南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5): 161-170.doi: 10.12302/j.issn.1000-2006.202003088
收稿日期:
2020-03-31
接受日期:
2020-06-18
出版日期:
2021-09-30
发布日期:
2021-09-30
通讯作者:
姜立春*
基金资助:
WANG Junjie(), JIANG Lichun*()
Received:
2020-03-31
Accepted:
2020-06-18
Online:
2021-09-30
Published:
2021-09-30
Contact:
JIANG Lichun
摘要:
【目的】 使用线性分位数回归和分位数组合对兴安落叶松(Larix gmelinii)冠幅进行建模和预测,为准确模拟和预测冠幅生长提供技术支持。【方法】 利用大兴安岭兴安落叶松天然林实测数据,采用线性回归和分位数回归构建基础和多元冠幅模型。比较7种分位数组合:三分位数组合(τ=0.1, 0.5, 0.9和τ=0.3, 0.5, 0.7)、五分位数组合(τ=0.1,0.3,0.5,0.7,0.9和τ=0.3,0.4,0.5,0.6,0.7)、七分位数组合(τ=0.1,0.2,0.3,0.5,0.7,0.8,0.9和τ=0.1,0.3,0.4,0.5,0.6,0.7,0.9)和九分位数组合(τ=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)的预测效果。分析4种抽取方案(随机抽样、选择最大树、平均木、最小树)和9种抽样数量(1~9株)对预测精度的影响。同时使用K折交叉验证对线性回归、最优分位数回归和最优分位数组合进行比较。【结果】 线性和分位数回归都能对冠幅模型进行拟合,中位数回归的拟合结果与线性回归相似,且在所有分位数中拟合能力最好。多元冠幅模型和分位数回归的拟合及检验效果都优于基础模型,冠幅与胸径和样地平均高(立地质量)呈正相关,与枝下高(树木大小)和样地内落叶松断面积(竞争)呈负相关。使用分位数组合可以提高模型的预测能力,7种分位数组合的差异很小,三分位数组合(τ=0.3, 0.5, 0.7)的预测能力最好。对于基础和多元分位数组合在实际应用时,最优抽取方案都为选取最大树,每个样地建议选取6株样木。【结论】 基于线性分位数组合的冠幅模型可以提高预测精度,建议使用三分位数组合和选取最大树及抽取数量为6株的方案对冠幅进行预测。
中图分类号:
王君杰,姜立春*. 基于线性分位数组合的兴安落叶松冠幅预测[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 161-170.
WANG Junjie, JIANG Lichun. Predicting crown width for Larix gmelinii based on linear quantiles groups[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(5): 161-170.DOI: 10.12302/j.issn.1000-2006.202003088.
表1
落叶松天然林各样木调查因子数据"
统计量 statistics | DBH/ cm | WC/ m | HT/ m | HCB/ m | RC | RHD | Hmean/ m | HDOM/ m | DDOM/ cm | AB/ (m2·hm-2) | N/ (株·hm-2) | SR | BAL/ m2 | Glarch/ m2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 mean | 10.8 | 2.5 | 10.8 | 5.3 | 0.5 | 1.0 | 10.8 | 15.7 | 19.5 | 18.7 | 1 837 | 0.9 | 0.4 | 0.6 |
标准差 SD | 4.2 | 0.8 | 3.2 | 2.3 | 0.1 | 0.2 | 1.7 | 2.2 | 2.6 | 8.0 | 834 | 0.2 | 0.3 | 0.2 |
最小值 min | 5.0 | 0.4 | 3.4 | 0.6 | 0.1 | 0.4 | 7.0 | 11.1 | 14.0 | 4.5 | 528 | 0.5 | 0.0 | 0.2 |
最大值 max | 32.5 | 6.4 | 23.3 | 14.4 | 0.9 | 2.0 | 14.0 | 20.2 | 27.1 | 37.5 | 4 400 | 1.4 | 1.4 | 1.4 |
表4
线性回归和分位数回归的参数估计和拟合统计量"
模型 model | 参数估计方法 parameter estimate method | β0 | β1 | β2 | β3 | β4 | σ(MAE) | σ(RMSE) |
---|---|---|---|---|---|---|---|---|
基础模型 basic model | 线性回归 linear regression | 1.287 0 (0.028 0) | 0.112 4 (0.002 4) | 0.464 1 | 0.595 6 | |||
分位数回归 quantile regression | ||||||||
τ=0.1 | 0.911 4 (0.040 0) | 0.079 6 (0.003 5) | 0.791 8 | 0.951 8 | ||||
