带状采伐对毛竹林土壤细菌群落结构及多样性的影响

王树梅, 王波, 范少辉, 肖箫, 夏雯, 官凤英

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 60-68.

PDF(2003 KB)
PDF(2003 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 60-68. DOI: 10.12302/j.issn.1000-2006.202004038
研究论文

带状采伐对毛竹林土壤细菌群落结构及多样性的影响

作者信息 +

Influence of strip cutting management on soil bacterial community structure and diversity in Phyllostachys edulis stands

Author information +
文章历史 +

摘要

【目的】研究带状采伐后毛竹(Phyllostachys edulis)林土壤细菌群落结构及多样性的变化,认识带状采伐对毛竹林土壤生态系统的影响,为利用带状采伐实现毛竹林规模化经营提供指导。【方法】对毛竹林进行不同宽度(3、9、15 m)的带状采伐,25 d后采集样地内土壤样品,采用Illumina MiSeq 高通量测序技术分析土壤细菌特定基因片段V3-V4区域,鉴定菌种类群,预测细菌功能,并结合7种土壤养分指标(有机质、全氮、全磷、全钾、碱解氮、有效磷、速效钾)的测定结果,探讨带状采伐对毛竹林地土壤细菌群落及土壤养分的影响。【结果】随着采伐宽度的增加,土壤有效磷、全钾、速效钾含量降低,土壤有机质、全氮、碱解氮含量先增后降。适当采伐可以提高土壤肥力,但采伐宽度超过一定限度后,土壤肥力降低,速效养分含量减少。不同带状采伐对毛竹林土壤中细菌类群的丰度、多样性、均匀度的影响各不相同;3 m采伐宽度的毛竹林地内土壤细菌群落丰富度最高,且物种分布最均匀,随着采伐宽度的增大,其毛竹林地内的细菌群落丰富度和物种均匀度均降低,当采伐宽度超过9 m时,群落间的物种组成变化差异减小。带状采伐后变形菌门(Proteobacteria)相对丰度增多,酸杆菌门(Acidobacteria)、绿湾菌门(Chloroflexi)相对丰度减少,这3种菌门同放线菌门(Actinobacteria)一起占据着毛竹林带状采伐土壤细菌群落种的主要地位,对土壤中碳(C)、氮(N)元素固定及其他养分的转化分解发挥着重要的作用。带状采伐后土壤细菌群落代谢通路中最重要的是碳水化合物代谢和氨基酸代谢,说明带状采伐后土壤细菌的优势功能主要集中在C、N两种元素的固定和转化。【结论】毛竹林带状采伐对土壤细菌群落结构及多样性产生显著影响,3 m宽度的带状采伐能够增加细菌类群的丰度、多样性、均匀度以及土壤养分含量,当采伐宽度增大,上述各项指标降低;综合分析表明带状采伐后土壤微生物类群主要参与C、N元素的固定和转化的相关功能通路。

Abstract

【Objective】In order to provide scientific guidance for understanding the management of bamboo (Phyllostachys edulis) forests stands and restoration of soil ecosystems, the impact of strip cutting on soil bacterial community structure and diversity was studied. 【Method】Soil samples were collected from P. edulis stands of different widths (3, 9 and 15 m) after 25 d at Yixing, Jiangsu Province. V3-V4 regions were sequenced using the Illumina MiSeq High Throughput Sequencing to identify soil bacteria and predict functional groups. Soil organic matter, total N, total P, total K, available N, available P and available K were analyzed using standard methods.【Result】With the increase in cutting width, the contents of soil available P, total K, and available K decreased, while the contents of soil organic matter, and total and available N initially increased and then decreased. The selection of the appropriate cutting width could improve soil fertility, but when the cutting width exceeded a certain limit, the soil fertility and the content of available nutrients decreased. Strip cutting management had an impact on the soil bacterial abundance, diversity and evenness. At a cutting width of 3 m, the soil bacterial community was richer, and species distribution was more uniform than others. With the increase in the cutting width, the bacterial community richness and uniformity in the P. edulis forest decreased. When the cutting width exceeded a certain level, the difference in species composition between communities decreased. Strip cutting increased the diversity of Proteobacteria and decreased that of Acidobacteria and Chloroflexi. Proteobacteria, Actinobacteria, Acidobacteria and chloroflexi belong to the same functional group in the stripped soil of the bamboo forest, stimulating carbon and nitrogen fixation and the transformation and decomposition of other nutrients. The main metabolic pathways after strip cutting were carbohydrate and amino acid production.【Conclusion】Comprehensive analyses showed that strip cutting of P. edulis forests had a significant influence on the soil bacterial community structure and diversity. The shorter width (3 m) strip cutting could increase the abundance and diversity of soil bacteria and nutrient content. However, with the increase in strip-cutting width, the various indicators decreased. After strip cutting, soil microbial groups mainly acted on the fixation, decomposition, and transformation of C and N.

