基于ICESat-GLAS数据和模糊模式识别算法识别森林类型

蔡龙涛, 邢涛, 邢艳秋, 丁建华, 黄佳鹏, 崔阳, 秦磊

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 33-40.

PDF(1519 KB)
PDF(1519 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 33-40. DOI: 10.12302/j.issn.1000-2006.202003008
专题报道I (执行主编李凤日)

基于ICESat-GLAS数据和模糊模式识别算法识别森林类型

作者信息 +

Identification of forest types based on ICESat-GLAS data and fuzzy pattern recognition algorithm

Author information +
文章历史 +

摘要

【目的】利用冰、云和陆地高程卫星-地球科学激光测高系统(ICESat-GLAS)回波波形数据,通过模糊模式识别算法,提出波形特征参数组合,对森林类型进行识别研究,以期提高森林类型分类精度。【方法】利用不同森林类型冠层在GLAS回波波形上表现出的差异性,提取波形特征参数 R fi t 1 K1'和 K 1 ¯ ;将本研究提取的波形特征参数与其他波形特征参数相结合,建立波形特征参数组合;对样本数据波形特征参数进行指标归一化和奇异点检测处理,剔除样本数据中的奇异点样本;结合模糊模式识别算法,计算不同森林类型分类精度。【结果】针叶林和阔叶林森林类型分类总精度为96.30%,其中,针叶林和阔叶林森林类型分类精度分别为92.86%和97.50%;针叶林、阔叶林和混交林森林类型分类总精度为84.51%,其中,针叶林、阔叶林和混交林森林类型分类精度分别为85.71%、97.50%和52.94%。【结论】模糊模式识别算法在森林类型分类方面具有一定优势,尤其在针叶林和阔叶林森林类型识别方面,识别精度较高。

Abstract

【Objective】 Using space-borne LiDAR waveform data and the fuzzy pattern recognition algorithm, combined with the waveform characteristic parameters proposed in this paper, the forest type was identified and studied to improve the accuracy of forest type classification. 【Method】 First, using the differences in GLAS-received waveforms of the canopies of different forest types, the waveform characteristic parameters R fi t 1 , K 1 ' and K 1 ¯ were acquired. Second, the extracted waveform feature parameters were combined with the other waveform feature parameters to establish a combination of waveform feature parameters. Thereafter, the waveform feature parameters of the sample data were subjected to index normalization and singularity detection processing to unify the dimensions of different waveform feature parameters and remove the sample data. Finally, combined with the fuzzy pattern recognition algorithm, the classification accuracy of different forest types was calculated. 【Result】 The total classification accuracies of coniferous and broadleaved forest types were 96.30%, of which the classification accuracies of coniferous and broadleaved forest types were 92.86% and 97.50%, respectively. Furthermore, the total accuracy was 84.51%, of which the classification accuracies of coniferous forest, broadleaved forest, and mixed forest types were 85.71%, 97.50% and 52.94%, respectively. 【Conclusion】 The fuzzy pattern recognition algorithm has certain advantages for the forest-type classification. This is especially so in the classification of coniferous and broadleaved forests, where the classification accuracy was higher.

关键词

地球科学激光测高系统 / 森林类型 / 模糊模式识别 / 波形特征参数 / 奇异点 / 隶属度

Key words

geoscience laser altimeter system (GLAS) / forest type / fuzzy pattern recognition / waveform characteristic parameters / singular point / degree of membership

引用本文

导出引用
蔡龙涛, 邢涛, 邢艳秋, . 基于ICESat-GLAS数据和模糊模式识别算法识别森林类型[J]. 南京林业大学学报(自然科学版). 2021, 45(4): 33-40 https://doi.org/10.12302/j.issn.1000-2006.202003008
CAI Longtao, XING Tao, XING Yanqiu, et al. Identification of forest types based on ICESat-GLAS data and fuzzy pattern recognition algorithm[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 33-40 https://doi.org/10.12302/j.issn.1000-2006.202003008
中图分类号: S771:S758   

