1038/nature10386.
doi: 10.1038/nature10386 |
[17] |
CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339(6127):1615-1618. DOI: 10.1126/science.1231923.
doi: 10.1126/science.1231923 |
[18] |
JACKSON O, QUILLIAM R S, STOTT A, et al. Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates[J]. Plant and Soil, 2019, 440(1/2):473-490. DOI: 10.1007/s11104-019-04072-3.
doi: 10.1007/s11104-019-04072-3 |
[19] |
OHASHI M, MAKITA N, KATAYAMA A, et al. Characteristics of root decomposition based on in situ experiments in a tropical rainforest in Sarawak,Malaysia:impacts of root diameter and soil biota[J]. Plant and Soil, 2019, 436(1/2):439-448. DOI: 10.1007/s11104-018-03929-3.
doi: 10.1007/s11104-018-03929-3 |
[20] |
SOKOL N W, KUEBBING S E, KARLSEN-AYALA E, et al. Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J]. New Phytologist, 2019, 221(1):233-246. DOI: 10.1111/nph.15361.
doi: 10.1111/nph.15361 |
[21] |
SHAMOOT S, MCDONALD L, BARTHOLOMEW W V. Rhizo-deposition of organic debris in soil[J]. Soil Science Society of America Journal, 1968, 32(6):817. DOI: 10.2136/sssaj1968.03615995003200060031x.
doi: 10.2136/sssaj1968.03615995003200060031x |
[22] |
BURTON A J, PREGITZER K S, HENDRICK R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000, 125(3):389-399. DOI: 10.1007/s004420000455.
doi: 10.1007/s004420000455 |
[23] |
MAJDI H, TRUUS L, JOHANSSON U, et al. Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden[J]. Forest ecology and management, 2008, 255(7):2109-2117. DOI: 10.1016/j.foreco.2007.12.017.
doi: 10.1016/j.foreco.2007.12.017 |
[24] |
FINÉR L, OHASHI M, NOGUCHI K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest ecology and management, 2011, 261(2):265-277. DOI: 10.1016/j.foreco.2010.10.016.
doi: 10.1016/j.foreco.2010.10.016 |
[25] |
CHAPIN F S, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York:Springer, 2002. DOI: 10.1007/b97397.
doi: 10.1007/b97397 |
[26] |
YANG Y S, CHEN G S, GUO J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics[J]. Ann For Sci, 2004, 61(1):65-72. DOI: 10.1051/forest:2003085.
doi: 10.1051/forest:2003085 |
[27] |
BERG B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest ecology and management, 2000, 133(1/2):13-22. DOI: 10.1016/s0378-1127(99)00294-7.
doi: 10.1016/s0378-1127(99)00294-7 |
[28] | 林成芳, 郭剑芬, 陈光水, 等. 森林细根分解研究进展[J]. 生态学杂志, 2008, 27(6):1029-1036. |
LIN C F, GUO J F, CHEN G S, et al. Research progress in fine root decomposition in forest ecosystem[J]. Chin J Ecol, 2008, 27(6):1029-1036.DOI: 10.13292/j.1000-4890.2008.0211.
doi: 10.13292/j.1000-4890.2008.0211 |
|
[29] |
PAUSCH J, KUZYAKOV Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale[J]. Global Change Biology, 2018, 24(1):1-12.DOI: 10.1111/gcb.13850.
doi: 10.1111/gcb.13850 |
[30] |
尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究:问题与展望[J]. 植物生态学报, 2018, 42:1055-1070.
doi: 10.17521/cjpe.2018.0156 |
YIN H J, ZHANG Z L, LIU Q. Root exudates and their ecological consequences in forest ecosystems: problems and perspective[J]. Chin J Plan Ecolo, 2018, 42(11):1055-1070.DOI: 10.17521/cjpe.2018.0156.
doi: 10.17521/cjpe.2018.0156 |
|
[31] |
HÖGBERG P, HÖGBERG M N, GÖTTLICHER S G, et al. High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms[J]. New Phytologist, 2008, 177:220-228.DOI: 10.1111/j.1469-8137.2007.02238.x.
doi: 10.1111/j.1469-8137.2007.02238.x |
[32] |
BAHN M, SCHMITT M, SIEGWOLF R, et al. Does photosynjournal affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale?[J]. New Phytologist, 2009, 182(2):451-460. DOI: 10.1111/j.1469-8137.2008.02755.x.