关键词

毛竹 / 带状采伐 / 土壤细菌 / 细菌多样性 / 细菌群落丰富度 / 功能预测

Key words

Phyllostachys edulis / strip cutting / soil bacteria / bacterial biodiversity / bacterial community richness / function prediction

引用本文

导出引用
王树梅, 王波, 范少辉, . 带状采伐对毛竹林土壤细菌群落结构及多样性的影响[J]. 南京林业大学学报(自然科学版). 2021, 45(2): 60-68 https://doi.org/10.12302/j.issn.1000-2006.202004038
WANG Shumei, WANG Bo, FAN Shaohui, et al. Influence of strip cutting management on soil bacterial community structure and diversity in Phyllostachys edulis stands[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 60-68 https://doi.org/10.12302/j.issn.1000-2006.202004038
中图分类号: S718.83   

参考文献

[1]
国家林业与草原局. 中国森林资源报告 [M]. 北京: 中国林业出版社, 2019.
National Forestry and Grassland Administration. China forest resources report [M]. Beijing: China Forestry Publishing House, 2019.
[2]
ZHAO J C, SU W H, FAN S H, et al. Effects of various fertilization depths on ammonia volatilization in Moso bamboo (Phyllostachys edulis) forests[J]. Plant Soil Environ, 2016,62(3):128-134. DOI: 10.17221/733/2015-pse.
[3]
范少辉, 刘广路, 苏文会, 等. 竹林培育研究进展[J]. 林业科学研究, 2018,31(1):137-144.
FAN S H, LIU G L, SU W H, et al. Advances in research of bamboo forest cultivation[J]. For Res, 2018,31(1):137-144. DOI: 10.13275/j.cnki.lykxyj.2018.01.017.
[4]
苏文会, 曾宪礼, 范少辉, 等. 带状采伐对毛竹非结构性碳与生物量分配的影响[J]. 生态学杂志, 2019,38(10):2934-2940.
SU W H, ZENG X L, FAN S H, et al. Effects of strip clear-cutting on the allocation of non-structural carbohydrates and aboveground biomass of Phyllostachys edulis[J]. Chin J Ecol, 2019,38(10):2934-2940.DOI: 10.13292/j.1000-4890.201910.016.
[5]
曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林恢复的质量特征研究[J]. 西北植物学报, 2019,39(5):917-924.
ZENG X L, SU W H, FAN S H, et al. Qualitative recovery characteristics of Moso bamboo forests under strip clearcutting[J]. Acta Bot Boreali-Occidentalia Sin, 2019,39(5):917-924. DOI: 10.7606/j.issn.1000-4025.2019.05.0917.
[6]
曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林土壤质量评价[J]. 生态学杂志, 2019,38(10):3015-3023.
ZENG X L, SU W H, FAN S H, et al. Assessment of soil quality in Moso bamboo forests under different strip clearcuttings[J]. Chin J Ecol, 2019,38(10):3015-3023. DOI: 10.13292/j.1000-4890.201910.007.
[7]
AVERILL C, HAWKES C V. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecol Lett, 2016,19(8):937-947. DOI: 10.1111/ele.12631.
[8]
张明锦, 陈良华, 张健, 等. 马尾松人工林林窗内凋落叶微生物生物量碳和氮的动态变化[J]. 应用生态学报, 2016,27(3):672-680.
ZHANG M J, CHEN L H, ZHANG J, et al. Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation[J]. Chinese Journal of Applied Ecology, 2016,27(3):672-680. DOI: 10.13287/j.1001-9332.201603.037.
[9]
CREAMER C A, DE MENEZES A B, KRULL E S, et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming[J]. Soil Biol Biochem, 2015,80:175-188. DOI: 10.1016/j.soilbio.2014.10.008.
[10]
WANG R Z, L, CREAMER C A, et al. Alteration of soil carbon and nitrogen pools and enzyme activities as affected by increased soil coarseness[J]. Biogeosciences, 2017,14(8):2155-2166. DOI: 10.5194/bg-14-2155-2017.
[11]
