松科植物萜类合成酶及其基因家族研究进展

朱沛煌, 陈妤, 季孔庶

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 233-244.

PDF(2331 KB)
PDF(2331 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 233-244. DOI: 10.12302/j.issn.1000-2006.202004027
综合述评

松科植物萜类合成酶及其基因家族研究进展

作者信息 +

A review of terpene synthases and genes in Pinaceae

Author information +
文章历史 +

摘要

萜类化合物是松科(Pinaceae)植物中重要的代谢物,它们与松科植物生长发育、信息传递、气候适应和化学防御等关系密切,在植物生理和生态等方面具有重要功能。松科植物萜类化合物还广泛应用在制药、生物燃料以及合成化学等工业领域,具有重要的经济价值。松科植物通过甲羟戊酸途径和甲基赤藓糖磷酸途径合成所有萜类物质合成所必需的5碳前体,并在异戊烯基转移酶家族、萜类合成酶家族作用下合成单萜、倍半萜和二萜等不同长度碳链的萜类分子骨架,并进一步在细胞色素P450酶家族的作用下发生甲基化、羟基化、过氧化、糖基化等酶促反应形成具有结构极为丰富的萜类化合物。和其他次生代谢过程类似,多种酶及其基因在萜烯化合物形成过程中起到了至关重要的作用,同时,萜类化合物结构多样性的形成也主要依赖于萜类合成酶及其基因。植物中已经发现了大量的萜类合成酶,由于大量植物基因组、转录组等组学数据的公布,不断有新的萜类合成酶被报道。笔者介绍了植物萜类化合物前体的合成途径及其关键酶基因、植物萜类合成酶的结构和类型,着重阐述松科植物萜类合成酶结构、功能以及相应基因家族鉴定和系统分类的研究进展,并针对松科植物萜类合成酶及其基因研究领域存在的研究树种偏少、松科植物萜烯类代谢可能存在的特异代谢路径重视程度不够、适用于针叶树种相关基因的功能研究平台搭建欠缺、多基因网络调控松科植物萜烯类合成机制研究未得到系统开展、产脂和抗逆相关的松科植物关键基因未得到挖掘与利用等相关问题提出了建议,以期为松科植物萜类生物合成机制解析及松科植物遗传改良提供参考。

Abstract

Terpenoids are important metabolites that are involved in several processes such as growth and development, information transmission, climatic acclimation and chemical defense in Pinaceae plants and have important physiological and ecological functions. Terpenoids from Pinaceae plants have an important economic value because they are widely applied in the pharmaceutical, biofuel, chemical synthesis and other industries. The mevalonate and methylerythrose phosphate pathways lead to the synthesis of the five-carbon precursors of all plant terpenoids. Terpene molecular skeletons with different carbon chain lengths, such as monoterpenes, sesquiterpenes and diterpenes are synthesized by the isoprene and terpene synthase families. Furthermore, cytochrome P450 enzymatic reactions such as methylation, hydroxylation, peroxidation and glycosylation result in the formation of a large family of terpenoids with extremely rich structures. The enzymes and genes involved in the biochemical synthesis of terpenes play important roles during these processes and also influence the structural diversity of terpenoids. Terpene synthases are abundant in plants, and new terpene synthases have recently been discovered due to the accumulation of plant genomic and transcriptomic data. This article describes the synthesis of plant terpenoid precursors and their key enzyme genes, the structures, types and functions of terpene synthases, as well as the identification and phylogeny of the terpene synthase gene family in Pinaceae. The article also offers suggestions regarding related practical issues, such as the need for research into terpine synthase and genes in Pinus species. The specific pathways involved in the terpene metabolism in Pinaceae remain unknown, a functional research platform for the related genes of coniferous species has not been established, and the mechanism of the multi-gene network regulating the synthesis of terpenes in Pinaceae has not been systematically investigated. Furthermore, the key genes of Pinaceae associated with lipid production and stress resistance have not been exploited. These issues should be addressed to provide a reference for understanding the molecular mechanisms of terpenoid biosynthesis and genetically improving Pineae.