doi: 10.1111/j.1469-8137.2008.02755.x |
[33] |
DAKORA F D, PHILLIPS D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil, 2002, 245(1):35-47. DOI: 10.1023/A:1020809400075.
doi: 10.1023/A:1020809400075 |
[34] |
HÖGBERG M N, BRIONES M J I, KEEL S G, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest[J]. New Phytologist, 2010, 187(2):485-493. DOI: 10.1111/j.1469-8137.2010.03274.x.
doi: 10.1111/j.1469-8137.2010.03274.x |
[35] | 王清奎. 碳输入方式对森林土壤碳库和碳循环的影响研究进展[J]. 应用生态学报, 2011, 22(4):1075-1081. |
WANG Q K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input[J]. Chin J Appl Ecol, 2011, 22(4):1075-1081.DOI: 10.13287/j.1001-9332.2011.0111.
doi: 10.13287/j.1001-9332.2011.0111 |
|
[36] |
WEINTRAUB M N, SCOTT-DENTON L E, SCHMIDT S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity,dissolved organic carbon,and nutrient availability in a subalpine forest ecosystem[J]. Oecologia, 2007, 154(2):327-338. DOI: 10.1007/s00442-007-0804-1.
doi: 10.1007/s00442-007-0804-1 |
[37] |
SUBKE J A, HAHN V, BATTIPAGLIA G, et al. Feedback interactions between needle litter decomposition and rhizosphere activity[J]. Oecologia, 2004, 139(4):551-559. DOI: 10.1007/s00442-004-1540-4.
doi: 10.1007/s00442-004-1540-4 |
[38] |
FENG W T, ZOU X M, SCHAEFER D. Above-and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China[J]. Soil Biology and Biochemistry, 2009, 41(5):978-983. DOI: 10.1016/j.soilbio.2008.10.002.
doi: 10.1016/j.soilbio.2008.10.002 |
[39] |
JACKSON R B, LAJTHA K, CROW S E, et al. The ecology of soil carbon:pools,vulnerabilities,and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48(1):419-445. DOI: 10.1146/annurev-ecolsys-112414-054234.
doi: 10.1146/annurev-ecolsys-112414-054234 |
[40] |
FEKETE I, KOTROCZÓZ, VARGA C, et al. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest[J]. Soil Biology and Biochemistry, 2014, 74:106-114.DOI: 10.1016/j.soilbio.2014.03.006.
doi: 10.1016/j.soilbio.2014.03.006 |
[41] |
LAJTHA K, BOWDEN R D, NADELHOFFER K. Litter and root manipulations provide insights into soil organic matter dynamics and stability[J]. Soil Science Society of America Journal, 2014, 78(S1):S261-S269. DOI: 10.2136/sssaj2013.08.0370nafsc.
doi: 10.2136/sssaj2013.08.0370nafsc |
[42] |
CHENG L, BOOKER F L, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337(6098):1084-1087. DOI: 10.1126/science.1224304.
doi: 10.1126/science.1224304 |
[43] |
FINZI A C, ABRAMOFF R Z, SPILLER K S, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 2015, 21(5):2082-2094. DOI: 10.1111/gcb.12816.
doi: 10.1111/gcb.12816 |
[44] |
梁儒彪, 梁进, 乔明锋, 等. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5):466-476.
doi: 10.17521/cjpe.2015.0045 |
LIANG R B, LIANG J, QIAO M F, et al. Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan,China[J]. Acta Phytoecol Sin, 2015, 39(5):466-476.DOI: 10.17521/cjpe.2015.0045.
doi: 10.17521/cjpe.2015.0045 |
|
[45] |
CHEN D M, ZHOU L X, WU J P, et al. Tree girdling affects the soil microbial community by modifying resource availability in two subtropical plantations[J]. Applied Soil Ecology, 2012, 53:108-115. DOI: 10.1016/j.apsoil.2011.10.014.
doi: 10.1016/j.apsoil.2011.10.014 |
[46] |
JONES D L, HODGE A, KUZYAKOV Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist, 2004, 163(3):459-480. DOI: 10.1111/j.1469-8137.2004.01130.x.