BACH L H, GRYTNES J A, HALVORSEN R, et al. Tree influence on soil microbial community structure[J]. Soil Biol Biochem, 2010,42(11):1934-1943. DOI: 10.1016/j.soilbio.2010.07.002.
[12]
BISSETT A, BROWN M V, SICILIANO S D, et al. Microbial community responses to anthropogenically induced environmental change:towards a systems approach[J]. Ecol Lett, 2013,16:128-139. DOI: 10.1111/ele.12109.
[13]
COLOMBO F, MACDONALD C A, JEffRIES T C, et al. Impact of forest management practices on soil bacterial diversity and consequences for soil processes[J]. Soil Biol Biochem, 2016,94:200-210. DOI: 10.1016/j.soilbio.2015.11.029.
[14]
BANNING N C, GLEESON D B, GRIGG A H, et al. Soil microbial community successional patterns during forest ecosystem restoration[J]. Appl Environ Microbiol, 2011,77(17):6158-6164. DOI: 10.1128/aem.00764-11.
[15]
CASTRO H F, CLASSEN A T, AUSTIN E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Appl Environ Microbiol, 2010,76(4):999-1007. DOI: 10.1128/aem.02874-09.
[16]
张明锦, 张健, 纪托未, 等. 林窗对凋落物分解过程中细菌群落结构和多样性的影响[J]. 生态环境学报, 2015,24(8):1287-1294.
ZHANG M J, ZHANG J, JI T W, et al. Influence of forest gap on bacterial community structure and diversity during litter decomposition[J]. Ecol Environment, 2015,24(8):1287-1294.DOI: 10.16258/j.cnki.1674-5906.2015.08.005.
[17]
张晓, 刘世荣, 黄永涛, 等. 辽东栎林演替过程中的土壤细菌群落结构和多样性变化[J]. 林业科学, 2019,55(10):193-202.
ZHANG X, LIU S R, HUANG Y T, et al. Changes on community structure and diversity of soil bacterial community during the succession of Quercus wutaishanica[J]. Sci Silvae Sin, 2019,55(10):193-202. DOI: 10.11707/j.1001-7488.20191019.
[18]
鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 2002.
LU R K. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2002.
[19]
管云云, 费菲, 关庆伟, 等. 林窗生态学研究进展[J]. 林业科学, 2016,52(4):91-99.
GUAN Y Y, FEI F, GUAN Q W, et al. Advances in studies of forest gap ecology[J]. Sci Silvae Sin, 2016,52(4):91-99.DOI: 10.11707/j.1001-7488.20160411.
[20]
AMIR A A, DUKE N C. Distinct characteristics of canopy gaps in the subtropical mangroves of Moreton Bay,Australia[J]. Estuar Coast Shelf Sci, 2019,222:66-80. DOI: 10.1016/j.ecss.2019.04.007.
[21]
张小鹏, 王得祥, 常明捷, 等. 林窗干扰对森林更新及其微环境影响的研究[J]. 西南林业大学学报, 2016,36(6):170-177.
ZHANG X P, WANG D X, CHANG M J, et al. a review for effects of forest gap on forest regeneration and its microenvironment[J]. J Southwest For Univ, 2016,36(6):170-177. DOI: 10.11929/j.issn.2095-1914.2016.06.028.
[22]
韩文娟, 何景峰, 张文辉, 等. 黄龙山林区油松人工林林窗对幼苗根系生长及土壤理化性质的影响[J]. 林业科学, 2013,49(11):16-23.
HAN W J, HE J F, ZHANG W H, et al. Effects of gap size on root growth of seedlings and soil physical and chemical properties in Pinus tabulaeformis plantation in the Huanglong forest[J]. Sci Silvae Sin, 2013,49(11):16-23. DOI: 10.11707/j.1001-7488.20131103.
[23]
刘聪, 朱教君, 吴祥云, 等. 辽东山区次生林不同大小林窗土壤养分特征[J]. 东北林业大学学报, 2011,39(1):79-81.
LIU C, ZHU J J, WU X Y, et al. Characteristics of soil nutrients within canopy gaps of various sizes in secondary forests in eastern mountainous regions of Liaoning Province,China[J]. J Northeast For Univ, 2011,39(1):79-81.
[24]