τ=0.2 | 0.940 0 (0.049 4) | 0.100 0 (0.004 3) | 0.616 1 | 0.766 9 | ||||
τ=0.3 | 1.068 4 (0.032 6) | 0.105 3 (0.002 8) | 0.522 9 | 0.665 4 | ||||
τ=0.4 | 1.169 8 (0.036 3) | 0.109 9 (0.003 4) | 0.478 7 | 0.612 8 | ||||
τ=0.5 | 1.255 9 (0.033 5) | 0.115 6 (0.002 9) | 0.464 0 | 0.595 8 | ||||
τ=0.6 | 1.357 1 (0.033 2) | 0.119 1 (0.002 9) | 0.477 8 | 0.613 1 | ||||
τ=0.7 | 1.426 5 (0.035 2) | 0.126 5 (0.003 0) | 0.523 0 | 0.666 1 | ||||
τ=0.8 | 1.555 6 (0.040 0) | 0.131 9 (0.003 5) | 0.617 2 | 0.769 3 | ||||
τ=0.9 | 1.779 7 (0.053 1) | 0.135 1 (0.004 6) | 0.799 5 | 0.953 6 |
表4
(续)"
模型 model | 参数估计方法 parameter estimate method | β0 | β1 | β2 | β3 | β4 | σ(MAE) | σ(RMSE) |
---|---|---|---|---|---|---|---|---|
多元模型 multivariate model | 线性回归 linear regression | 1.043 3 (0.068 4) | 0.139 5 (0.002 7) | -0.099 8 (0.052 6) | 0.082 2 (0.008 3) | -0.699 5 (0.005 6) | 0.432 2 | 0.558 3 |
分位数回归 quantile regression | ||||||||
τ=0.1 | 0.647 3 (0.099 7) | 0.112 4 (0.003 9) | -0.067 7 (0.076 7) | 0.074 8 (0.012 0) | -0.878 9 (0.008 1) | 0.755 7 | 0.902 3 | |
τ=0.2 | 0.606 8 (0.089 4) | 0.127 1 (0.003 5) | -0.092 3 (0.068 7) | 0.098 5 (0.010 8) | -0.847 8 (0.007 3) | 0.571 8 | 0.712 9 | |
τ=0.3 | 0.772 7 (0.081 7) | 0.133 1 (0.003 2) | -0.094 2 (0.062 8) | 0.088 9 (0.009 9) | -0.767 0 (0.006 6) | 0.489 7 | 0.623 3 | |
τ=0.4 | 0.880 7 (0.084 8) | 0.139 5 (0.003 3) | -0.101 0 (0.065 2) | 0.085 2 (0.010 2) | -0.684 4 (0.010 2) | 0.444 5 | 0.572 4 | |
τ=0.5 | 0.892 1 (0.068 6) | 0.145 0 (0.002 7) | -0.106 8 (0.052 8) | 0.093 0 (0.008 3) | -0.684 5 (0.005 6) | 0.431 6 | 0.558 9 | |
τ=0.6 | 0.971 4 (0.076 9) | 0.148 7 (0.003 0) | -0.106 6 (0.059 1) | 0.097 0 (0.009 3) | -0.735 7 (0.006 3) | 0.445 2 | 0.574 9 | |
τ=0.7 | 1.055 7 (0.081 9) | 0.153 3 (0.003 2) | -0.110 0 (0.063 0) | 0.094 0 (0.009 9) | -0.631 5 (0.006 7) | 0.488 5 | 0.625 4 | |
τ=0.8 | 1.111 7 (0.100 3) | 0.153 0 (0.003 9) | -0.107 3 (0.077 2) | 0.105 2 (0.012 1) | -0.666 3 (0.008 2) | 0.573 4 | 0.716 0 | |
τ=0.9 | 1.532 5 (0.099 3) | 0.155 1 (0.003 9) | -0.112 2 (0.076 4) | 0.083 1 (0.012 0) | -0.577 6 (0.008 1) | 0.735 0 | 0.876 8 |
表5
线性回归、中位数回归和三分位数组合的K折交叉验证统计量"
模型 model | 参数估计方法 parameter estimate method | | | | R2 | ||||
---|---|---|---|---|---|---|---|---|---|
基础模型 basic model | 线性回归linear regression | -7.821 7 | 20.834 9 | 0.569 6 | 0.369 1 | ||||
中位数回归median regression | -7.870 8 | 20.836 7 | 0.569 5 | 0.369 5 | |||||