关键词

松科 / 萜类 / 甲羟戊酸途径 / 甲基赤藓糖磷酸途径 / 萜类合成酶 / 基因家族

Key words

Pinaceae / terpenoid / MVA pathway / MEP pathway / terpene synthases / gene family

引用本文

导出引用
朱沛煌, 陈妤, 季孔庶. 松科植物萜类合成酶及其基因家族研究进展[J]. 南京林业大学学报(自然科学版). 2021, 45(3): 233-244 https://doi.org/10.12302/j.issn.1000-2006.202004027
ZHU Peihuang, CHEN Yu, JI Kongshu. A review of terpene synthases and genes in Pinaceae[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 233-244 https://doi.org/10.12302/j.issn.1000-2006.202004027
中图分类号: S722;Q946   

参考文献

[1]
CHRISTIANSON D W. Structural and chemical biology of terpenoid cyclases[J]. Chem Rev, 2017,117(17):11570-11648.DOI: 10.1021/acs.chemrev.7b00287.
[2]
YAMADA Y, CANE D E, IKEDA H. Diversity and analysis of bacterial terpene synthases[J]. Methods Enzymol, 2012,515:123-162.DOI: 10.1016/B978-0-12-394290-6.00007-0.
[3]
SCHMIDT-DANNERT C. Biosynjournal of terpenoid natural products in fungi[J]. Adv Biochem Eng, 2015,148:19-61.DOI: 10.1007/10_2014_283.
[4]
BERAN F, RAHFELD P, LUCK K, et al. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle[J]. PNAS, 2016,113(11):2922-2927.DOI: 10.1073/pnas.1523468113.
[5]
THOLL D. Biosynjournal and biological functions of terpenoids in plants[J]. Adv Biochem Eng Biotechnol, 2015,148:63-106.DOI: 10.1007/10_2014_295.
[6]
TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use[J]. Planta, 2019,249(1):1-8.DOI: 10.1007/s00425-018-3056-x.
[7]
KEELING C I, BOHLMANN J. Diterpene resin acids in conifers[J]. Phytochemistry, 2006,67(22):2415-2423.DOI: 10.1016/j.phytochem.2006.08.019.
[8]
VAUGHAN M M, WANG Q, WEBSTER F X, et al. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory[J]. Plant Cell, 2013,25(3):1108-1125.DOI: 10.1105/tpc.112.100057.
[9]
YANG C Q, WU X M, RUAN J X, et al. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum)[J]. Phytochemistry, 2013,96:46-56.DOI: 10.1016/j.phytochem.2013.09.009.
[10]
HARVEY B G, MEYLEMANS H A, GOUGH R V, et al. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering[J]. Phys Chem Chem Phys, 2014,16(20):9448-9457.DOI: 10.1039/c3cp55349c.
[11]
LV Y, XU C R, ZHAO X M, et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells[J]. ACS Nano, 2018,12(2):1519-1536.DOI: 10.1021/acsnano.7b08051.
[12]
BRINKER A M, MA J, LIPSKY P E, et al. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae)[J]. Phytochemistry, 2007,68(6):732-766.DOI: 10.1016/j.phytochem.2006.11.029.
[13]
DAUDA K, BUSARI Z, MORENIKEJI O, et al. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: formulation,antimalarial and toxicity assessments[J]. J Zhejiang Univ-Sci B (Biomed Biotechnol), 2017,18(11):977-985.
[14]
季孔庶, 王潘潘, 王金铃, 等. 松科树种的离体培养研究进展[J]. 南京林业大学学报(自然科学版), 2015,39(1):142-148.
JI K S, WANG P P, WANG J L, et al. Review on in vitro culture of tree species in Pinaceae[J]. J Nanjing For Univ (Nat Sci Ed), 2015,39(1):142-148.
[15]
刘骏, 耿其芳. 松科植物基因流的测量方法研究进展[J]. 安徽农业科学, 2013,41(14):6155-6158.
LIU J, GENG Q F. Research progress on gene flow estimation methods of Pinaceae[J]. J Anhui Agric Sci, 2013,41(14):6155-6158.DOI: 10.13989/j.cnki.0517-6611.2013.14.015.
[16]
CHEN F, THOLL D, BOHLMANN J, et al. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. Plant J, 2011,66(1):212-229.DOI: 10.1111/j.1365-313X.2011.04520.x.