doi: 10.1111/j.1469-8137.2004.01130.x |
[47] |
VON LÜTZOW M, KÖGEL-KNABNER I, EKSCHMITT K, et al. SOM fractionation methods:relevance to functional pools and to stabilization mechanisms[J]. Soil Biology and Biochemistry, 2007, 39(9):2183-2207. DOI: 10.1016/j.soilbio.2007.03.007.
doi: 10.1016/j.soilbio.2007.03.007 |
[48] |
PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5):1173-1179. DOI: 10.2136/sssaj1987.03615995005100050015x.
doi: 10.2136/sssaj1987.03615995005100050015x |
[49] |
KORANDA M, SCHNECKER J, KAISER C, et al. Microbial processes and community composition in the rhizosphere of European beech: the influence of plant C exudates[J]. Soil Biology and Biochemistry, 2011, 43(3):551-558. DOI: 10.1016/j.soilbio.2010.11.022.
doi: 10.1016/j.soilbio.2010.11.022 |
[50] |
SCOTT-DENTON L E, ROSENSTIEL T N, MONSON R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration[J]. Global Change Biology, 2006, 12(2):205-216. DOI: 10.1111/j.1365-2486.2005.01064.x.
doi: 10.1111/j.1365-2486.2005.01064.x |
[51] |
GÖTTLICHER S G, STEINMANN K, BETSON N R, et al. The dependence of soil microbial activity on recent photosynthate from trees[J]. Plant and Soil, 2006, 287(1/2):85-94. DOI: 10.1007/s11104-006-0062-8.
doi: 10.1007/s11104-006-0062-8 |
[52] |
HÖGBERG M N, HÖGBERG P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces,together with associated roots,half the dissolved organic carbon in a forest soil[J]. New Phytologist, 2002, 154(3):791-795. DOI: 10.1046/j.1469-8137.2002.00417.x.
doi: 10.1046/j.1469-8137.2002.00417.x |
[53] |
SMITH J L, PAUL E A. The significance of soil microbial biomass estimations[M]// Soil biochemistry. New York: Marcel Dekker, 2017:357-386. DOI: 10.1201/9780203739389-7.
doi: 10.1201/9780203739389-7 |
[54] |
HÖGBERG M N, HÖGBERG P, MYROLD D D. Is microbial community composition in boreal forest soils determined by pH,C-to-N ratio,the trees,or all three?[J]. Oecologia, 2007, 150(4):590-601. DOI: 10.1007/s00442-006-0562-5.
doi: 10.1007/s00442-006-0562-5 |
[55] |
ZELLER B, LIU J X, BUCHMANN N, et al. Tree girdling increases soil N mineralisation in two spruce stands[J]. Soil Biology and Biochemistry, 2008, 40(5):1155-1166. DOI: 10.1016/j.soilbio.2007.12.009.
doi: 10.1016/j.soilbio.2007.12.009 |
[56] |
SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter:implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176. DOI: 10.1023/A:1016125726789.
doi: 10.1023/A:1016125726789 |
[57] |
JASTROW J D, AMONETTE J E, BAILEY V L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration[J]. Climatic Change, 2007, 80(1/2):5-23.DOI: 10.1007/s10584-006-9178-3.
doi: 10.1007/s10584-006-9178-3 |
[58] |
THEVENOT M, DIGNAC M F, RUMPEL C. Fate of lignins in soils: a review[J]. Soil Biology and Biochemistry, 2010, 42(8):1200-1211.DOI: 10.1016/j.soilbio.2010.03.017.
doi: 10.1016/j.soilbio.2010.03.017 |
[59] |
LORENZ K, LAL R, PRESTON C M, et al. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules[J]. Geoderma, 2007, 142(1):1-10. DOI: 10.1016/j.geoderma.2007.07.013.
doi: 10.1016/j.geoderma.2007.07.013 |
[60] |
SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1):7-31.DOI: 10.1016/j.still.2004.03.008.
doi: 10.1016/j.still.2004.03.008 |
[61] |
RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171(1):41-53. DOI: 10.1111/j.1469-8137.2006.01750.x.
doi: 10.1111/j.1469-8137.2006.01750.x |
[62] | 宋日, 刘利, 吴春胜, 等. 大豆根系分泌物对土壤团聚体大小和稳定性的影响[J]. 东北林业大学学报, 2009, 37(7):84-86. |
SONG R, LIU L, WU C S, et al. Effect of soybean root exudates on soil aggregate size and stability[J]. J Northeast For Univ, 2009, 37(7):84-86.DOI: 10.3969/j.issn.1000-5382.2009.07.028.
