南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6): 57-64.doi: 10.12302/j.issn.1000-2006.202003068
张濛1(), 续高山1, 滕志远1, 刘关君2, 张秀丽1,3,*()
收稿日期:
2020-03-23
接受日期:
2021-06-09
出版日期:
2021-11-30
发布日期:
2021-12-02
通讯作者:
张秀丽
基金资助:
ZHANG Meng1(), XU Gaoshan1, TENG Zhiyuan1, LIU Guanjun2, ZHANG Xiuli1,3,*()
Received:
2020-03-23
Accepted:
2021-06-09
Online:
2021-11-30
Published:
2021-12-02
Contact:
ZHANG Xiuli
摘要: 目的 研究小黑杨(Populus simonii × P. nigra)幼苗生长、生理特性和叶片光系统Ⅱ(PSⅡ)活性对酸雨胁迫的响应情况,为其在酸雨沉降日趋频发的北方地区栽植提供参考。方法 以小黑杨为研究材料,对其连续喷施不同酸度[pH为2.5、4.5和7.0(CK)]的模拟酸雨,待小黑杨叶片出现明显病症时,测定其生长、叶片超微结构、抗氧化酶和光系统Ⅱ活性指标。结果 与对照相比,pH 4.5的模拟酸雨处理下小黑杨株高、茎粗、叶片数和叶面积显著增加;叶片颜色变浅绿色,但叶绿体结构紧凑,类囊体排列规则,未见淀粉粒,嗜锇滴数量略增多。而pH 2.5模拟酸雨处理的小黑杨幼苗茎粗和叶面积显著降低;叶片颜色变黄、叶尖和叶脉出现明显斑点,且细胞膜局部破损,叶绿体体积增大,类囊体间隙增大,可见少量淀粉粒,嗜锇滴数量和体积明显增加。模拟酸雨处理的小黑杨叶片中超氧阴离子
中图分类号:
张濛,续高山,滕志远,等. 模拟酸雨对小黑杨幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 57-64.
ZHANG Meng, XU Gaoshan, TENG Zhiyuan, LIU Guanjun, ZHANG Xiuli. Effects of simulated acid rain on growth and photosynthetic physiological characteristics of Populus simonii ×P. nigra[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(6): 57-64.DOI: 10.12302/j.issn.1000-2006.202003068.
图1
模拟酸雨对杨树叶片表型和解剖结构的影响 A.叶片leaf;B.细胞cell;C.叶绿素chloroplast;Chl. 叶绿体 chloroplast;ChM. 叶绿体膜 chloroplast membrane;GL. 基粒片层 grana lamellae;OS. 嗜饿滴 osmiophilic;SG. 淀粉粒 starch grain;SL. 基质片层 stroma lamellae;CW. 细胞壁 cell wall. A1.对照CK;A2.pH 4.5;A3.pH 2.5;B1.对照CK;B2.pH 4.5;B3.pH 2.5;C1.对照组CK;C2.pH 4.5;C3.pH 2.5。"
表2
模拟酸雨对小黑杨幼苗叶片部分氧化和抗氧化指标的影响"
指标 parameters | 处理treatment | ||
---|---|---|---|
CK | pH 4.5 | pH 2.5 | |
超氧阴离子产生速率/(nmol·g-1·min-1) rate of superoxide anion product | 7.01± 0.81 c | 9.13± 0.14 b | 12.10± 0.70 a |
H2O2含量/(nmol·g-1) contents of H2O2 | 1.53± 0.09 c | 1.92± 0.08 b | 2.39± 0.09 a |
SOD活性/(U·g-1) SOD activity | 798.70± 92.79 c | 922.64± 90.47 a | 871.73± 98.58 b |
POD活性/(U·g-1) POD activity | 11.82± 1.02 c | 16.28± 1.12 a | 15.70± 2.72 ab |
CAT活性/(U·g-1) CAT activity | 0.11± 0.048 b | 0.38± 0.042 b | 0.49± 0.073 a |
表3
模拟酸雨对小黑杨幼苗叶片光系统Ⅱ活性参数的影响"
指标 parameters | 处理treatment | ||
---|---|---|---|
CK | pH 4.5 | pH 2.5 | |
Fv/Fm | 0.83±0.003 a | 0.81±0.06 b | 0.78±0.06 c |
光合性能指数 PIABS | 2.48±0.21 a | 1.88±0.33 b | 1.18±0.16 c |
QA被还原的相对速率 MO | 0.86±0.042 b | 0.97±0.09 b | 1.15±98.58 a |
荧光曲线与Fm之间的面积 FixArea | 2.84±1.08 c | 3.03±4.71 a | 3.08±4.91 ab |
Sm | 502.58±11.4 a | 404.39±31.17 b | 380.35±31.17 c |
[1] | 陈文胜, 出佳范, 吕再辉, 等. 模拟酸雨处理后番茄叶片叶绿素含量及叶绿素荧光参数的动态变化[J]. 植物资源与环境学报, 2019, 28(3):108-116. |
CHEN W S, CHU J F, LYU Z H, et al. Dynamic changes in chlorophyll content and chlorophyll fluorescence parameters of leaf of Lycopersicon esculentum after simulated acid rain treatment[J]. J Plant Resour Environ, 2019, 28(3):108-116. DOI: 10.3969 /j.issn.1674-7895.2019.03.14.