[17]
HEMMERLIN A, HARWOOD J L, BACH T J. A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynjournal?[J]. Prog Lipid Res, 2012,51(2):95-148.DOI: 10.1016/j.plipres.2011.12.001.
[18]
VRANOVÁ E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synjournal[J]. Annu Rev Plant Biol, 2013,64:665-700.DOI: 10.1146/annurev-arplant-050312-120116.
[19]
NAGEL R, SCHMIDT A, PETERS R J. Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynjournal[J]. Planta, 2019,249(1):9-20.DOI: 10.1007/s00425-018-3052-1.
[20]
PAZOUKI L, NIINEMETS U. Multi-substrate terpene synthases: their occurrence and physiological significance[J]. Front Plant Sci, 2016: 1019-1019. DOI: 10.3389/fpls.2016.01019.
[21]
YAMAMURA Y, KUROSAKI F, LEE J B. Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis[J]. Sci Rep, 2017,7:43311.DOI: 10.1038/srep43311.
[22]
王毅, 周旭, 毕玮, 等. 思茅松1-脱氧-D-木酮糖-5-磷酸合酶(DXS)基因的克隆及功能分析[J]. 林业科学研究, 2015,28(6):833-838.
WANG Y, ZHOU X, BI W, et al. Identification and Characterization of a 1-Deoxy-D-xylulose 5-phosphate Synthase Gene From Pinus kesiya var.langbianensis[J]. For Res, 2015,28(6):833-838.DOI: 10.13275/j.cnki.lykxyj.2015.06.011.
[23]
王毅, 周旭, 毕玮, 等. 思茅松HDR基因全长cDNA克隆与序列分析[J]. 广西植物, 2015,35(5):721-727.
WANG Y, ZHOU X, BI W, et al. Cloning and sequence analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase gene cDNA from Pinus kesiya var.langbianensis[J]. Guihaia, 2015,35(5):721-727.DOI: 10.11931/guihaia.gxzw201409048.
[24]
陈晓明, 陈博雯, 李魁鹏, 等. 马尾松GGPPS基因与产脂力相关性分析[J]. 分子植物育种, 2018,16(16):5247-5254.
CHEN X M, CHEN B W, LI K P, et al. Correlation analysis of GGPPS gene and resin producing capacity in Pinus massoniana[J]. Mol Plant Breed, 2018,16(16):5247-5254.DOI: 10.13271/j.mpb.016.005247.
[25]
CHEN B W, XIAO Y F, LI J J, et al. Cloning and characterization of geranylgeranyl diphosphate synthetase from Pinus massoniana and its correlation with resin productivity[J]. J For Res, 2018,29(2):311-320.DOI: 10.1007/s11676-017-0443-2.
[26]
QI Q, LI R, GAI Y, et al. Cloning and functional identification of farnesyl diphosphate synthase from Pinus massoniana Lamb[J]. J Plant Biochem Biotechnol, 2017,26(2):132-140.DOI: 10.1007/s13562-016-0373-7.
[27]
PETERS R J. Two rings in them all: the labdane-related diterpenoids[J]. Nat Prod Rep, 2010,27(11):1521-1530.DOI: 10.1039/c0np00019a.
[28]
ZHOU K, GAO Y, HOY J A, et al. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis[J]. J Biol Chem, 2012,287(9):6840-6850.DOI: 10.1074/jbc.m111.337592.
[29]
LIU W T, FENG X X, ZHENG Y Y, et al. Structure,function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum[J]. Sci Rep, 2014,4:6214.DOI: 10.1038/srep06214.
[30]
KÖKSAL M, HU H Y, COATES R M, et al. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase[J]. Nat Chem Biol, 2011,7(7):431-433.DOI: 10.1038/nchembio.578.
[31]
KÖKSAL M, POTTER K, PETERS R J, et al. 1.55 Å-resolution structure of ent-copalyl diphosphate synthase and exploration of general acid function by site-directed mutagenesis[J]. Biochim et Biophys Acta (BBA)-Gen Subj, 2014,1840(1):184-190.DOI: 10.1016/j.bbagen.2013.09.004.
[32]
LI G, KOLLNER T G, YIN Y, et al. Nonseed plant Selaginella moellendorffii has both seed plant and microbial types of terpene synthases[J]. PNAS, 2012,109(36):14711-14715.DOI: 10.1073/pnas.1204300109.
