
东北东部山区主要树种枝条及其组分水力特征
The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China
【目的】针叶树种和阔叶树种木质部孔性特征的分化,导致两个功能类群在水力学结构上存在显著差异,分析针叶与阔叶树种枝条及其组分间导水率对比特征,了解树木枝-叶水力传导机制。【方法】以东北温带森林中常见的3种针叶树种红松(Pinus koraiensis)、红皮云杉(Picea koraiensis)、兴安落叶松(Larix gmelinii)和4种阔叶树种白桦(Betula platyphylla)、五角槭(Acer mono)、春榆(Ulmus japonica)、蒙古栎(Quercus mongolica)为研究对象,利用高压流速仪(HPFM)的准稳态法,测定枝条的整枝(Kwb)、茎段(Kb)、叶片(Klb)和叶柄导水率(Kp),并分别计算基于叶面积和叶质量的整枝(Kwb-area和Kwb-mass)、茎段(Kb-area和Kb-mass)、叶片导水率(Klb-area和Klb-mass)。比较同一树种枝条水力阻力分配以及不同树种同一组分间导水率差异,并探索标准化后的枝条及其组分导水率与叶性状[包括比叶质量(LMA)和叶干物质含量(LDMC)]的关系。【结果】①红松的Klb约是Kb和Kwb的4倍,针叶阻力(Rlb)仅占枝条总水力阻力(Rwb)的20%;其余树种Klb和Kwb差异不显著,并显著低于Kb,Rlb占Rwb的61%~80%,茎段阻力(Rb)占Rwb的20%左右,叶柄阻力(Rp)占Rwb不足10%。② 不同材性树种Klb-area表现为无孔材最高、散孔材和环孔材树种相似,阔叶Klb-area显著低于针叶。不同材性或叶习性树种间Kwb-area或Kb-area均无显著差异。③ Klb-area、Kwb-area和Kb-area与比叶质量(LMA)、干物质含量(LDMC)均正相关,其中Klb-area与两者相关极显著(P<0.01);Klb-mass、Kwb-mass和Kb-mass与LMA、LDMC均为负相关,Klb-mass与两者相关不显著。【结论】除了红松,其余6个树种均可采用枝条或带叶柄的叶片代替叶片导水率数据。针叶导水率高于阔叶,一定程度上弥补了针叶树种木质部输水效率低的限制。对针叶树种采用枝条代替Klb-area分析与叶性状的关系需慎重,基于单位叶质量的枝条及其组分导水率指标,能够如实反映针阔叶树种叶导水率与叶性状的关系。
【Objective】The divergence in wood types between coniferous and broadleaved tree species is expected to lead to significantly different hydraulic architectures between these two functional groups. Despite extensive research on branch xylem, the hydraulic conductance of the whole branch and its parts between the two groups are not well understood.【Method】In the present study, the hydraulic conductance and the hydraulic relative resistance (the inverse of conductance) of the whole branch (Kwb), leafless branch (Kb), leaf blades (Klb), and petioles (KP)as well as the above values normalized by leaf area (Kwb-area, Kb-area, Klb-area) and dry mass (Kwb-mass, Kb-mass, Klb-mass), were determined in the quasi-steady-state mode using a high-pressure flow meter (HPFM). This was performed on three conifers (Pinus koraiensis, Picea koraiensis, Larix gmelinii) and four deciduous broadleaved tree species (Betula platyphylla, Acer mono, Ulmus japonica, Quercus mongolica) commonly found in the eastern region of northeast China. We analyzed the hydraulic resistance distribution of the whole branch, compared hydraulic conductance values within the same part of the branch among the different tree species, wood properties, or leaf habits, and established the relationship between the hydraulic conductance and leaf traits(leaf mass per area-LMA and leaf dry mass content-LDMC).【Result】The Klb for Pinus koraiensis was approximately four times as much as the Kwb and Kb, whereas the Klb and Kwb for the remaining six species were similar, and significantly lower than those of the Kb. The leaf-blade relative resistance (Rlb) in Pinus koraiensis accounted for 20% of the total hydraulic resistance (Rwb) in the branch, whereas the relative resistance contribution of Rlb, leafless branch (Rb), and petiole (Rp) to the Rwb ranged from 61% to 80%, about 20%, and lower than 10%, respectively, for the remaining tree species. The Klb-area of the non-porous species was higher than those of the diffuse- and ring-porous species. The latter two functional groups showed no significant difference in the Klb-area, resulting in a significantly higher Klb-area for coniferous species than for that of broadleaved species. No differences was found in terms of the Kwb-area or Kb-area among tree species with different wood types or leaf habits. Leaf area-based hydraulic conductances were positively correlated with the LMA or LDMC, whereas leaf mass-based hydraulic conductances were negatively correlated with the LMA and LDMC. The Klb-area and Klb-mass showed a strong and a weak relationship with leaf traits, respectively.【Conclusion】The whole branches or leaf blades with petioles could be used to measure the Klb for all the tree species examined, with the exception of Pinus koraiensis. The Klb of coniferous species was higher than that of broadleaved tree species, which compensated for the lower xylem hydraulic efficiency, to some extent. Caution should be applied when analyzing the relationship between the Klb-area and leaf traits using the whole branch for coniferous tree species. Leaf mass-based hydraulic conductance can faithfully reflect the relationship between the leaf hydraulic conductance and the leaf traits of coniferous and broadleaved trees.
