[1] |
DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synbook of evolutionary patterns[M]. Swizerland:Springer, 2017:13-38.
|
[2] |
熊仕发, 吴立文, 陈益存, 等. 不同种源白栎果实形态特征和营养成分含量变异分析[J]. 林业科学研究, 2020,33(2):93-102.
|
|
XIONG S F, WU L W, CHEN Y C, et al. Variation in morphological characters and nutrient contents of Quercus fabri fruits from different provenances[J]. Forest Research, 2020,33(2):93-102. DOI: 10.13275/j.cnki.lykxyj.2020.02.012.
|
[3] |
SUN S C, JIN D M, LI R J. Leaf emergence in relation to leaf traits in temperate woody species in east-Chinese Quercus fabri forests[J]. Acta Oecologica, 2006,30(2):212-222. DOI: 10.1016/j.actao.2006.04.001.
doi: 10.1016/j.actao.2006.04.001
|
[4] |
REN Y, CHEN S S, WEI X H, et al. Disentangling the factors that contribute to variation in forest biomass increments in the mid-subtropical forests of China[J]. J For Res, 2016,27(4):919-930. DOI: 10.1007/s11676-016-0237-y.
doi: 10.1007/s11676-016-0237-y
|
[5] |
GOU M M, XIANG W H, SONG T Q, et al. Allometric equations for applying plot inventory and remote sensing data to assess coarse root biomass energy in subtropical forests[J]. Bioenergy Res, 2017,10(2):536-546. DOI: 10.1007/s12155-017-9820-0.
doi: 10.1007/s12155-017-9820-0
|
[6] |
PROVAN J, POWELL W, HOLLINGSWORTH P M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution[J]. Trends Ecol Evol, 2001,16(3):142-147. DOI: 10.1016/s0169-5347(00)02097-8.
doi: 10.1016/s0169-5347(00)02097-8
pmid: 11179578
|
[7] |
ZHANG Y Y, FANG Y M, YU M K, et al. Molecular characterization and genetic structure of Quercus acutissima germplasm in China using microsatellites[J]. Mol Biol Rep, 2013,40(6):4083-4090. DOI: 10.1007/s11033-013-2486-6.
doi: 10.1007/s11033-013-2486-6
|
[8] |
DOW B D, ASHLEY M V, HOWE H F. Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa[J]. Theor Appl Genet, 1995,91(1):137-141. DOI: 10.1007/bf00220870.
doi: 10.1007/BF00220870
pmid: 24169679
|
[9] |
DOW B D, ASHLEY M V. Microsatellite analysis of seed dispersal and parentage of samplings in bur oak, Quercus macrocarpa[J]. Mol Ecol, 1996,5(5):615-627. DOI: 10.1111/j.1365-294x.1996.tb00357.x.
doi: 10.1111/j.1365-294X.1996.tb00357.x
|
[10] |
ISAGI Y, SUHANDONO S. PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species[J]. Mol Ecol, 1997,6(9):897-899. DOI: 10.1111/j.1365-294x.1997.tb00147.x.
doi: 10.1111/j.1365-294x.1997.tb00147.x
pmid: 9301079
|
[11] |
ALDRICH P R, MICHLER C H, SUN W L, et al. Microsatellite markers for northern red oak (Fagaceae: Quercus rubra)[J]. Mol Ecol Notes, 2002,2(4):472-474. DOI: 10.1046/j.1471-8286.2002.00282.x.
doi: 10.1046/j.1471-8286.2002.00282.x
|
[12] |
ALDRICH P R, JAGTAP M, MICHLER C H, et al. Amplification of north American red oak microsatellite markers in European white oaks and Chinese chestnut[J]. Silvae Genetica, 2003,52(3/4):176-179. DOI: 10.2307/1588619.
|
[13] |
STEINKELLNER H, LEXER C, TURETSCHEK E, et al. Conservation of (GA)n microsatellite loci between Quercus species[J]. Mol Ecol, 1997,6(12):1189-1194. DOI: 10.1046/j.1365-294x.1997.00288.x.
doi: 10.1046/j.1365-294X.1997.00288.x
|
[14] |
KAMPFER S, LEXER C, GLÖSSL J, et al. Characterization of (GA)n microsatellite loci from Quercus robur[J]. Hereditas, 2004,129(2):183-186. DOI: 10.1111/j.1601-5223.1998.00183.x.
doi: 10.1111/j.1601-5223.1998.00183.x
|
[15] |
YEH F C, YANG R, BOYLE T J, et al. POPGENE 32, microsoft windows-based freeware for populations genetic analysis[M]// Molecular Biology and Biotechnology Centre. Edmonton: University of Alberta, 2000.