分位数组合 τ=0.1,0.5,0.9 quantiles group τ=0.3,0.5,0.7 | -4.956 2 | 16.895 4 | 0.476 9 | 0.558 8 | |||||
-4.550 5 | 16.872 1 | 0.477 2 | 0.558 4 | ||||||
多元模型 multivariate model | 线性回归linear regression | -7.541 7 | 19.450 3 | 0.536 2 | 0.443 7 | ||||
中位数回归median regression | -7.162 6 | 19.281 9 | 0.534 7 | 0.447 0 | |||||
分位数组合 τ=0.1,0.5,0.9 quantiles group τ=0.3,0.5,0.7 | -1.688 9 | 16.311 1 | 0.472 6 | 0.567 3 | |||||
-1.517 0 | 16.164 3 | 0.470 5 | 0.571 4 |
[1] |
BRAGG D C. A local basal area adjustment for crown width prediction[J]. North J Appl For, 2001, 18(1):22-28.DOI: 10.1093/njaf/18.1.22.
doi: 10.1093/njaf/18.1.22 |
[2] |
FU L Y, SUN H, SHARMA R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. For Ecol Manag, 2013, 302:210-220.DOI: 10.1016/j.foreco.2013.03.036.
doi: 10.1016/j.foreco.2013.03.036 |
[3] |
SATTLER D F, LEMAY V. A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model SORTIE-ND[J]. Can J For Res, 2011, 41(8):1567-1576.DOI: 10.1139/x11-078.
doi: 10.1139/x11-078 |
[4] | KRAJICEK J E, BRINKMAN K A, GINGRICH S F. Crown competition: a measure of density[J]. Forest Science, 1961, 7(1):35-42. |
[5] |
YANG Y Q, HUANG S. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta,Canada[J]. Eur J For Res, 2018, 137(2):153-167.DOI: 10.1007/s10342-017-1095-7.
doi: 10.1007/s10342-017-1095-7 |
[6] |
BARBIER N, COUTERON P, PROISY C, et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Glob Ecol Biogeogr, 2010, 19(1):72-84.DOI: 10.1111/j.1466-8238.2009.00493.x.
doi: 10.1111/j.1466-8238.2009.00493.x |
[7] |
YANG Y Q, HUANG S. Allometric modelling of crown width for white spruce by fixed-and mixed-effects models[J]. For Chron, 2017, 93(2):138-147.DOI: 10.5558/tfc2017-020.
doi: 10.5558/tfc2017-020 |
[8] |
CARVALHO J P, PARRESOL B R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)[J]. For Ecol Manag, 2003, 179(1/2/3):269-276.DOI: 10.1016/S0378-1127(02)00549-2.
doi: 10.1016/S0378-1127(02)00549-2 |
[9] |
JIANG L C, LIU R L. Segmented taper equations with crown ratio and stand density for Dahurian larch (Larix gmelinii) in Northeastern China[J]. J For Res, 2011, 22(3):347-352. DOI: 10.1007/s11676-011-0178-4.
doi: 10.1007/s11676-011-0178-4 |
[10] |
GONZALEZ-BENECKE C A, GEZAN S A, SAMUELSON L J, et al. Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters[J]. J For Res, 2014, 25(1):43-52. DOI: 10.1007/s11676-014-0427-4.