[33]
JIA Q, LI G, KÖLLNER T G, et al. Microbial-type terpene synthase genes occur widely in nonseed land plants,but not in seed plants[J]. PNAS, 2016,113(43):12328-12333.DOI: 10.1073/pnas.1607973113.
[34]
JIA Q, KÖLLNER T G, GERSHENZON J, et al. MTPSLs:new terpene synthases in nonseed plants[J]. Trends Plant Sci, 2018,23(2):121-128.DOI: 10.1016/j.tplants.2017.09.014.
[35]
XIONG W, FU J, KÖLLNER T G, et al. Biochemical characterization of microbial type terpene synthases in two closely related species of hornworts,Anthoceros punctatus and Anthoceros agrestis[J]. Phytochemistry, 2018,149:116-122.DOI: 10.1016/j.phytochem.2018.02.011.
[36]
WHITTINGTON D A, WISE M L, URBANSKY M, et al. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase[J]. PNAS, 2002,99(24):15375-15380.DOI: 10.1073/pnas.232591099.
[37]
HYATT D C, YOUN B, ZHAO Y, et al. Structure of limonene synthase,a simple model for terpenoid cyclase catalysis[J]. PNAS, 2007,104(13):5360-5365.DOI: 10.1073/pnas.0700915104.
[38]
HAYASHI K I, KAWAIDE H, NOTOMI M, et al. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens[J]. FEBS Lett, 2006,580(26):6175-6181.DOI: 10.1016/j.febslet.2006.10.018.
[39]
TRAPP S C, CROTEAU R B. Genomic organization of plant terpene synthases and molecular evolutionary implications[J]. Genetics, 2001,158(2):811-832.DOI: 10.1017/S0016672301005043.
[40]
HAYASHI K, HORIE K, HIWATASHI Y, et al. Endogenous diterpenes derived from ent-kaurene,a common gibberellin precursor,regulate Protonema differentiation of the moss Physcomitrella patens[J]. Plant Physiol, 2010,153(3):1085-1097.DOI: 10.1104/pp.110.157909.
[41]
KEELING C I, DULLAT H K, YUEN M, et al. Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms[J]. Plant Physiol, 2010,152(3):1197-1208.DOI: 10.1104/pp.109.151456.
[42]
MORRONE D, CHAMBERS J, LOWRY L, et al. Gibberellin biosynjournal in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum[J]. FEBS Lett, 2009,583(2):475-480.DOI: 10.1016/j.febslet.2008.12.052.
[43]
HILLWIG M L, XU M, TOYOMASU T, et al. Domain loss has independently occurred multiple times in plant terpene synthase evolution[J]. Plant J, 2011,68(6):1051-1060.DOI: 10.1111/j.1365-313x.2011.04756.x.
[44]
MARTIN D M, AUBOURG S, SCHOUWEY M B, et al. Functional annotation,genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly,FLcDNA cloning,and enzyme assays[J]. BMC Plant Biol, 2010,10:226.DOI: 10.1186/1471-2229-10-226.
[45]
HUANG M, ABEL C, SOHRABI R, et al. Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases,TPS02 and TPS03[J]. Plant Physiol, 2010,153(3):1293-1310.DOI: 10.1104/pp.110.154864.
[46]
CAO R, ZHANG Y, MANN F M, et al. Diterpene cyclases and the nature of the isoprene fold[J]. Proteins, 2010,78(11):2417-2432.DOI: 10.1002/prot.22751.
[47]
GAO Y, HONZATKO R B, PETERS R J. Terpenoid synthase structures: a so far incomplete view of complex catalysis[J]. Nat Prod Rep, 2012,29(10):1153-1175.DOI: 10.1039/c2np20059g.
[48]
KÜLHEIM C, PADOVAN A, HEFER C, et al. The Eucalyptus terpene synthase gene family[J]. BMC Genomics, 2015,16:450.DOI: 10.1186/s12864-015-1598-x.
[49]
AUBOURG S, LECHARNY A, BOHLMANN J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana[J]. Mol Genet Genomics, 2002,267(6):730-745.DOI: 10.1007/s00438-002-0709-y.