doi: 10.3969 /j.issn.1674-7895.2019.03.14 |
|
[2] | 周思婕, 王平, 张敏, 等. 大气酸沉降对马尾松幼苗根系生理特性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4):111-118. |
ZHOU S J, WANG P, ZHANG M. et al. Effects of atmospheric acid deposition on root physiological characteristic of Pinus massoniana seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4):111-118. DOI: 10.3969/j.issn.1000-2006.201907002.
doi: 10.3969/j.issn.1000-2006.201907002 |
|
[3] | 吉仁慈, 朱义勇, 柴源, 等. 模拟SO2湿沉降对桑树叶片光合日变化和生长的影响[J]. 江苏农业学报, 2016, 32(6):1396-1403. |
JI R C, ZHU Y Y, CHAI Y, et al. Diurnal changes of leaf photosynjournal and growth of mulberry in response to simulated SO2 wet deposition[J]. Jiangsu J Agric Sci, 2016, 32(6):1396-1403.DOI: 10.3969/j.issn.1000-4440.2016.06.031.
doi: 10.3969/j.issn.1000-4440.2016.06.031 |
|
[4] |
KHOSHBAKHT D, ASGHARI M R, HAGHIGHI M. Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence,photosynjournal and antioxidant enzyme activities of Citrus seedlings under salinity stress[J]. Photosynthetica, 2018, 56(4):1313-1325.DOI: 10.1007/s11099-018-0839-z.
doi: 10.1007/s11099-018-0839-z |
[5] |
PARVEEN A, AKASH M S, REHMAN K, et al. Recent investigations for discovery of natural antioxidants: a comprehensive review[J]. Crit Rev Eukaryot Gene Expr, 2016, 26(2):143-160.DOI: 10.1615/critreveukaryotgeneexpr.2016015974.
doi: 10.1615/critreveukaryotgeneexpr.2016015974 |
[6] |
TRIPATHY B C, OELMÜLLER R. Reactive oxygen species generation and signaling in plants[J]. Plant Signal Behav, 2012, 7(12):1621-1633.DOI: 10.4161/psb.22455.
doi: 10.4161/psb.22455 |
[7] |
AJIGBOYE O O, RAY R V, MURCHIE E H. Chlorophyll fluorescence on the fast timescale[J]. Methods Mol Biol, 2018, 1770:95-104.DOI: 10.1007/978-1-4939-7786-4_6.
doi: 10.1007/978-1-4939-7786-4_6 |
[8] |
ZHANG C, YI X, GAO X, et al. Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions[J]. Ecotoxicol Environ Saf, 2020, 192:110315.DOI: 10.1016/j.ecoenv.2020.110315.
doi: 10.1016/j.ecoenv.2020.110315 |
[9] | 王月, 许博涛, 滕志远, 等. 模拟酸雨对桑树叶片生长及其光系统Ⅱ活性的影响[J]. 草业科学, 2018, 35(9):2220-2229. |
WANG Y, XU B T, TENG Z Y, et al. Effect of simulated acid rain on the growth and photosystem Ⅱ in the leaves of mulberry seedlings[J]. Pratacultural Sci, 2018, 35(9):2220-2229.DOI: 10.11829/j.issn.1001-0629.2017-0429.
doi: 10.11829/j.issn.1001-0629.2017-0429 |
|
[10] | 胡月, 张倩, 孙东彬, 等. 模拟酸雨对桑树叶片光合日变化的影响[J]. 草业科学, 2015, 32(11):1862-1870. |
HU Y, ZHANG Q, SUN D B, et al. Effects of simulated acid rain on diurnal changes of mulberry (Morus alba) photosynjournal[J]. Pratacultural Sci, 2015, 32(11):1862-1870.DOI: 10.11829/j.issn.1001-0629.2015-0160.