doi: 10.3969/j.issn.1000-5382.2009.07.028 |
|
[63] | 苑亚茹, 韩晓增, 李禄军, 等. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J]. 水土保持学报, 2011, 25(6):96-99. |
YUAN Y R, HAN X Z, LI L J, et al. Effects of soluble root exudates on microbial activity and aggregate stability of black soils[J]. J Soil Water Conserv, 2011, 25(6):96-99.DOI: 10.13870/j.cnki.stbcxb.2011.06.036.
doi: 10.13870/j.cnki.stbcxb.2011.06.036 |
|
[64] | 李杨, 仲波, 陈冬明, 等. 不同浓度和多样性的根系分泌物对土壤团聚体稳定性的影响[J]. 应用与环境生物学报, 2019, 25(5):1061-1067. |
LI Y, ZHONG B, CHEN D M, et al. Effects of root exudates of different carbon concentrations and sources on soil aggregate stability[J]. Chin J Appl Environ Biol, 2019, 25(5):1061-1067.DOI: 10.19675/j.cnki.1006-687x.2018.12036.
doi: 10.19675/j.cnki.1006-687x.2018.12036 |
|
[65] |
BARDGETT R D, MOMMER L, DE VRIES F T. Going underground:root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12):692-699. DOI: 10.1016/j.tree.2014.10.006.
doi: 10.1016/j.tree.2014.10.006 |
[66] |
BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57:233-266. DOI: 10.1146/annurev.arplant.57.032905.105159.
doi: 10.1146/annurev.arplant.57.032905.105159 |
[67] |
LEIFHEIT E F, VERESOGLOU S D, LEHMANN A, et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation:a meta-analysis[J]. Plant and Soil, 2014, 374(1/2):523-537. DOI: 10.1007/s11104-013-1899-2.
doi: 10.1007/s11104-013-1899-2 |
[68] |
FAUCON M P, HOUBEN D, LAMBERS H. Plant functional traits:soil and ecosystem services[J]. Trends in Plant Science, 2017, 22(5):385-394. DOI: 10.1016/j.tplants.2017.01.005.
doi: 10.1016/j.tplants.2017.01.005 |
[69] |
RILLIG M C, RAMSEY P W, MORRIS S, et al. Glomalin,an arbuscular-mycorrhizal fungal soil protein,responds to land-use change[J]. Plant and Soil, 2003, 253(2):293-299. DOI: 10.1023/A:1024807820579.
doi: 10.1023/A:1024807820579 |
[70] |
KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7:13630. DOI: 10.1038/ncomms13630.
doi: 10.1038/ncomms13630 |
[71] |
PETT-RIDGE J, FIRESTONE M K. Using stable isotopes to explore root-microbe-mineral interactions in soil[J]. Rhizosphere, 2017, 3:244-253. DOI: 10.1016/j.rhisph.2017.04.016.
doi: 10.1016/j.rhisph.2017.04.016 |
[72] |
KLEBER M, SOLLINS P, SUTTON R. A conceptual model of organo-mineral interactions in soils:self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1):9-24. DOI: 10.1007/s10533-007-9103-5.
doi: 10.1007/s10533-007-9103-5 |
[73] |
KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6):588-595. DOI: 10.1038/nclimate2580.
doi: 10.1038/nclimate2580 |
[74] |
HÖGBERG P, NORDGREN A, BUCHMANN N, et al. Large-scale forest girdling shows that current photosynjournal drives soil respiration[J]. Nature, 2001, 411(6839):789-792. DOI: 10.1038/35081058.
doi: 10.1038/35081058 |
[75] |
AHMED M A, SANAULLAH M, BLAGODATSKAYA E, et al. Soil microorganisms exhibit enzymatic and priming response to root mucilage under drought[J]. Soil Biology and Biochemistry, 2018, 116:410-418. DOI: 10.1016/j.soilbio.2017.10.041.
doi: 10.1016/j.soilbio.2017.10.041 |
[76] |
HÖGBERG P, BHUPINDERPAL-SINGH, LÖFVENIUS M O, et al. Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest[J]. Forest Ecology and Management, 2009, 257(8):1764-1767. DOI: 10.1016/j.foreco.2009.01.036.