|
[16] |
PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research:an update[J]. Bioinformatics, 2012,28(19):2537-2539. DOI: 10.1093/bioinformatics/bts460.
doi: 10.1093/bioinformatics/bts460
|
[17] |
SLATKIN M, BARTON N H. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989,43(7):1349-1368. DOI: 10.2307/2409452.
doi: 10.1111/j.1558-5646.1989.tb02587.x
pmid: 28564250
|
[18] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Res, 2010,10:564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
doi: 10.1111/men.2010.10.issue-3
|
[19] |
PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics Society of America, 2000,155:945-959.
|
[20] |
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software structure: a simulation study[J]. Mol Ecol, 2005,14(8):2611-2620. DOI: 10.1111/j.1365-294x.2005.02553.x.
doi: 10.1111/j.1365-294X.2005.02553.x
pmid: 15969739
|
[21] |
EARL D A, VONHOLDT B M. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method[J]. Conservation Genet Resour, 2012,4(2):359-361. DOI: 10.1007/s12686-011-9548-7.
doi: 10.1007/s12686-011-9548-7
|
[22] |
KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Bio Evo, 2016,33(7):1870-1874. DOI: 10.1093/molbev/msw054.
|
[23] |
RYCHLIK W, SPENCER W J, RHOADS R E. Optimization of the annealing temperature for DNA amplification in vitro[J]. Nucleic Acids Res, 1990,18(21):6409-6412. DOI: 10.1093/nar/18.21.6409
doi: 10.1093/nar/18.21.6409
pmid: 2243783
|
[24] |
魏高明. 苏皖4 种同域分布栎树的遗传变异与基因渐渗[D]. 南京: 南京林业大学, 2015.
|
|
WEI G M. Genetic variation of populations and introgression among four sympatric oaks in Jiangsu and Anhui Provinces[D]. Nanjing: Nanjing Forestry University, 2015.
|
[25] |
ZHANG X W, LI Y, LIU C Y, et al. Phylogeography of the temperate tree species Quercus acutissima in China: inferences from chloroplast DNA variations[J]. Biochem Syst Ecol, 2015,63:190-197. DOI: 10.1016/j.bse.2015.10.010.
doi: 10.1016/j.bse.2015.10.010
|
[26] |
AN M, DENG M, ZHENG S S, et al. Introgression threatens the genetic diversity of Quercus austrocochinchinensis (Fagaceae), an endangered oak: a case inferred by molecular markers[J]. Front Plant Sci, 2017,8:229. DOI: 10.3389/fpls.2017.00229.
doi: 10.3389/fpls.2017.00229
pmid: 28270827
|
[27] |
LINDJ F, GAILING O. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers[J]. Tree Genet Genomes, 2013,9(3):707-722. DOI: 10.1007/s11295-012-0586-4.
doi: 10.1007/s11295-012-0586-4
|
[28] |
秦英英, 韩海荣, 康峰峰, 等. 基于SSR标记的山西省辽东栎自然居群遗传多样性分析[J]. 北京林业大学学报, 2012,34(2):61-65.
|
|
QIN Y Y, HAN H R, KANG F F, et al. Genetic diversity in natural populations of Quercus liaotungensis in Shanxi Province based on nuclear SSR markers[J]. J Beijing For Univ, 2012,34(2):61-65. DOI: 10.13332/j.1000-1522.2012.02.022.
|
[29] |
XU X L, XU L A, HUAN M R, et al. Genetic diversity of microsatellites (SSRs) of natural populations of Quercus variabilis[J]. Yi Chuan, 2004,26(5):683-688. DOI: 10.1088/1009-0630/6/5/011.
pmid: 15640085
|
[30] |
SLARKIN M. Gene flow in natural populations[J]. Annu Rev Ecol Syst, 1985,16(1):393-430. DOI: 10.1146/annurev.es.16.110185.002141.
doi: 10.1146/annurev.es.16.110185.002141
|
[31] |
NEI M. Genetic distance between populations[J]. America Naturalist, 1972,106(949):10. DOI: 10.1086/282771.
|
[32] |
SAITO Y, TSUDA Y, UCHIYAMA K, et al. Genetic variation in Quercus acutissima Carruth., in traditional Japanese rural forests and agricultural landscapes, revealed by chloroplast microsatellite markers[J]. Forests, 2017,8(12):451. DOI: 10.3390/f8110451.
doi: 10.3390/f8110451
|
[33] |
SHI X M, WEN Q, CAO M, et al. Genetic diversity and structure of natural Quercus variabilis population in china as revealed by microsatellites markers[J]. Forests, 2017,8(12):495. DOI: 10.3390/f8120495.
doi: 10.3390/f8120495
|