南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2): 1-9.doi: 10.12302/j.issn.1000-2006.202003037
收稿日期:
2020-03-13
接受日期:
2020-07-04
出版日期:
2021-03-30
发布日期:
2021-04-09
通讯作者:
胡同欣
基金资助:
SUN Long(), DOU Xu, HU Tongxin*()
Received:
2020-03-13
Accepted:
2020-07-04
Online:
2021-03-30
Published:
2021-04-09
Contact:
HU Tongxin
摘要:
林火可以改变森林生态系统元素的生态化学计量特征,反映火后森林生态系统环境中生物地球化学循环变化模式,阐明林火干扰下森林生态系统碳(C)氮(N)磷(P)生态化学计量特征,对于理解森林生态系统对林火干扰的响应机理至关重要。笔者通过查阅大量相关文献,总结与分析了林火干扰对森林生态系统C-N-P生态化学计量特征影响模式,以及林火干扰对植物C-N-P生态化学计量特征、凋落物C-N-P生态化学计量特征、土壤C-N-P生态化学计量特征的影响,认为森林生态系统C-N-P生态化学计量特征主要受到火烧因子(火烧强度、火烧频率、火烧后恢复时间)、植被类型及土壤性质3个方面的影响,针对林火对森林生态系统生态化学计量学研究亟待解决的科学问题,从林火干扰对植物生态化学计量内稳性的影响机制、林火干扰下多重元素生态化学计量学研究、建立林火干扰下植物-凋落物-土壤复合系统生态化学计量学关系等3个方面进行了展望,以期深入了解林火干扰下植物调控策略,明确林火干扰后多重化学元素间相互耦合机制,完善以植物-凋落物-土壤为复合整体的地上地下养分输入输出的关系,对于深刻理解全球气候变化背景下森林生态系统养分循环和平衡,以及合理制定林火管理措施具有重要作用。
中图分类号:
孙龙,窦旭,胡同欣. 林火对森林生态系统碳氮磷生态化学计量特征影响研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 1-9.
SUN Long, DOU Xu, HU Tongxin. Research progress on the effects of forest fire on forest ecosystem C-N-P ecological stoichiometry characteristics[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(2): 1-9.DOI: 10.12302/j.issn.1000-2006.202003037.
表1
林火干扰下不同森林生态系统土壤生态化学计量特征"
气候类型 climate type | 植被类型,分布区 vegetation type, distribution area | 火烧强度 fire intensity | 火烧后恢 复时间/a time after fire | c(C)/% | c(N)/ (mg·kg-1) | c(P)/ (mg·kg-1) | N/P | 参考文献 reference |
---|---|---|---|---|---|---|---|---|
寒温带 cold temperate zone | 兴安落叶松林 L. gmelinii, 大兴安岭 Great Khing’an Mountains | 对照control | 1 | 10.100±2.000 a | 4 000±700 a | — | — | [ |
低 low | 6.800±0.800 a | 3 700±300 a | — | — | ||||
高 high | 7.300±1.200 a | 3 100±200 a | — | — | ||||
偃松-兴安 落叶松林 P. pumila- L. gmelinii, 大兴安岭 Great Khing’an Mountains | 对照control | 5 | 12.683±0.332 a | 5 460±430 a | 960±270 | 5.69±1.15 | [ | |
低 low | 11.945±0.918 a | 5 230±280 a | 870±340 | 6.01±2.02 | ||||
中medium | 8.793±0.401 b | 4 200±230 b | 530±210 | 7.92±2.70 | ||||
高 high | 7.255±0.392 c | 4 410±370 b | 440±370 | 10.02±7.58 | ||||
低 low | 19 | 12.174±0.187 a | 5 280±630 a | 930±520 | 5.68±2.49 | |||
中medium | 8.916±0.411 b | 4 490±470 b | 620±230 | 7.24±1.92 | ||||
高 high | 7.934±0.362 c | 4 400±170 b | 460±230 | 9.56±4.41 | ||||
兴安落叶松林 L. gmelinii, 大兴安岭 Great Khing’an Mountains | 对照control | 5 | — | — | 597±68 | — | [ | |
高 high | — | — | 833±160 | — | ||||
温带 temperate zone | 油松林 P. tabulaeformis (0~10 cm土壤层), 河北平泉 Pingquan,Hebei | 对照control | 1 | 2.960±0.060 | 1 850±930 a | 380±190 a | 4.87±0.01 | [ |
低 low | 2.340±0.030 | 1 340±90 a | 240±10 a | 5.58±0.14 | ||||
中medium | 2.430±0.030 | 860±240 a | 110±40 a | 7.81±0.66 | ||||
高 high | 2.970±0.410 | 2 170±130 a | 290±30 a | 7.48±0.33 | ||||
油松林 P. tabulaeformis (10~20 cm土壤层), 河北平泉 Pingquan,Hebei | 对照control | 1 | 1.560±0.060 | 1 260±810 a | 330±190 a | 3.81±0.26 | ||
低 low | 1.300±0.060 | 790±140 a | 190±20 a | 4.15±0.30 | ||||
中medium | 1.270±0.060 | 470±90 a | 60±20 a | 7.83±1.11 | ||||
高 high | 1.680±0.220 | 1 110±140 a | 170±0 a | 6.52±0.82 | ||||