doi: 10.11829/j.issn.1001-0629.2015-0160 |
|
[11] | 宋博, 李凤日, 董利虎, 等. 黑龙江西部地区人工小黑杨立木可加性生物量模型[J]. 北京林业大学学报, 2018, 40(11):58-68. |
SONG B, LI F R, DONG L H, et al. Additive system of biomass equations for planted Populus simonii × P. nigra in western Heilongjiang Province of northeastern China[J]. J Beijing For Univ, 2018, 40(11):58-68.DOI: 10.13332/j.1000-1522.20180062.
doi: 10.13332/j.1000-1522.20180062 |
|
[12] | 刘文国, 张旭东, 黄玲玲, 等. 我国杨树生理生态研究进展[J]. 世界林业研究, 2010, 23(1):50-55. |
LIU W G, ZHANG X D, HUANG L L, et al. Research progress on physiologic and ecologic characteristics of popular[J]. World For Res, 2010, 23(1):50-55.DOI: 10.13348/j.cnki.sjlyyj.2010.01.002.
doi: 10.13348/j.cnki.sjlyyj.2010.01.002 |
|
[13] | 宋扬, 张潆心, 郭娜, 等. 低温胁迫后不同光强对小黑杨幼苗叶片叶绿素荧光和能量分配的影响[J]. 安徽农业科学, 2013, 41(10):4421-4423. |
SONG Y, ZHANG Y X, GUO N, et al. Effects of lights intensity on chlorophyll fluorescence characteristics and energy allocation pathways in leaves of Populus simonii × P. nigra seedlings after chilling stress[J]. J Anhui Agric Sci, 2013, 41(10):4421-4423.DOI: 10.13989/j.cnki.0517-6611.2013.10.151.
doi: 10.13989/j.cnki.0517-6611.2013.10.151 |
|
[14] | 黄海娇, 胡雪婷, 李慧玉, 等. 盐胁迫下8个转基因小黑杨株系的抗逆性比较[J]. 森林工程, 2009, 25(4):14-18. |
HUANG H J, HU X T, LI H Y, et al. Adverse resistance comparison of eight transgenic Populus simonii × P. nigra lines under NaCl stress[J]. For Eng, 2009, 25(4):14-18.DOI: 10.16270/j.cnki.slgc.2009.04.016.
doi: 10.16270/j.cnki.slgc.2009.04.016 |
|
[15] | 张恒, 刘晓婷, 陈嵩, 等. 盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2):59-66. |
ZHANG H, LIU X T, CHEN S, et al. Analysis of differentially expressed proteins in leavess of triploid Populus simonii × P.nigra hybrid clones under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):59-66.DOI: 10.3969/j.issn.1000-2006.201904027.
doi: 10.3969/j.issn.1000-2006.201904027 |
|
[16] | 王鸿伟, 宁晓光, 王恩海, 等. 抗干旱耐盐碱树种的选择[J]. 林业科技, 2006, 31(3):12-15. |
WANG H W, NING X G, WANG E H, et al. Selection of tree species with drought-resistance and salt tolerance[J]. For Sci Technol, 2006, 31(3):12-15.DOI: 10.3969/j.issn.1001-9499.2006.03.005.
doi: 10.3969/j.issn.1001-9499.2006.03.005 |
|
[17] | 马连祥, 周定国, 徐魁梧. 酸雨对杨树生长和木材化学性质的影响[J]. 林业科学, 2000, 36(6):95-99. |
MA L X, ZHOU D G, XU K W. The effects of acid rain on Populus euramericana tree ring width and wood properties[J]. Sci Silvae Sin, 2000, 36(6):95-99.DOI: 10.3321/j.issn:1001-7488.2000.06.016.
doi: 10.3321/j.issn:1001-7488.2000.06.016 |
|
[18] |
MA Y Q, ZHAO K J, ZHANG Z L, et al. Influence of rain and sulphur dioxide on low level chemiluminescence from leaf of Populus tomentosa[J]. Bull Environ Contam Toxicol, 1992, 49(6):906-913.DOI: 10.1007/BF00203166.