doi: 10.1007/s11676-014-0427-4 |
[11] |
CANHAM C D, COATES K D, BARTEMUCCI P, et al. Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia[J]. Can J For Res, 1999, 29(11):1775-1783.DOI: 10.1139/x99-151.
doi: 10.1139/x99-151 |
[12] |
RUSSELL M B, WEISKITTEL A R. Maximum and largest crown width equations for 15 tree species in Maine[J]. North J Appl For, 2011, 28(2):84-91. DOI: 10.1093/njaf/28.2.84.
doi: 10.1093/njaf/28.2.84 |
[13] |
FU L Y, SHARMA R P, HAO K J, et al. A generalized interregional nonlinear mixed-effects crown width model for prince rupprecht larch in northern China[J]. For Ecol Manag, 2017, 389:364-373.DOI: 10.1016/j.foreco.2016.12.034.
doi: 10.1016/j.foreco.2016.12.034 |
[14] |
RAPTIS D, KAZANA V, KAZAKLIS A, et al. A crown width-diameter model for natural even-aged black pine forest management[J]. Forests, 2018, 9(10):610.DOI: 10.3390/f9100610.
doi: 10.3390/f9100610 |
[15] |
KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978, 46(1):33.DOI: 10.2307/1913643.
doi: 10.2307/1913643 |
[16] |
ZHANG L J, BI H Q, GOVE J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Can J For Res, 2005, 35(6):1507-1514.DOI: 10.1139/x05-070.
doi: 10.1139/x05-070 |
[17] |
MEHTÄTALO L, GREGOIRE T G, BURKHART H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots[J]. Environmetrics, 2008, 19(5):529-548.DOI: 10.1002/env.896.
doi: 10.1002/env.896 |
[18] |
ZANG H, LEI X D, ZENG W S. Height-diameter equations for larch plantations in northern and northeastern China:a comparison of the mixed-effects,quantile regression and generalized additive models[J]. Forestry (Lond), 2016, 89(4):434-445.DOI: 10.1093/forestry/cpw022.
doi: 10.1093/forestry/cpw022 |
[19] | 田德超, 李凤日, 董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8):41-46. |
TIAN D C, LI F R, DONG L H. Potential maximum crown width prediction model of Larix olgensis by quantile regression[J]. J Northeast For Univ, 2019, 47(8):41-46.DOI: 10.13759/j.cnki.dlxb.2019.08.008.
doi: 10.13759/j.cnki.dlxb.2019.08.008 |
|
[20] | 辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020, 42(2):1-8. |
XIN S D, JIANG L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. J Beijing For Univ, 2020, 42(2):1-8 | |
[21] |
BOHORA S B, CAO Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. For Ecol Manag, 2014, 319(5):62-66. DOI: 10.1016/j.foreco.2014.02.006.
doi: 10.1016/j.foreco.2014.02.006 |
[22] |
CAO Q V, WANG J. Evaluation of methods for calibrating a tree taper equation[J]. For Sci, 2015, 61(2):213-219. DOI: 10.5849/forsci.14-008.
doi: 10.5849/forsci.14-008 |
[23] |
ÖZÇELIK R, DIAMANTOPOULOU M J, TRINCADO G. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey[J]. Comput Electron Agric, 2019, 162:773-782.DOI: 10.1016/j.compag.2019.05.033.
doi: 10.1016/j.compag.2019.05.033 |
[24] |
ÖZÇELIK R, CAO Q V, TRINCADO G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. For Ecol Manag, 2018, 419/420:240-248.DOI: 10.1016/j.foreco.2018.03.051.
doi: 10.1016/j.foreco.2018.03.051 |
[25] | 雷相东, 张则路, 陈晓光. 长白落叶松等几个树种冠幅预测模型的研究[J]. 北京林业大学学报, 2006, 28(6):75-79. |
LEI X D, ZHANG Z L, CHEN X G. Crown-width prediction models for several tree species including Larix olgensis in northeastern China[J]. J Beijing For Univ, 2006, 28(6):75-79.DOI: 10.3321/j.issn:1000-1522.2006.06.013.