[50]
IRMISCH S, JIANG Y, CHEN F, et al. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa)[J]. BMC Plant Biol, 2014,14:270.DOI: 10.1186/s12870-014-0270-y.
[51]
FALARA V, AKHTAR T A, NGUYEN T T, et al. The tomato terpene synthase gene family[J]. Plant Physiol, 2011,157(2):770-789.DOI: 10.1104/pp.111.179648.
[52]
CHEN X E, YANG W, ZHANG L Q, et al. Genome-wide identification,functional and evolutionary analysis of terpene synthases in pineapple[J]. Comput Biol Chem, 2017,70:40-48.DOI: 10.1016/j.compbiolchem.2017.05.010.
[53]
WARREN R L, KEELING C I, YUEN M M, et al. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism[J]. Plant J, 2015,83(2):189-212.DOI: 10.1111/tpj.12886.
[54]
BIROL I, RAYMOND A, JACKMAN S D, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data[J]. Bioinformatics, 2013,29(12):1492-1497.DOI: 10.1093/bioinformatics/btt178.
[55]
NYSTEDT B, STREET N R, WETTERBOM A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013,497(7451):579-584.DOI: 10.1038/nature12211.
[56]
NEALE D B, WEGRZYN J L, STEVENS K A, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J]. Genome Biol, 2014,15(3):R59.DOI: 10.1186/gb-2014-15-3-r59.
[57]
WEGRZYN J L, LIECHTY J D, STEVENS K A, et al. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation[J]. Genetics, 2014,196(3):891-909.DOI: 10.1534/genetics.113.159996.
[58]
陈小娥. 火炬松萜类合成途径中PT、TPS和P450基因的鉴定与功能分析[D]. 西安:陕西师范大学, 2017.
CHEN X E. Identification and functional analysis of PT,TPS and P450 genes in the terpene synthesis pathway of loblolly pine[D]. Xi’an:Shaanxi Normal University, 2017.
[59]
KEELING C I, WEISSHAAR S, RALPH S G, et al. Transcriptome mining,functional characterization,and phylogeny of a large terpene synthase gene family in spruce (Picea spp.)[J]. BMC Plant Biol, 2011,11:43.DOI: 10.1186/1471-2229-11-43.
[60]
CELEDON J M, YUEN M M S, CHIANG A, et al. Cell-type-and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense[J]. Plant J, 2017,92(4):710-726.DOI: 10.1111/tpj.13673.
[61]
KARUNANITHI P S, ZERBE P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity[J]. Front Plant Sci, 2019,10:1166.DOI: 10.3389/fpls.2019.01166.
[62]
PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009,457(7229):551-556.DOI: 10.1038/nature07723.
[63]
PETERS R J. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynjournal in rice and other cereal crop plants[J]. Phytochemistry, 2006,67(21):2307-2317.DOI: 10.1016/j.phytochem.2006.08.009.
[64]
ALICANDRI E, PAOLACCI A R, OSADOLOR S, et al. On the evolution and functional diversity of terpene synthases in the Pinus species: a review[J]. J Mol Evol, 2020,88(3):253-283.DOI: 10.1007/s00239-020-09930-8.
[65]
MARTIN D M, FÄLDT J, BOHLMANN J. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily[J]. Plant Physiol, 2004,135(4):1908-1927.DOI: 10.1104/pp.104.042028.
[66]
CELEDON J M, BOHLMANN J. Oleoresin defenses in conifers: chemical diversity,terpene synthases and limitations of oleoresin defense under climate change[J]. New Phytol, 2019,224(4):1444-1463.DOI: 10.1111/nph.15984.
[67]
YOSHIKUNI Y, FERRIN T E, KEASLING J D. Designed divergent evolution of enzyme function[J]. Nature, 2006,440(7087):1078-1082.DOI: 10.1038/nature04607.