油松林 P. tabulaeformis (20~30 cm土壤层), 河北平泉 Pingquan,Hebei | 对照control | 1 | 0.740±0.080 | 910±730 a | 300±160 a | 3.03±0.82 | ||
低 low | 0.950±0.050 | 620±90 a | 170±20 a | 3.65±0.10 | ||||
中medium | 0.650±0.030 | 320±90 a | 50±0 a | 6.4±1.80 | ||||
高 high | 1.000±0.080 | 740±230 a | 160±60 a | 4.63±0.30 | ||||
亚热带 subtropical zone | 常桉林E. crebra, 昆士兰州Queensland | 对照control | 5 | 2.300±0.200 | 3 750±530 | 347±26 | 10.81±0.72 | [ |
低 low | 1.900±0.200 | 5 700±590 | 635±50 | 8.98±0.22 | ||||
枫香林L. formosana, 湖南株洲 Zhuzhou,Hunan | 对照control | — | 3.390±0.900 a | 2 000±600 ab | 260±30 ab | 7.69±1.42 | [ | |
低 low | 3.080±0.360 a | 2 100±600 a | 260±20 b | 8.08±1.69 | ||||
中medium | 2.870±0.340 | 1 900±400 b | 250±20 b | 7.60±0.99 | ||||
高 high | 2.530±0.480 | 1 800±500 b | 230±30 | 7.83±1.15 | ||||
马尾松-木荷林 P. massoniana- S. superba, 湖南株洲 Zhuzhou,Hunan | 对照control | — | 1.530±0.660 a | 1 200±300 ab | 220±40 abc | 5.45±0.37 | ||
低 low | 1.400±0.380 a | 1 200±300 a | 220±30 b | 5.45±0.62 | ||||
中medium | 1.310±0.350 a | 1 100±200 b | 210±30 b | 5.24±0.20 | ||||
高 high | 1.130±0.320 | 1 000±200 b | 190±40 c | 5.26±0.06 | ||||
杉木-木荷 C. lanceolata- S. superba, 湖南株洲 Zhuzhou,Hunan | 对照control | — | 2.090±1.060 a | 2 500±400 abc | 320±40 abc | 7.81±0.27 | ||
低 low | 1.830±0.530 a | 2 600±500 a | 320±40 a | 8.13±0.55 | ||||
中medium | 1.680±0.420 a | 2 400±300 b | 310±30 b | 7.74±0.22 | ||||
高 high | 1.470±0.300 | 2 200±400 c | 290±40 c | 7.59±0.33 | ||||
檫木-杉木林 S. tzumu-C. lanceolata, 湖南湘潭 Xiangtan,Hunan | 对照control | — | 1.440±1.060 ab | 900±30 a | 100±10 a | 9.00±0.60 | ||
低 low | 1.290±0.700 a | 900±30 a | 90±20 a | 10.00±1.33 | ||||
中medium | 1.200±0.590 ab | 800±30 a | 90±10 a | 8.89±0.65 | ||||
高 high | 1.040±0.500 b | 900±80 a | 90±20 a | 10.00±1.89 | ||||
热带 tropical zone | 稀树草原* Savanna | 对照control | 0.046±0.004 a | 2 890±220 a | 1 540±150 | 1.88±0.04 | [ | |
1 | 0.037±0.003 b | 1 790±70 b | 1 740±230 | 1.03±0.10 | ||||
低 low | 3 | 0.039±0.005 b | 2 040±150 b | 1 660±320 | 1.23±0.15 | |||
雨林rain forest, 黑卡诺Cano Negro, 哥斯达黎加Costa Rica | 对照control | 1 | 5.460±0.500 | 5 400±40 | 2.89±0.14 | 1 868.51±76.68 | [ | |
低 low | 4.270±0.700 | 4 200±100 | 4.53±0.18 | 927.15±14.77 | ||||
雨林rain forest, 西孟加拉邦Kukra, 印度India | 对照control | 1 | 6.980±2.300 | 5 700±100 | 3.54±0.21 | 1 610.17±67.27 | ||
低 low | 10.480±1.700 | 9 100±100 | 7.60±0.18 | 1 197.37±15.20 |
[1] | STEPHENS S L, AGEE J K, FULÉ P Z, et al. Land use: managing forests and fire in changing climates[J]. Science, 2013,342(6154):41-42.DOI: 10.1126/science.1240294. |
[2] | 赵一娉, 曹扬, 陈云明, 等. 黄土丘陵沟壑区森林生态系统生态化学计量特征[J]. 生态学报, 2017,37(16):5451-5460. |
ZHAO Y P, CAO Y, CHEN Y M, et al. Ecological stoichiometry in a forest ecosystem in the hilly-gully area of the Loess Plateau[J]. Acta Ecol Sin, 2017,37(16):5451-5460.DOI: 10.5846/stxb201605170951. | |
[3] | 张亨宇. 火干扰对大兴安岭北方森林土壤性质和碳氮磷化学计量特征的影响[D]. 沈阳:沈阳师范大学, 2019. |
ZHANG H Y. Effects of fire disturbance on the soil properties and C/N/P stoichiometry in the boreal forest of Great Xing’an Mountains[D]. Shenyang:Shenyang Normal University, 2019. | |