水力导度 / 针叶树 / 阔叶树 / 枝条及其组分 / 叶性状 / 高压流速仪 / 东北地区
hydraulic conductance / coniferous tree / broadleaved tree / whole branch and its components / leaf trait / high-pressure flowmeter / northeast China
[1] |
|
[2] |
|
[3] |
段娜, 汪季, 郝玉光, 等. 水分变化对荒漠植物白刺气体交换参数及形态特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(6):32-38.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系[J]. 植物生态学报, 2016, 40(7):702-710.
不同材性树种的解剖、叶脉分布等结构性状差异会影响树木的水分运输效率和水分利用策略, 进而限制树木的生存、生长和分布。然而, 材性对叶导水率、水力脆弱性及其潜在的权衡关系的影响尚不清楚。该研究选择东北温带森林中不同材性的9种树种(散孔材: 山杨(Populus davidiana)、紫椴(Tilia amurensis)、白桦(Betula platyphylla); 环孔材: 蒙古栎(Quercus mongolica)、水曲柳(Fraxinus mandshurica)、胡桃楸(Juglans mandshurica); 无孔材: 红皮云杉(Picea koraiensis)、樟子松(Pinus sylvestris var. mongolica)、红松(Pinus koraiensis), 测量其基于叶面积和叶质量的叶导水率(K<sub>area</sub>和K<sub>mass</sub>)、水力脆弱性(P<sub>50</sub>)、膨压丧失点水势(TLP)及叶结构性状, 以比较不同材性树种叶水力性状的差异, 并探索叶水力效率与安全的权衡关系。结果表明: 3种材性树种的K<sub>area</sub>、K<sub>mass</sub>和P<sub>50</sub>均差异显著(p < 0.05)。无孔材树种的K<sub>area</sub>和K<sub>mass</sub>最低, 而散孔材和环孔材树种差异不显著; 环孔材树种P<sub>50</sub>最高, 而散孔材和无孔材树种差异不显著。K<sub>area</sub>和K<sub>mass</sub>均与P<sub>50</sub>显著负相关(p < 0.05), 但散孔材、环孔材和无孔材树种的相关关系分别呈线性、幂函数和指数函数关系。这表明叶水力效率与安全之间存在一定的权衡关系, 但该关系受树木材性的影响。K<sub>mass</sub>与TLP显著负相关(p < 0.01), 其中散孔材和环孔材树种呈线性负相关, 无孔材树种呈负指数函数关系; P<sub>50</sub>随TLP的增加而增加, 这表明树木在面临水分胁迫时, 其质外体和共质体抗旱阻力共同协调保护叶片活细胞, 防止其水分状况到达临界阈值。K<sub>mass</sub>与叶干物质含量、叶密度、比叶重均显著负相关, 而P<sub>50</sub>与之显著正相关(p < 0.01, P<sub>50</sub>与比叶重的关系除外), 表明树木叶水力特性的变化受相同叶结构特性驱动, 树木增加对水力失调的容忍需要在叶水力系统构建上增加碳投资。
|
[9] |
|
[10] |
|
[11] |
成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992.
|
[12] |
左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16):5087-5094.
|
[13] |
|
[14] |
尹秋龙. 黄土高原木本植物叶经济性状和水力性状研究[D]. 西安: 西北大学, 2019.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
NARDINIA,
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
杨金艳, 范晶. 红松光合特性对CO2浓度升高的响应[J]. 东北林业大学学报, 2004, 32(6):16-18.
|
[29] |
韩士杰, 周玉梅, 王琛瑞, 等. 红松幼苗对CO2浓度升高的生理生态反应[J]. 应用生态学报, 2001, 12(1):27-30.
|
[30] |
杨柳, 孙慧珍. 兴安落叶松水分利用对策[J]. 林业科学, 2016, 52(6):149-156.
|
[31] |
敖红, 张羽. 亚硫酸钠和亚硫酸氢钠混合液对2种云杉某些生理指标影响的比较[J]. 植物生理学通讯, 2007, 43(2):259-263.
|
[32] |
段瑞兵, 孙慧珍. 确定P-V曲线中质壁分离点的方法比较[J]. 南京林业大学学报(自然科学版), 2016, 40(4):89-94.
|
[33] |
曾俊, 孙慧珍. 超声发射特征归类识别木质部栓塞信息[J]. 南京林业大学学报(自然科学版), 2018, 42(1):89-97.
|
[34] |
殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异[J]. 应用生态学报, 2018, 29(2):352-360.
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
黑龙江帽儿山森林生态系统国家野外科学观测研究站提供帮助。
/
〈 |
|
〉 |