参考文献

[1]
FIELD C B, RAUPACH M R, EBRARY I, et al. The global carbon cycle: integrating humans, climate, and the natural world[M]. Chicago: Island Press, 2004.
[2]
汤旭光. 基于激光雷达与多光谱遥感数据的森林地上生物量反演研究[D]. 北京:中国科学院研究生院(东北地理与农业生态研究所), 2013.
TANG X G. Estimation of forest aboveground biomass by integrating ICESat/GLAS waveform and TM data[D]. Beijing: Graduate School of Chinese Academy of Sciences (Northeast Institute of Geography and Agricultural Ecology), 2013.
[3]
邱赛. ICESat-GLAS波形与HJ-1A高光谱影像联合反演森林地上生物量的研究[D]. 哈尔滨:东北林业大学, 2016.
QIU S. The research of regional forest above ground biomass inversion combining ICESat-GLAS waveform and HJ-1A hyperspectral imageries[D]. Harbin:Northeast Forestry University, 2016.
[4]
吴文跃, 姚顺彬, 徐志扬. 基于森林资源清查数据的江西省主要森林类型净生产力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(5):193-198.
WU W Y, YAO S B, XU Z Y, et al. A study on the net productivity of main forest types in Jiangxi Province based on forest resources inventory data[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):193-198. DOI: 10.3969/j.issn.1000-2006.201903045.
[5]
MOHOLDT G, NUTH C, HAGEN J O, et al. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry[J]. Remote Sens Environ, 2010, 114(11):2756-2767.DOI: 10.1016/j.rse.2010.06.008.
[6]
CARABAJAL C C, HARDING D J, SUCHDEO V P, et al. Development of AN ICESat geodetic control database and evaluation of global topographic assets[J]. American Geophysical Union, Fall Meeting, 2010(6):1907-1910. DOI: 10.1038/nmeth.2835.
[7]
LEFSKY M A. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system[J]. Geophys Res Lett, 2010, 37(15):L15401.DOI: 10.1029/2010GL043622.
[8]
KHALEFA E, SMIT I P J, NICKLESS A, et al. Retrieval of savanna vegetation canopy height from ICESat-GLAS spaceborne LiDAR with terrain correction[J]. IEEE Geosci Remote Sens Lett, 2013, 10(6):1439-1443.DOI: 10.1109/LGRS.2013.2259793.
[9]
XING Y Q, DE GIER A, ZHANG J J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain:a case study in Changbai Mountains,China[J]. Int J Appl Earth Obs Geoinformation, 2010, 12(5):385-392.DOI: 10.1016/j.jag.2010.04.010.
[10]
WANG C, TANG F X, LI L W, et al. Wavelet analysis for ICESat/GLAS waveform decomposition and its application in average tree height estimation[J]. IEEE Geosci Remote Sens Lett, 2013, 10(1):115-119.DOI: 10.1109/LGRS.2012.2194692.
[11]
邱赛, 邢艳秋, 田静, 等. 基于ICESat-GLAS波形数据估测森林郁闭度[J]. 南京林业大学学报(自然科学版), 2016, 40(5):99-106.
QIU S, XING Y Q, TIAN J, et al. Estimation of forest canopy density based on ICESat-GLAS waveform data[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(5):99-106.DOI: 10.3969/j.issn.1000-2006.2016.05.016.
[12]
XI X H, HAN T T, WANG C, et al. Forest above ground biomass inversion by fusing GLAS with optical remote sensing data[J]. ISPRS Int J Geo-Inf, 2016, 5(4):45.DOI: 10.3390/ijgi5040045.
[13]
WANG Y, NI W J, SUN G Q, et al. Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass[J]. Remote Sens Environ, 2019, 224:386-400.DOI: 10.1016/j.rse.2019.02.017.
[14]
FATOYINBO T E, SIMARD M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM[J]. Int J Remote Sens, 2013, 34(2):668-681.DOI: 10.1080/01431161.2012.712224.
[15]
RANSON K J, SUN G, KOVACS K, et al. Landcover attributes from ICESat GLAS data in Central Siberia[C]// IGARSS 2004.2004 IEEE International Geoscience and Remote Sensing Symposium.September 20-24,2004,Anchorage,AK,USA.IEEE, 2004:753-756.DOI: 10.1109/IGARSS.2004.1368511.