[4] | BUTLER O M, ELSER J J, LEWIS T, et al. The multi-element stoichiometry of wet eucalypt forest is transformed by recent,frequent fire[J]. Plant Soil, 2020,447(1/2):447-461.DOI: 10.1007/s11104-019-04397-z. |
[5] | SCHAFER J L, MACK M C. Short-term effects of fire on soil and plant nutrients in palmetto flatwoods[J]. Plant Soil, 2010,334(1/2):433-447.DOI: 10.1007/s11104-010-0394-2. |
[6] | 孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020,39(3):766-774. |
SUN Q, WANG B, ZHOU H P, et al. Spatial variation of ecological stoichiometry of soil C,N and P in a small catchment of loess hilly area[J]. Chin J Ecol, 2020,39(3):766-774.DOI: 10.13292/j.1000-4890.202003.037. | |
[7] | DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013,502(7473):672-676.DOI: 10.1038/nature12670. |
[8] | DIJKSTRA F A, ADAMS M A. Fire eases imbalances of nitrogen and phosphorus in woody plants[J]. Ecosystems, 2015,18(5):769-779.DOI: 10.1007/s10021-015-9861-1. |
[9] | BUTLER O M, LEWIS T, CHEN C R. Prescribed fire alters foliar stoichiometry and nutrient resorption in the understorey of a subtropical eucalypt forest[J]. Plant Soil, 2017,410(1/2):181-191.DOI: 10.1007/s11104-016-2995-x. |
[10] | PELLEGRINI A F A, HEDIN L O, STAVER A C, et al. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna[J]. Ecology, 2015,96(5):1275-1285.DOI: 10.1890/14-1158.1. |
[11] | STERNER R W, ELSER J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002. |
[12] | WARDLE D A, WALKER L R, BARDGETT R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004,305(5683):509-513.DOI: 10.1126/science.1098778. |
[13] | NEARY D G, RYAN K C, DEBANO L F. Wildland fire in ecosystems:effects of fire on soils and water[R]. U.S.Department of Agriculture,Forest Service, Rocky Mountain Research Station, 2005.DOI: 10.2737/rmrs-gtr-42-v4. |
[14] | PELLEGRINI A F A, AHLSTRÖM A, HOBBIE S E, et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity[J]. Nature, 2018,553(7687):194-198.DOI: 10.1038/nature24668. |
[15] | DIJKSTRA F A, JENKINS M, DE RÉMY DE COURCELLES V, et al. Enhanced decomposition and nitrogen mineralization sustain rapid growth of Eucalyptus regnans after wildfire[J]. J Ecol, 2017,105(1):229-236.DOI: 10.1111/1365-2745.12663. |
[16] | AGREN G I, WEIH M. Plant stoichiometry at different scales:element concentration patterns reflect environment more than genotype[J]. New Phytol, 2012,194(4):944-952.DOI: 10.1111/j.1469-8137.2012.04114.x. |
[17] | CHAPIN F S III, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York:Springer New York, 2002.DOI: 10.1007/b97397. |
[18] | WANG X G, LÜ X T, HAN X G. Responses of nutrient concentrations and stoichiometry of senesced leaves in dominant plants to nitrogen addition and prescribed burning in a temperate steppe[J]. Ecol Eng, 2014,70:154-161.DOI: 10.1016/j.ecoleng.2014.05.015. |
[19] | BUTLER O M, REZAEI RASHTI M, LEWIS T, et al. High-frequency fire alters soil and plant chemistry but does not lead to nitrogen-limited growth of Eucalyptus pilularis seedlings[J]. Plant Soil, 2018,432(1/2):191-205.DOI: 10.1007/s11104-018-3797-0.159-1606. |