欧江, 刘洋, 张捷, 等. 长江上游马尾松人工林土壤铵态氮和硝态氮对采伐林窗的初期响应[J]. 应用与环境生物学报, 2015,21(1):147-154.
OU J, LIU Y, ZHANG J, et al. Early responses of soil ammonium and nitrate nitrogen to forest gap harvesting of a Pinus massoniana plantation in the upper reaches of Yangtze River[J]. Chin J Appl Environ Biol, 2015,21(1):147-154. DOI: 10.3724/SP.J.1145.2014.03023.
[25]
HOOPER D U, BIGNELL D E, BROWN V K, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems:patterns,mechanisms,and feedbacks[J]. BioScience, 2000,50(12):1049. DOI: 10.1641/0006-3568(2000)050[1049:ibaabb]2.0.co;2.
[26]
贺纪正, 王军涛. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报, 2015, 35(20):1-2, 6575-6583.
HE J Z, WANG J T.. Mechanisms of community organization and spatiotemporal patterns of soil microbial communities[J]. Acta Ecol Sin, 2015, 35(20):1-2, 6575-6583. DOI: 10.5846/stxb201506061143.
[27]
丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性[J]. 林业科学, 2018,54(1):81-89.
DING X J, JING R Y, HUANG Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing[J]. Sci Silvae Sin, 2018,54(1):81-89. DOI: 10.11707/j.1001-7488.2018010.
[28]
王安宁, 黄秋娴, 李晓刚, 等. 冀北山区不同植被恢复类型根际土壤细菌群落结构及多样性[J]. 林业科学, 2019,55(9):130-141.
WANG A N, HUANG Q X, LI X G, et al. Bacterial community structure and diversity in rhizosphere soil of different vegetation restoration patterns in mountainous areas of northern Hebei[J]. Sci Silvae Sin, 2019,55(9):130-141. DOI: 10.11707/j.1001-7488.20190914.
[29]
SUN L, LU Y F, KRONZUCKER H J, et al. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification[J]. J Plant Physiol, 2016,198:81-88. DOI: 10.1016/j.jplph.2016.04.010.
[30]
周本智, 傅懋毅. 竹林地下鞭根系统研究进展[J]. 林业科学研究, 2004,17(4):533-540.
ZHOU B Z, FU M Y. Review on bamboo’s under ground rhizome-root system research[J]. For Res, 2004,17(4):533-540. DOI: 10.3321/j.issn:1001-1498.2004.04.021.
[31]
翟婉璐, 钟哲科, 高贵宾, 等. 覆盖经营对雷竹林土壤细菌群落结构演变及多样性的影响[J]. 林业科学, 2017,53(9):133-142.
ZHAI W L, ZHONG Z K, GAO G B, et al. Influence of mulching management on soil bacterial structure and diversity in Phyllostachys praecox stands[J]. Sci Silvae Sin, 2017,53(9):133-142. DOI: 10.11707/j.1001-7488.20170916.
[32]
CRAWFORD D L. Lignocellulose decomposition by selected streptomyces strains[J]. Appl Environ Microbiol, 1978,35(6):1041-1045. DOI: 10.1128/aem.35.6.1041-1045.1978.
[33]
JUHNKE M E, MATHRE D E, SANDS D C. Identification and characterization of rhizosphere-competent bacteria of wheat[J]. Appl Environ Microbiol, 1987,53(12):2793-2799. DOI: 10.1128/aem.53.12.2793-2799.1987.
[34]
BARNS S M, CAIN E C, SOMMERVILLE L, et al. Acidobacteria Phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the Phylum[J]. Appl Environ Microbiol, 2007,73(9):3113-3116. DOI: 10.1128/AEM.02012-06.
[35]
XUN W B, XIONG W, HUANG T, et al. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil[J]. Appl Soil Ecol, 2016,100:38-44. DOI: 10.1016/j.apsoil.2015.12.003.

基金

国家重点研发计划(2018YFD0600103)
中央级公益性科研院所基本科研业务费专项资金项目(1632018009)
林业科技创新平台运行补助项目(江苏宜兴竹林生态系统国家定位观测研究站运行补助)

编辑: 涂忠华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2003 KB)

Accesses

Citation

Detail

段落导航
相关文章

/