doi: 10.1007/BF00203166 |
[19] | 蔡朋程. 浅析中国的酸雨分布现状及其成因[J]. 科技资讯, 2018, 16(15):127-128. |
CAI P C. Analysis on distribution status and causes of acid rain in China[J]. Sci Technol Inf, 2018, 16(15):127-128.DOI: 10.16661/j.cnki.1672-3791.2018.15.127.
doi: 10.16661/j.cnki.1672-3791.2018.15.127 |
|
[20] | 黄佳欢, 刘关君, 陈瑾元, 等. 小黑杨PnCCH10基因的克隆、功能初步鉴定及遗传转化[J]. 植物生理学报, 2019, 55(11):1625-1637. |
HUANG J H, LIU G J, CHEN J Y, et al. Cloning,preliminary function identification and genetic transformation of PnCCH10 gene in Populus simonii × Populus nigra[J]. Plant Physiol J, 2019, 55(11):1625-1637.DOI: 10.13592/j.cnki.ppj.2019.0123.
doi: 10.13592/j.cnki.ppj.2019.0123 |
|
[21] |
STRASSER B J. Donor side capacity of Photosystem Ⅱ probed by chlorophyll a fluorescence transients[J]. Photosynth Res, 1997, 52(2):147-155.DOI: 10.1023/A:1005896029778.
doi: 10.1023/A:1005896029778 |
[22] |
SUZUKI N, MILLER G, SALAZAR C, et al. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants[J]. Plant Cell, 2013, 25(9):3553-3569.DOI: 10.1105/tpc.113.114595.
doi: 10.1105/tpc.113.114595 |
[23] |
MILLER G, SCHLAUCH K, TAM R, et al. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli[J]. Sci Signal, 2009, 2(84):ra45.DOI: 10.1126/scisignal.2000448.
doi: 10.1126/scisignal.2000448 |
[24] |
LIU E N, LIU C P. Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings[J]. Water Air Soil Pollut, 2011, 215(1/2/3/4):127-135.DOI: 10.1007/s11270-010-0464-3.
doi: 10.1007/s11270-010-0464-3 |
[25] |
DEBNATH B, IRSHAD M, MITRA S, et al. Acid rain deposition modulates photosynjournal,enzymatic and non-enzymatic antioxidant activities in tomato[J]. Int J Environ Res, 2018, 12(2):203-214.DOI: 10.1007/s41742-018-0084-0.
doi: 10.1007/s41742-018-0084-0 |
[26] | 何亚飞, 张珊珊, 孙鑫, 等. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报(自然科学版), 2016, 40(4):49-55. |
HE Y F, ZHANG S S, SUN X, et al. Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(4):49-55.DOI: 10.3969/j.issn.1000-2006.2016.04.008.
doi: 10.3969/j.issn.1000-2006.2016.04.008 |
|
[27] |
LI C, ZHENG Y, ZHOU J, et al. Changes of leaf antioxidant system,photosynjournal and ultrastructure in tea plant under the stress of fluorine[J]. Biol Plant, 2011, 55(3):563-566.DOI: 10.1007/s10535-011-0126-3.
doi: 10.1007/s10535-011-0126-3 |
[28] | 许大全, 沈允钢. 光合产物水平与光合机构运转关系的探讨[J]. 植物生理学报, 1982, 8(2):173-186. |
XU D Q, SHEN Y G. Exploring the relationship between the photosynthate level and the operation of photosynthetic apparatus[J]. Acta phytophysiologia Sinica, 1982, 8(2):173-186. | |
[29] |
MEZZETTI A, LEIBL W. Time-resolved infrared spectroscopy in the study of photosynthetic systems[J]. Photosynth Res, 2017, 131(2):121-144.DOI: 10.1007/s11120-016-0305-3.
doi: 10.1007/s11120-016-0305-3 |
[30] | 王雯, 李曼, 王丽红, 等. 酸雨对全生育时期水稻叶绿素荧光的影响[J]. 生态环境学报, 2014, 23(1):80-85. |
WANG W, LI M, WANG L H, et al. Effects of acid rain on the chlorophyll fluorescence reaction in rice at the whole growth stages[J]. Ecol Environ Sci, 2014, 23(1):80-85.DOI: 10.16258/j.cnki.1674-5906.2014.01.011.
doi: 10.16258/j.cnki.1674-5906.2014.01.011 |
|
[31] |
MURCHIE E H, LAWSON T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications[J]. J Exp Bot, 2013, 64(13):3983-3998.DOI: 10.1093/jxb/ert208.