doi: 10.1016/j.foreco.2009.01.036 |
[77] |
FREY B, HAGEDORN F, GIUDICI F. Effect of girdling on soil respiration and root composition in a sweet chestnut forest[J]. Forest Ecology and Management, 2006, 225(1/2/3):271-277. DOI: 10.1016/j.foreco.2006.01.003.
doi: 10.1016/j.foreco.2006.01.003 |
[78] |
LI Y Q, XU M, SUN O J, et al. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests[J]. Soil Biology and Biochemistry, 2004, 36(12):2111-2114. DOI: 10.1016/j.soilbio.2004.06.003.
doi: 10.1016/j.soilbio.2004.06.003 |
[79] |
HUANG W J, HAN T F, LIU J X, et al. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics[J]. Functional Ecology, 2016, 30(8):1466-1474. DOI: 10.1111/1365-2435.12624.
doi: 10.1111/1365-2435.12624 |
[80] |
BRANT J B, MYROLD D D, SULZMAN E W. Root controls on soil microbial community structure in forest soils[J]. Oecologia, 2006, 148(4):650-659. DOI: 10.1007/s00442-006-0402-7.
doi: 10.1007/s00442-006-0402-7 |
[81] |
BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3):738-744. DOI: 10.1128/AEM.02188-07.
doi: 10.1128/AEM.02188-07 |
[82] |
HASSELQUIST N J, METCALFE D B, INSELSBACHER E, et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest[J]. Ecology, 2015:15-1222.1. DOI: 10.1890/15-1222.1.
doi: 10.1890/15-1222.1 |
[83] |
SIIRA-PIETIKÄINEN A, HAIMI J, FRITZE H. Organisms,decomposition,and growth of pine seedlings in boreal forest soil affected by sod cutting and trenching[J]. Biology and Fertility of Soils, 2003, 37(3):163-174. DOI: 10.1007/s00374-002-0571-4.
doi: 10.1007/s00374-002-0571-4 |
[84] |
WANG Q K, HE T X, WANG S L, et al. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest[J]. Agricultural and Forest Meteorology, 2013, 178/179:152-160. DOI: 10.1016/j.agrformet.2013.04.021.
doi: 10.1016/j.agrformet.2013.04.021 |
[85] |
PISANI O, LIN L H, LUN O O, et al. Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks[J]. Biogeochemistry, 2016, 127(1):1-14. DOI: 10.1007/s10533-015-0171-7.
doi: 10.1007/s10533-015-0171-7 |
[86] |
MA X M, ZAREBANADKOUKI M, KUZYAKOV Y, et al. Spatial patterns of enzyme activities in the rhizosphere:effects of root hairs and root radius[J]. Soil Biology and Biochemistry, 2018, 118:69-78. DOI: 10.1016/j.soilbio.2017.12.009.
doi: 10.1016/j.soilbio.2017.12.009 |
[87] |
KUZYAKOV Y, BLAGODATSKAYA E. Microbial hotspots and hot moments in soil:concept & review[J]. Soil Biology and Biochemistry, 2015, 83:184-199. DOI: 10.1016/j.soilbio.2015.01.025.
doi: 10.1016/j.soilbio.2015.01.025 |
[88] |
BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment:current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58:216-234. DOI: 10.1016/j.soilbio.2012.11.009.
doi: 10.1016/j.soilbio.2012.11.009 |
[89] |
HARDER W, DIJKHUIZEN L. Physiological responses to nutrient limitation[J]. Annual Review of Microbiology, 1983, 37:1-23. DOI: 10.1146/annurev.mi.37.100183.000245.
doi: 10.1146/annurev.mi.37.100183.000245 |
[90] | 阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020, 57(4):954-962. |
RUAN C Y, LIU X F, LÜ M K, et al. Effects of litter carbon, nitrogen and enzyme activity in soil under Chinese fir[J]. Acta Pedologica Sinica, 2020, 57(4):954-962.DOI: 10.11766/trxb201808060408.
doi: 10.11766/trxb201808060408 |
|
[91] |
PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation[J]. Ecology Letters, 2011, 14(2):187-194. DOI: 10.1111/j.1461-0248.2010.01570.x.