[16]
ZHANG J J, DE GIER A, XING Y Q, et al. Full waveform-based analysis for forest type information derivation from large footprint spaceborne lidar data[J]. Photogramm Eng Remote Sensing, 2011, 77(3):281-290.DOI: 10.14358/pers.77.3.281.
[17]
LI L C, XING Y Q. Study on forest type classification based on ICESat-GLAS lidar data[C]// 2011 2nd International Conference on Artificial Intelligence,Management Science and Electronic Commerce (AIMSEC).August 8-10,2011,Deng Feng,China.IEEE, 2011:3379-3382.DOI: 10.1109/AIMSEC.2011.6011388.
[18]
刘美爽, 邢艳秋, 李立存, 等. 基于星载激光雷达数据和支持向量分类机方法的森林类型识别[J]. 东北林业大学学报, 2014, 42(2):124-128.
LIU M S, XING Y Q, LI L C, et al. Forest type identification with spaceborne LIDAR data and C-support vector classification[J]. J Northeast For Univ, 2014, 42(2):124-128.DOI: 10.13759/j.cnki.dlxb.2014.02.030.
[19]
蔡龙涛, 邢艳秋, 黄佳鹏, 等 . 基于 ICESat-GLAS 数据和回波仿真原理识别森林类型[J]. 中南林业科技大学学报, 2021, 41(1):60-68.
CAI L T, XING Y Q, HUANG J P, et al. Forest types identification based on ICESat-GLAS data and echo simulation principles[J]. J Central South Univ For Technol, 2021, 41(1):60-68.
[20]
WU H B, XING Y Q. Wavelet transform and its application to ICESat-GLAS full waveform data[C]// 2010 International Symposium on Intelligence Information Processing and Trusted Computing.October 28-29,2010,Huanggang,China.IEEE, 2010:373-377.DOI: 10.1109/IPTC.2010.38.
[21]
邱赛, 邢艳秋, 李立存, 等. 基于小波变换的ICESAT-GlAS波形处理[J]. 森林工程, 2012, 28(5):33-35,59.
QIU S, XING Y Q, LI L C, et al. ICESAT-GLAS data processing based on wavelet transform[J]. For Eng, 2012, 28(5):33-35,59.DOI: 10.16270/j.cnki.slgc.2012.05.022.
[22]
LI D, XU L J, LI X L, et al. Full-waveform LiDAR signal filtering based on Empirical Mode Decomposition method[C]// 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS.July 21-26,2013,Melbourne,VIC,Australia.IEEE, 2013:3399-3402.DOI: 10.1109/IGARSS.2013.6723558.
[23]
YANG T, WANG C, LI G C, et al. Forest canopy height mapping over China using GLAS and MODIS data[J]. Sci China Earth Sci, 2015, 58(1):96-105.DOI: 10.1007/s11430-014-4905-5.
[24]
MAHONEY C, KLJUN N, LOS S, et al. Slope estimation from ICESat/GLAS[J]. Remote Sens, 2014, 6(10):10051-10069.DOI: 10.3390/rs61010051.
[25]
PANG Y, LEFSKY M, SUN G Q, et al. Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar[J]. Remote Sens Environ, 2011, 115(11):2798-2809.DOI: 10.1016/j.rse.2010.08.025.
[26]
汪泉, 宋文龙, 张怡卓, 等. 基于改进VGG16 网络的机载高光谱针叶树种分类研究[J]. 森林工程, 2021, 37(3):79-87.
WANG Q, SONG W L, ZHANG Y Z, et al. Study on hyperspectral conifer species classification based on improved VGG16 network[J]. For Eng, 2021, 37(3):79-87.
[27]
DUNCANSON L I, NIEMANN K O, WULDER M A. Estimating forest canopy height and terrain relief from GLAS waveform metrics[J]. Remote Sens Environ, 2010, 114(1):138-154.DOI: 10.1016/j.rse.2009.08.018.
[28]
JIHYUN H A, SEOK S, LEE J S. Robust outlier detection using the instability factor[J]. Knowl-Based Syst, 2014, 63:15-23.DOI: 10.1016/j.knosys.2014.03.001.

基金

国家重点研发计划(2017YFD060090402)
中央高校基本科研业务费专项资金项目(2572019AB18)
卫星测绘技术与应用国家测绘地理信息局重点实验室项目(KLSMTA-201706)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1519 KB)

Accesses

Citation

Detail

段落导航
相关文章

/