doi: 10.3321/j.issn:1000-1522.2006.06.013 |
|
[26] | 马岩岩, 姜立春. 基于非线性分位数回归的落叶松树干削度方程[J]. 林业科学, 2019, 55(10):68-75. |
MA Y Y, JIANG L C. Stem taper function for Larix gmelinii based on nonlinear quantile regression[J]. Sci Silvae Sin, 2019, 55(10):68-75. | |
[27] |
YANG Y Q, HUANG S. Suitability of five cross validation methods for performance evaluation of nonlinear mixed-effects forest models: a case study[J]. Forestry (Lond), 2014, 87(5):654-662.DOI: 10.1093/forestry/cpu025.
doi: 10.1093/forestry/cpu025 |
[28] |
BECHTOLD W A. Largest-crown-width prediction models for 53 species in the western United States[J]. West J Appl For, 2004, 19(4):245-251.DOI: 10.1093/wjaf/19.4.245.
doi: 10.1093/wjaf/19.4.245 |
[29] |
SHARMA R P, VACEK Z, VACEK S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. For Ecol Manag, 2016, 366:208-220.DOI: 10.1016/j.foreco.2016.01.040.
doi: 10.1016/j.foreco.2016.01.040 |
[30] |
SHARMA R P, BÍLEK L, VACEK Z, et al. Modelling crown width-diameter relationship for Scots pine in the central Europe[J]. Trees, 2017, 31(6):1875-1889.DOI: 10.1007/s00468-017-1593-8.
doi: 10.1007/s00468-017-1593-8 |
[31] |
FU L Y, ZHANG H R, SHARMA R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. For Ecol Manag, 2017, 384:34-43.DOI: 10.1016/j.foreco.2016.09.012.
doi: 10.1016/j.foreco.2016.09.012 |
[32] |
CALAMA R, MONTERO G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Can J For Res, 2004, 34(1):150-163.DOI: 10.1139/x03-199.
doi: 10.1139/x03-199 |
[1] | 韩新宇, 高露双, 秦莉, 庞荣荣, 刘鸣谦, 朱一泓, 田益雨, 张金. 林分密度对兴安落叶松径向生长-气候关系的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 182-190. |
[2] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[3] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[4] | 高羽, 李静, 刘洋, 乌雅瀚, 巩家星, 辛启睿. 结构方程模型在兴安落叶松林生长中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 38-46. |
[5] | 谢立红, 黄庆阳, 曹宏杰, 杨帆, 王继丰, 倪红伟. 气候变暖对黑龙江省五大连池兴安落叶松径向生长的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 150-158. |
[6] | 王冰, 张鹏杰, 张秋良. 不同林型兴安落叶松林土壤团聚体及其有机碳特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 15-24. |
[7] | 何培, 夏宛琦, 姜立春. 基于非参数方法的落叶松树干削度方程[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 184-192. |
[8] | 周司涵, 张韫, 崔晓阳. 兴安落叶松林火烧迹地土壤速效钾时空动态分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 141-147. |
[9] | 魏玉龙, 张秋良. 兴安落叶松林缘天然更新与立地环境因子的相关分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 165-172. |
[10] | 宋浩,满秀玲,段北星,刘家霖. 兴安落叶松天然林新老枝叶光合能力及水分利用效率研究[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 53-58. |
[11] | 石磊,盛后财,满秀玲,蔡体久. 兴安落叶松林降雨再分配及其穿透雨的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 90-96. |
[12] | 刘玉杰,满秀玲. 修正Gash模型在兴安落叶松天然林林冠截留中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 81-88. |
[13] | 郭莹洁,赵荣军,钟永,任海青. 兴安落叶松成熟材单一年轮顺纹力学模型[J]. 南京林业大学学报(自然科学版), 2015, 39(01): 177-180. |
[14] | 郭莹洁,赵荣军,钟永,任海青. 兴安落叶松成熟材指接材抗拉破坏载荷力学模型[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 20-24. |
[15] | 马利强,玉宝,王立明,张秋良. 兴安落叶松天然林单木高生长模型[J]. 南京林业大学学报(自然科学版), 2013, 37(02): 169-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||