doi: 10.1111/j.1461-0248.2010.01570.x |
[92] |
SINSABAUGH R L, BELNAP J, FINDLAY S G, et al. Extracellular enzyme kinetics scale with resource availability[J]. Biogeochemistry, 2014, 121(2):287-304. DOI: 10.1007/s10533-014-0030-y.
doi: 10.1007/s10533-014-0030-y |
[93] |
CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7):2356-2367. DOI: 10.1111/gcb.12475.
doi: 10.1111/gcb.12475 |
[94] |
STOCK S, KOSTER M, DIPPOLD M A, et al. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale[J]. Geoderma, 2019, 337:973-982. DOI: 10.1016/j.geoderma.2018.10.030.
doi: 10.1016/j.geoderma.2018.10.030 |
[95] |
KAISER C, KORANDA M, KITZLER B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil[J]. New Phytologist, 2010, 187(3):843-858. DOI: 10.1111/j.1469-8137.2010.03321.x.
doi: 10.1111/j.1469-8137.2010.03321.x |
[96] |
BUÉE M, BOER W, MARTIN F, et al. The rhizosphere zoo:an overview of plant-associated communities of microorganisms,including phages,bacteria,archaea,and fungi,and of some of their structuring factors[J]. Plant and Soil, 2009, 321(1/2):189-212. DOI: 10.1007/s11104-009-9991-3.
doi: 10.1007/s11104-009-9991-3 |
[97] |
MOORHEAD D L, LASHERMES G, SINSABAUGH R L. A theoretical model of C-and N-acquiring exoenzyme activities,which balances microbial demands during decomposition[J]. Soil Biology and Biochemistry, 2012, 53:133-141. DOI: 10.1016/j.soilbio.2012.05.011.
doi: 10.1016/j.soilbio.2012.05.011 |
[98] |
SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43(1):313-343. DOI: 10.1146/annurev-ecolsys-071112-124414.
doi: 10.1146/annurev-ecolsys-071112-124414 |
[1] | 林杰, 张相, 姜姜, 蒯杰, 郭赓, 孟苗婧, 李肖. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194. |
[2] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[3] | 谢君毅, 徐侠, 蔡斌, 张惠光. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 1-11. |
[4] | 王邵军, 左倩倩, 曹乾斌, 王平, 杨波, 赵爽, 陈闽昆. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 7-14. |
[5] | 郭亮, 丁九敏, 徐侠. 树干甲烷的研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 235-241. |
[6] | 孙龙, 窦旭, 胡同欣. 林火对森林生态系统碳氮磷生态化学计量特征影响研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 1-9. |
[7] | 陈家新,杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 1-8. |
[8] | 刘泽彬,程瑞梅,肖文发,王娜. 三峡库区库首森林生态系统植物叶片碳氮磷化学计量特征研究[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 27-33. |
[9] | 王姮,李明诗. 气候变化对森林生态系统的主要影响述评[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 167-173. |
[10] | 修珍珍,王斌,杨校生,余超,张龙,格日乐图. 庙山坞自然保护区森林生态系统服务功能评估[J]. 南京林业大学学报(自然科学版), 2015, 39(04): 81-87. |
[11] | 路秋玲,王国兵,杨平,郑阿宝,阮宏华*. 森林生态系统不同碳库碳储量估算方法的评价[J]. 南京林业大学学报(自然科学版), 2012, 36(05): 155-160. |
[12] | 李平,王国兵,郑阿宝,沈玉娟,赵琦齐,王琳飞,蒋如生,李莉,阮宏华. 苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J]. 南京林业大学学报(自然科学版), 2012, 36(04): 79-83. |
[13] | 张骏,高洪娣,应宝根,王坚娅,袁位高,朱锦茹,伊力塔,江波*. 浙江省仙居县公益林生物量动态分析[J]. 南京林业大学学报(自然科学版), 2011, 35(05): 147-150. |
[14] | 王邵军,阮宏华. 全球变化背景下森林生态系统碳循环及其管理[J]. 南京林业大学学报(自然科学版), 2011, 35(02): 113-116. |
[15] | 曾群英,周元满,李际平,罗立平,刘素青*. 场级森林生态系统区划与组织实施[J]. 南京林业大学学报(自然科学版), 2010, 34(04): 102-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||