[68]
VATTEKKATTE A, GARMS S, BRANDT W, et al. Enhanced structural diversity in terpenoid biosynjournal: enzymes,substrates and cofactors[J]. Org Biomol Chem, 2018,16(3):348-362.DOI: 10.1039/c7ob02040f.
[69]
HALL D E, ROBERT J A, KEELING C I, et al. An integrated genomic,proteomic and biochemical analysis of (+)-3-carene biosynjournal in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil[J]. Plant J, 2011,65(6):936-948.DOI: 10.1111/j.1365-313x.2010.04478.x.
[70]
HUBER D P W, PHILIPPE R N, GODARD K A, et al. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir,Pseudotsuga menziesii[J]. Phytochemistry, 2005,66(12):1427-1439.DOI: 10.1016/j.phytochem.2005.04.030.
[71]
HALL D E, YUEN M M S, JANCSIK S, et al. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle,lodgepole pine (Pinus contorta) and Jack pine (Pinus banksiana)[J]. BMC Plant Biol, 2013,13:80.DOI: 10.1186/1471-2229-13-80.
[72]
PHILLIPS M A, WILDUNG M R, WILLIAMS D C, et al. cDNA isolation,functional expression,and characterization of (+)-alpha-pinene synthase and (-)-alpha-pinene synthase from loblolly pine (Pinus taeda): stereocontrol in pinene biosynjournal[J]. Arch Biochem Biophys, 2003,411(2):267-276.DOI: 10.1016/s0003-9861(02)00746-4.
[73]
TRINDADE H, SENA I, FIGUEIREDO A C. Characterization of α-pinene synthase gene in Pinus pinaster and P.pinea in vitro cultures and differential gene expression following Bursaphelenchus xylophilus inoculation[J]. Acta Physiol Plant, 2016,38(6):143.DOI: 10.1007/s11738-016-2159-x.
[74]
雷蕾. 湿地松TPS基因同源克隆及其与产脂性状的关联分析[D]. 南昌:江西农业大学, 2014.
LEI L. TPS genes homology cloning and its association analysis with resin traits on Pinus elliottii[D]. Nanchang:Jiangxi Agricultural University, 2014.
[75]
雷蕾, 潘显强, 张露, 等. 湿地松左旋β-蒎烯合成酶基因PeTPS-(-)BPin的同源克隆及生物信息学分析[J]. 江西农业大学学报, 2015,37(2):205-211.
LEI L, PAN X Q, ZHANG L, et al. An analysis of cloning and bioinformatics of sinistral beta pinene synthetase gene Pe TPS-(-) BPin in Pinus elliottii[J]. Acta Agric Univ Jiangxiensis, 2015,37(2):205-211.DOI: 10.13836/j.jjau.2015031.
[76]
魏永成. 接种松材线虫后抗性马尾松的防御物质变化及转录组分析[D]. 北京:中国林业科学研究院, 2016.
WEI Y C. Variation of defensive substance and transcriptome analysis of different resistant Pinus massoniana inoculated by pine wood nematode[D]. Beijing:Chinese Academy of Forestry, 2016.
[77]
陈晓明. 马尾松产脂相关基因挖掘及表达规律研究[D]. 北京:中国林业科学研究院, 2018.
CHEN X M. Study on discovery and expression pattern of the genes related to rosin formation in Pinus massoniana[D]. Beijing:Chinese Academy of Forestry, 2018.
[78]
BOHLMANN J, PHILLIPS M, RAMACHANDIRAN V, et al. cDNA cloning,characterization,and functional expression of four new monoterpene synthase members of the tpsd gene family from grand fir (Abies grandis)[J]. Arch Biochem Biophys, 1999,368(2):232-243.DOI: 10.1006/abbi.1999.1332.
[79]
BOHLMANN J, STEELE C L, CROTEAU R. Monoterpene synthases from grand fir (Abies grandis):cDNA isolation,characterization,and functional expression of myrcene synthase,(-)-(4S)-limonene synthase,and (-)-(1S,5S)-pinene synthase[J]. J Biol Chem, 1997,272(35):21784-21792.DOI: 10.1074/jbc.272.35.21784.
[80]