[20] | SCHALLER J, TISCHER A, STRUYF E, et al. Fire enhances phosphorus availability in topsoils depending on binding properties[J]. Ecology, 2015,96(6):1598-1606. DOI: 10.1890/14-1311.1. |
[21] | KONG J J, YANG J, BAI E. Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest[J]. Sci Total Environ, 2018,642:1353-1361. DOI: 10.1016/j.scitotenv.2018.06.154. |
[22] | MURPHY J D, JOHNSON D W, MILLER W W, et al. Wildfire effects on soil nutrients and leaching in a tahoe basin watershed[J]. Journal of Environmental Quality, 2006,35(2):479-489. DOI: 10.2134/jeq2005.0144. |
[23] | 遆萌萌. 火烧和氮添加对气候过渡带针阔混交林叶片功能性状的影响[D]. 开封:河南大学, 2019. |
TI M M. Effects of burning and nitrogen addition on leaf function traits of coniffrous-broadleaf forest in the climatic transitional zone[D]. Kaifeng: Henan University, 2019. | |
[24] | CUI Q, LÜ X T, WANG Q B, et al. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe[J]. Plant Soil, 2010,334(1/2):209-219.DOI: 10.1007/s11104-010-0375-5. |
[25] | BRITTON A J, HELLIWELL R C, FISHER J M, et al. Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland[J]. Environ Pollut, 2008,156(2):409-416.DOI: 10.1016/j.envpol.2008.01.029. |
[26] | HENRY H A L, CHIARIELLO N R, VITOUSEK P M, et al. Interactive effects of fire,elevated carbon dioxide,nitrogen deposition,and precipitation on a California annual grassland[J]. Ecosystems, 2006,9(7):1066-1075.DOI: 10.1007/s10021-005-0077-7. |
[27] | GÜSEWELL S, VERHOEVEN J T A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter[J]. Plant Soil, 2006,287(1/2):131-143.DOI: 10.1007/s11104-006-9050-2. |
[28] | 黄铄淇, 胡慧蓉, 韩钊龙, 等. 林火对昆明人工林凋落物和表层土壤碳氮的影响[J]. 四川农业大学学报, 2014,32(1):18-22. |
HUANG S Q, HU H R, HAN Z L, et al. Effects of fire on carbon and nitrogen pools in litter and topsoil of plantations,Kunming[J]. J Sichuan Agric Univ, 2014,32(1):18-22.DOI: 10.3969/j.issn.1000-2650.2014.01.003. | |
[29] | 杨新芳, 鲍雪莲, 胡国庆, 等. 大兴安岭不同火烧年限森林凋落物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2016,27(5):1359-1367. |
YANG X F, BAO X L, HU G Q, et al. C : N : P stoichiometry characteristics of litter and soil of forests in Great Xing’an Mountains with different fire years[J]. Chin J Appl Ecol, 2016,27(5):1359-1367.DOI: 10.13287/j.1001-9332.201605.030. | |
[30] | TOBERMAN H, CHEN C R, LEWIS T, et al. High-frequency fire alters C:N:P stoichiometry in forest litter[J]. Glob Chang Biol, 2014,20(7):2321-2331.DOI: 10.1111/gcb.12432. |
[31] | BENGTSSON J, JANION C, CHOWN S L, et al. Variation in decomposition rates in the fynbos biome, south Africa:the role of plant species and plant stoichiometry[J]. Oecologia, 2011,165(1):225-235.DOI: 10.1007/s00442-010-1753-7. |
[32] | KLOPATEK J M, KLOPATEK C C, DEBANO L F. Fire effects on nutrient pools of woodland floor materials and soils in a pinyon-juniper ecosystem[C]// NODVIN S C, WALDROP T A. Proceedings of an international symposium: fire and the environment: ecological and cultural perspectives, 1991: 154-159. https://www.frames.gov/catalog/16108. |