doi: 10.1093/jxb/ert208 |
[32] |
NISHIYAMA Y, ALLAKHVERDIEV S I, MURATA N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem Ⅱ[J]. Biochim Biophys Acta, 2006, 1757(7):742-749.DOI: 10.1016/j.bbabio.2006.05.013.
doi: 10.1016/j.bbabio.2006.05.013 |
[33] | 冯建灿, 胡秀丽, 毛训甲. 叶绿素荧光动力学在研究植物逆境生理中的应用[J]. 经济林研究, 2002, 20(4):14-18,30. |
FENG J C, HU X L, MAO X J. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance[J]. Econ For Res, 2002, 20(4):14-18,30.DOI: 10.3969/j.issn.1003-8981.2002.04.004.
doi: 10.3969/j.issn.1003-8981.2002.04.004 |
|
[34] | 易晓芹, 田双红, 贺群, 等. 模拟酸雨胁迫对茶树幼苗生长和光合生理的影响[J]. 基因组学与应用生物学, 2019, 38(7):3188-3193. |
YI X Q, TIAN S H, HE Q, et al. Effects of simulated acid rain stress on the growth and photosynthetic physiology of tea seedlings[J]. Genom Appl Biol, 2019, 38(7):3188-3193.DOI: 10.13417/j.gab.038.003188.
doi: 10.13417/j.gab.038.003188 |
|
[35] | 金清, 江洪, 余树全, 等. 酸雨胁迫对亚热带典型树种幼苗生长与光合作用的影响[J]. 生态学报, 2009, 29(6):3322-3327. |
JIN Q, JIANG H, YU S Q, et al. Research on the growth and photosynjournal of typical seedlings in subtropical regions under acid rain stress[J]. Acta Ecol Sin, 2009, 29(6):3322-3327.DOI: 10.3321/j.issn:1000-0933.2009.06.065.
doi: 10.3321/j.issn:1000-0933.2009.06.065 |
[1] | 邓家珍, 叶绍明, 林铭业, 蓝雅惠, 燕羽, 樊容源, 潘彩玲. 降香黄檀根瘤以及根瘤菌形态和超微结构特征[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 259-267. |
[2] | 王阳, 王伟, 姜静, 顾宸瑞, 杨蕴力. 转基因小黑杨根际土壤微生物群落特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 199-208. |
[3] | 施婷婷, 杨秀莲, 王良桂. 3个桂花品种花香组分动态特征及花被片结构解剖学观测[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 12-20. |
[4] | 鲁强, 杨玲, 王昊伟, 袁佳秋, 洑香香, 方彦. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 29-36. |
[5] | 张恒, 刘晓婷, 陈嵩, 周雪燕, 司冬晶, 李莹, 赵曦阳. 盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 59-66. |
[6] | 王华光,李良,巨云为,张金池,赵博光. 鞭毛蛋白毒素导致的黑松超微结构病理学变化[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 137-144. |
[7] | 施婷婷,杨秀莲,王良桂. ‘波叶金桂'花香成分的释放规律[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 97-104. |
[8] | 顾天滋,张丛丛,苏鹏,樊斌琦,王焱,郝德君. 香樟齿喙象成虫触角感器的微观特征分析[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 89-94. |
[9] | 周健,苏友谊,代松,李淑娴. 紫荆种子成熟过程中种皮和胚乳超微结构观察[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 27-32. |
[10] | 林树燕,郑笑,张莉,姜明云,丁雨龙. 鹅毛竹花药发育的超微结构观察[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 65-70. |
[11] | 李英,沈永宝. 枳椇种子休眠原因及解除方法[J]. 南京林业大学学报(自然科学版), 2014, 38(02): 57-62. |
[12] | 李海峰,刘岩,康颖,王秋玉. 转基因小黑杨对土壤微生物群落结构的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(02): 75-80. |
[13] | 张力杰,张凯旋,魏志刚. 小黑杨PnsGA20ox1基因的克隆及功能分析[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 11-16. |
[14] | 李玲,迟德富,李燕,尹艳豹,张振. 3种天牛科昆虫摩擦发音器的超微结构及摩擦发音机制分析[J]. 南京林业大学学报(自然科学版), 2013, 37(01): 71-77. |
[15] | 付盈盈,汤方*,赵文亮. 杨小舟蛾触角感觉器的电镜扫描观察[J]. 南京林业大学学报(自然科学版), 2012, 36(05): 97-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||