FÄLDT J, MARTIN D, MILLER B, et al. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression,and cDNA cloning and functional characterization of (+)-3-carene synthase[J]. Plant Mol Biol, 2003,51(1):119-133.DOI: 10.1023/A:1020714403780.
[81]
BYUN-MCKAY A, GODARD K A, TOUDEFALLAH M, et al. Wound-induced terpene synthase gene expression in sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil[J]. Plant Physiol, 2006,140(3):1009-1021.DOI: 10.1104/pp.105.071803.
[82]
MCKAY S A B, HUNTER W L, GODARD K A, et al. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in sitka spruce[J]. Plant Physiol, 2003,133(1):368-378.DOI: 10.1104/pp.103.022723.
[83]
BOHLMANN J, CROCK J, JETTER R, et al. Terpenoid-based defenses in conifers:cDNA cloning,characterization,and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis)[J]. PNAS, 1998,95(12):6756-6761.DOI: 10.1073/pnas.95.12.6756.
[84]
STEELE C L, CROCK J, BOHLMANN J, et al. Sesquiterpene synthases from grand fir (Abies grandis):comparison of constitutive and wound-induced activities,and cDNA isolation,characterization,and bacterial expression of δ-selinene synthase and γ-humulene synthase[J]. J Biol Chem, 1998,273(4):2078-2089.DOI: 10.1074/jbc.273.4.2078.
[85]
KÖPKE D, SCHRÖDER R, FISCHER H M, et al. Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?[J]. Planta, 2008,228(3):427-438.DOI: 10.1007/s00425-008-0747-8.
[86]
KÖPKE D, BEYAERT I, GERSHENZON J, et al. Species-specific responses of pine sesquiterpene synthases to sawfly oviposition[J]. Phytochemistry, 2010,71(8/9):909-917.DOI: 10.1016/j.phytochem.2010.03.017.
[87]
ZERBE P, CHIANG A, YUEN M, et al. Bifunctional Cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production[J]. J Biol Chem, 2012,287(15):12121-12131.DOI: 10.1074/jbc.m111.317669.
[88]
VOGEL B S, WILDUNG M R, VOGEL G, et al. Abietadiene synthase from grand fir (Abies grandis) cDNA isolation,characterization,and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynjournal[J]. J Biol Chem, 1996,271(38):23262-23268.DOI: 10.1074/jbc.271.38.23262.
[89]
HALL D E, ZERBE P, JANCSIK S, et al. Evolution of conifer diterpene synthases:diterpene resin acid biosynjournal in lodgepole pine and Jack pine involves monofunctional and bifunctional diterpene synthases[J]. Plant Physiol, 2013,161(2):600-616.DOI: 10.1104/pp.112.208546.
[90]
RO D K, BOHLMANN J. Diterpene resin acid biosynjournal in loblolly pine (Pinus taeda):functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO,CYP720B1)[J]. Phytochemistry, 2006,67(15):1572-1578.DOI: 10.1016/j.phytochem.2006.01.011.
[91]
ZERBE P, HAMBERGER B, YUEN M M, et al. Gene discovery of modular diterpene metabolism in nonmodel systems[J]. Plant Physiol, 2013,162(2):1073-1091.DOI: 10.1104/pp.113.218347.
[92]
MAFU S, KARUNANITHI P S, PALAZZO T A, et al. Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):974-979. DOI: 10.1073/pnas.1612901114.
[93]
杨章旗. 马尾松高产脂遗传改良研究进展及育种策略[J]. 广西林业科学, 2015,44(4):317-324.
YANG Z Q. Research progress of high rosin genetic improvement and breeding strategy of Pinus massoniana[J]. Guangxi For Sci, 2015,44(4):317-324.DOI: 10.19692/j.cnki.gfs.2015.04.001.
[94]
谈家金, 郝德君, 潘玉雯, 等. 几种松树挥发物对松材线虫行为的影响[J]. 东北林业大学学报, 2009,37(12):58-59.
TAN J J, HAO D J, PAN Y W, et al. Effects of several pine volatiles on behavior of Bursaphelenchus xylophilus[J]. J Northeast For Univ, 2009,37(12):58-59.DOI: 10.3969/j.issn.1000-5382.2009.12.019.