[33] | ZHOU X, SUN H, PUMPANEN J, et al. The impact of wildfire on microbial C:N:P stoichiometry and the fungal-to-bacterial ratio in permafrost soil[J]. Biogeochemistry, 2019,142(1):1-17.DOI: 10.1007/s10533-018-0510-6. |
[34] | 程瑞梅, 王娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018,54(7):130-136. |
CHENG R M, WANG N, XIAO W F, et al. Advances in studies of ecological stoichiometry of terrestrial ecosystems[J]. Sci Silvae Sin, 2018,54(7):130-136.DOI: 10.11707/j.1001-7488.20180714. | |
[35] | HEDIN L O, VITOUSEK P M, MATSON P A. Nutrient losses over four million years of tropical forest development[J]. Ecology, 2003,84(9):2231-2255.DOI: 10.1890/02-4066. |
[36] | VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation:mechanisms,implications,and nitrogen-phosphorus interactions[J]. Ecol Appl, 2010,20(1):5-15.DOI: 10.1890/08-0127.1. |
[37] | 孔健健, 杨健. 火烧对中国东北部兴安落叶松林土壤性质和营养元素有效性的影响[J]. 生态学杂志, 2013,32(11):2837-2843. |
KONG J J, YANG J. Effects of fire on soil properties and nutrient availability in a Dahurian larch forest in Great Xing’an Mountains of northeast China[J]. Chin J Ecol, 2013,32(11):2837-2843. | |
[38] | 谷会岩, 金屿淞, 张芸慧, 等. 林火对大兴安岭偃松-兴安落叶松林土壤养分的影响[J]. 北京林业大学学报, 2016,38(7):48-54. |
GU H Y, JIN Y S, ZHANG Y H, et al. Effects of forest fire on soil;nutrients of ass Pinus pumila-Larix gmelinii forest in Great Xing’an Mountains[J]. J Beijing For Univ, 2016,38(7):48-54.DOI: 10.13332/j.1000-1522.20150510. | |
[39] | 孔健健, 张亨宇, 于龙, 等. 林火干扰后大兴安岭森林土壤磷的变化特征[J]. 沈阳师范大学学报(自然科学版), 2019,37(2):149-154. |
KONG J J, ZHANG H Y, YU L, et al. Change characteristics of forest soil phosphorus after fire in Great Xing’an Mountains[J]. J Shenyang Norm Univ (Nat Sci Ed), 2019,37(2):149-154.DOI: 10.3969/j.issn.1673-5862.2019.02.010. | |
[40] | 李炳怡, 刘冠宏, 李伟克, 等. 不同火强度对河北平泉油松林土壤有机碳及土壤养分影响[J]. 生态科学, 2018,37(4):35-44. |
LI B Y, LIU G H, LI W K, et al. Effects of different wildfire intensities on soil organic carbon and soil nutrients in Pinus tabulaeformis forests in Pingquan County,Hebei Province[J]. Ecol Sci, 2018,37(4):35-44.DOI: 10.14108/j.cnki.1008-8873.2018.04.004. | |
[41] | 曾素平, 刘发林, 赵梅芳, 等. 火干扰强度对亚热带四种森林类型土壤理化性质的影响[J]. 生态学报, 2020,40(1):233-246. |
ZENG S P, LIU F L, ZHAO M F, et al. Effects of fire disturbance intensities on soil physiochemical properties of pour subtropical forest types[J]. Acta Ecol Sin, 2020,40(1):233-246.DOI: 10.5846/stxb201812052665. | |
[42] | BLAIR B C. Fire effects on the spatial patterns of soil resources in a Nicaraguan wet tropical forest[J]. J Trop Ecol, 2005,21(4):435-444.DOI: 10.1017/s0266467405002452. |
[43] | HUME A, CHEN H Y H, TAYLOR A R, et al. Soil C:N:P dynamics during secondary succession following fire in the boreal forest of central Canada[J]. For Ecol Manag, 2016,369:1-9.DOI: 10.1016/j.foreco.2016.03.033. |
[44] | 胡海清. 林火生态与管理[M].修订版. 北京: 中国林业出版社, 2005. |
[45] | REINHART K O, DANGI S R, VERMEIRE L T. The effect of fire intensity,nutrients,soil microbes,and spatial distance on grassland productivity[J]. Plant Soil, 2016,409(1/2):203-216.DOI: 10.1007/s11104-016-2957-3. |
[46] | NAVE L E, VANCE E D, SWANSTON C W, et al. Fire effects on temperate forest soil C and N storage[J]. Ecol Appl, 2011,21(4):1189-1201.DOI: 10.1890/10-0660.1. |
[47] | ÅGREN G I, WETTERSTEDT J Å M, BILLBERGER M F K. Nutrient limitation on terrestrial plant growth-modeling the interaction between nitrogen and phosphorus[J]. New Phytol, 2012,194(4):953-960.DOI: 10.1111/j.1469-8137.2012.04116.x. |
[48] | KIRKMAN K P, COLLINS S L, SMITH M D, et al. Responses to fire differ between south African and north American grassland communities[J]. J Veg Sci, 2014,25(3):793-804.DOI: 10.1111/jvs.12130. |
[49] | LAVOIE M, STARR G, MACK M C, et al. Effects of a prescribed fire on understory vegetation,carbon pools,and soil nutrients in a longleaf pine-slash pine forest in Florida[J]. Nat Areas J, 2010,30(1):82-94.DOI: 10.3375/043.030.0109. |
[50] | HU T X, HU H Q, LI F, et al. Long-term effects of post-fire restoration types on nitrogen mineralisation in a Dahurian larch (Larix gmelinii) forest in boreal China[J]. Sci Total Environ, 2019,679:237-247.DOI: 10.1016/j.scitotenv.2019.05.008. |
[51] | HART S C, DELUCA T H, NEWMAN G S, et al. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils[J]. For Ecol Manag, 2005,220(1/2/3):166-184.DOI: 10.1016/j.foreco.2005.08.012. |
[52] | AUGUSTO L, DE SCHRIJVER A, VESTERDAL L, et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests[J]. Biol Rev, 2015,90(2):444-466.DOI: 10.1111/brv.12119. |
[53] | SCHWILK D W, ACKERLY D D. Flammability and serotiny as strategies:correlated evolution in pines[J]. Oikos, 2001,94(2):326-336.DOI: 10.1034/j.1600-0706.2001.940213.x. |
[54] | LEE S W, LEE M B, LEE Y G, et al. Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck,south Korea[J]. For Ecol Manag, 2009,258(7):1594-1604.DOI: 10.1016/j.foreco.2009.07.017. |
[55] | CHEN X H, DUAN Z H, TAN M L. Restoration affect soil organic carbon and nutrients in different particle-size fractions[J]. Land Degrad Dev, 2016,27(3):561-572.DOI: 10.1002/ldr.2400. |
[56] | STRYDOM T, RIDDELL E S, ROWE T, et al. The effect of experimental fires on soil hydrology and nutrients in an African savanna[J]. Geoderma, 2019,345:114-122.DOI: 10.1016/j.geoderma.2019.03.027. |
[57] | GE N N, WEI X R, WANG X, et al. Soil texture determines the distribution of aggregate-associated carbon,nitrogen and phosphorous under two contrasting land use types in the Loess Plateau[J]. CATENA, 2019,172:148-157.DOI: 10.1016/j.catena.2018.08.021. |
[58] | 孙龙, 赵俊, 胡海清. 中度火干扰对白桦落叶松混交林土壤理化性质的影响[J]. 林业科学, 2011,47(2):103-110. |
SUN L, ZHAO J, HU H Q. Effect of moderate fire disturbance on soil physical and chemical properties of Betula platyphylla-Larix gmelinii mixed forest[J]. Sci Silvae Sin, 2011,47(2):103-110. | |
[59] | MOXHAM C, DORROUGH J, BRAMWELL M, et al. Fire exclusion and soil texture interact to influence temperate grassland flora in south-eastern Australia[J]. Aust J Bot, 2016,64(5):417.DOI: 10.1071/bt16056. |
[60] | 耿玉清, 周荣伍, 李涛, 等. 北京西山地区林火对土壤性质的影响[J]. 中国水土保持科学, 2007,5(5):66-70. |
GENG Y Q, ZHOU R W, LI T, et al. Influences of forest fire on soil properties in Xishan area of Beijing[J]. Sci Soil Water Conserv, 2007,5(5):66-70.DOI: 10.3969/j.issn.1672-3007.2007.05.012. | |