[95]
徐福元, 席客, 徐刚, 等. 不同龄级马尾松对松材线虫病抗性的探讨[J]. 南京林业大学学报, 1994,18(3):27-33.
XU F Y, XI K, XU G, et al. Study on the resistances of various year classes of Pinus massoniana to pine wood nematode (PWN),Bursaphelenchus xylophilus[J]. J Nanjing For Univ, 1994,18(3):27-33.
[96]
赵振东, 胡樨萼, 李冬梅, 等. 抗松材线虫病马尾松种源化学成分与抗性机理研究(第Ⅲ报):接种松材线虫引起抗性马尾松种源中性萜类含量变化关系的研究[J]. 林产化学与工业, 2001,21(3):52-58.
ZHAO Z D, HU X E, LI D M, et al. Study on chemical components and resistance mechanism to pine wood nematode of masson pine provenance(Ⅲ):study on contents variation of neutral terpenoids of resistant provenance of P.massoniana after inoculating Bursaphelenchus xylophilus[J]. Chem Ind For Prod, 2001,21(3):52-58.
[97]
王颖, 刘振宇, 吕全, 等. 马尾松α-蒎烯合成酶基因cDNA全长克隆及序列分析[J]. 安徽农业科学, 2014,42(13):3808-3811.
WANG Y, LIU Z Y, LV Q, et al. Cloning and sequence analysis of α-pinene synthase gene from Pinus massoniana[J]. J Anhui Agric Sci, 2014,42(13):3808-3811.DOI: 10.13989/j.cnki.0517-6611.2014.13.110.
[98]
王毅, 朱金鑫, 原晓龙, 等. 基因组步移技术克隆思茅松α-蒎烯合成酶基因及表达分析[J]. 基因组学与应用生物学, 2019,38(6):2699-2705.
WANG Y, ZHU J X, YUAN X L, et al. Genomic walking cloning of α-pinene synthase gene from Pinus kesiya var.langbianensis and its expression analysis[J]. Genom Appl Biol, 2019,38(6):2699-2705.DOI: 10.13417/j.gab.038.002699.
[99]
李帅, 郭莲怡. 土槿皮乙酸阻滞HepG2肝癌细胞于G2/M期并抑制其侵袭和迁移[J]. 细胞与分子免疫学杂志, 2018,34(1):59-64.
LI S, GUO L Y. Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells[J]. Chin J Cell Mol Immunol, 2018,34(1):59-64.DOI: 10.13423/j.cnki.cjcmi.008549.
[100]
ZHANG T X, GUO Y H, SHI X J, et al. Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers[J]. Plant Physiol Biochem, 2020,151:391-399.DOI: 10.1016/j.plaphy.2020.03.048.
[101]
NOMANI M, SADAT NOORI S A, TOHIDFAR M, et al. Overexpression of TPS2 gene to increase thymol content using Agrobacterium tumefaciens-mediated transformation in Trachyspermum ammi (Qom ecotype)[J]. Ind Crop Prod, 2019,130:63-70.DOI: 10.1016/j.indcrop.2018.12.076.
[102]
LI X, XU Y Y, SHEN S L, et al. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synjournal of E-geraniol in sweet orange fruit[J]. J Exp Bot, 2017,68(17):4929-4938.DOI: 10.1093/jxb/erx316.
[103]
LV Z, GUO Z, ZHANG L, et al. Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynjournal in Artemisia annua[J]. J Exp Bot, 2019,70(15):3969-3979.DOI: 10.1093/jxb/erz166.
[104]
刘彬, 刘青华, 周志春, 等. 基于高通量转录组测序筛选马尾松抗松材线虫病相关基因[J]. 林业科学研究, 2019,32(5):1-10.
LIU B, LIU Q H, ZHOU Z C, et al. Identification of candidate constitutive expressed resistant genes of pine wilt disease in Pinus massoniana based on high-throughput transcriptome sequencing[J]. For Res, 2019,32(5):1-10.DOI: 10.13275/j.cnki.lykxyj.2019.05.001.
[105]
BAI Q, HE B, CAI Y, et al. Transcriptomic and metabolomic analyses reveal several critical metabolic pathways and candidate genes involved in resin biosynjournal in Pinus massoniana[J]. Mol Genet Genomics, 2020,295(2):327-341.DOI: 10.1007/s00438-019-01624-1.

基金

国家重点研发计划(2017YFD0600304)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 涂忠华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2331 KB)

Accesses

Citation

Detail

段落导航
相关文章

/