[61] | YU Q, CHEN Q S, ELSER J J, et al. Linking stoichiometric homoeostasis with ecosystem structure,functioning and stability[J]. Ecol Lett, 2010,13(11):1390-1399.DOI: 10.1111/j.1461-0248.2010.01532.x. |
[62] | 张婷婷, 刘文耀, 黄俊彪, 等. 植物生态化学计量内稳性特征[J]. 广西植物, 2019,39(5):701-712. |
ZHANG T T, LIU W Y, HUANG J B, et al. Characteristics of plant ecological stoichiometry homeostasis[J]. Guihaia, 2019,39(5):701-712.DOI: 10.11931/guihaia.gxzw201805050. | |
[63] | JEYASINGH P D, GOOS J M, THOMPSON S K, et al. Ecological stoichiometry beyond redfield:an ionomic perspective on elemental homeostasis[J]. Front Microbiol, 2017,8:722.DOI: 10.3389/fmicb.2017.00722. |
[64] | ZHANG L, LIU L J, PAN K W, et al. Post-wildfire soil and plant foliar nutrient ratios and soil fungi:bacterial ratios in alpine meadows on the southeastern Qinghai-Tibet Plateau[J]. Int J Wildland Fire, 2015,24(7):933.DOI: 10.1071/wf14147. |
[65] | LUCAS R W, KLAMINDER J, FUTTER M N, et al. A meta-analysis of the effects of nitrogen additions on base cations: implications for plants,soils,and streams[J]. For Ecol Manag, 2011,262(2):95-104.DOI: 10.1016/j.foreco.2011.03.018. |
[66] | BAI X J, WANG B R, AN S S, et al. Response of forest species to C:N:P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau,China[J]. Catena, 2019,183:104186.DOI: 10.1016/j.catena.2019.104186. |
[67] | ZHANG W, LIU W C, XU M P, et al. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau,China[J]. Geoderma, 2019,337:280-289.DOI: 10.1016/j.geoderma.2018.09.042. |
[68] | MOYA D, GONZÁLEZ-DE VEGA S, LOZANO E, et al. The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill.stands in the short and mid-terms after wildfire[J]. J Environ Manag, 2019,235:250-256.DOI: 10.1016/j.jenvman.2019.01.029. |
[1] | 何乃磊, 张金生, 林文树. 基于深度学习多目标检测技术的林火图像识别研究[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 207-218. |
[2] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[3] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[4] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[5] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[6] | 张晓迪, 李明泽, 王斌, 吴泽川, 莫祝坤, 范仲洲. 基于红外序列图像的火线实时提取及蔓延模拟火线优化[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 192-202. |
[7] | 张文文, 王劲, 王秋华, 张曦妍, 曹恒茂, 龙腾腾. 基于MODIS的云南省2001—2020年林火发生时空特征分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 73-79. |
[8] | 贺坤, 王俊洁, 王本耀, 朱海军, 奉树成. 上海市行道树土壤肥力特征及其空间分布[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 164-172. |
[9] | 徐子涵, 王磊, 崔明, 刘玉国, 赵紫晴, 李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 173-181. |
[10] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[11] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[12] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[13] | 谢君毅, 徐侠, 蔡斌, 张惠光. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 1-11. |
[14] | 黄梓敬, 徐侠, 张惠光, 蔡斌, 李良彬. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32. |
[15] | 刘俊涛, 仲静, 刘济铭, 罗水晶, 王冕之, 范嘉霖, 贾黎明. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 67-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||