陈山红心杉1.5代种子园遗传多样性和子代父本分析

陈兴彬, 徐海宁, 肖复明, 孙世武, 娄永峰, 邹元熹, 徐小强

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 87-92.

PDF(1871 KB)
PDF(1871 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 87-92. DOI: 10.12302/j.issn.1000-2006.202005006
研究论文

陈山红心杉1.5代种子园遗传多样性和子代父本分析

作者信息 +

Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir

Author information +
文章历史 +

摘要

【目的】陈山红心杉是江西特有的杉木优良种源,其近髓心的木质部为高比例的油亮栗褐色,是工艺建筑和室内装潢极为宝贵的天然材料。对陈山红心杉1.5代种子园进行遗传多样性和子代父本分析,为红心杉种子园的管理提供科学依据。【方法】以江西省青原区白云山林场陈山红心杉1.5代种子园及其子代测定林为研究材料,利用12对SSR引物,对种子园32个亲本及14个无性系的459个子代进行遗传多样性和父本分析。【结果】各引物在亲本群体中检测到等位基因数(Na)为3~7,平均为4.41个;引物在子代群体中检测到的等位基因数(Na)为4~11,平均为6.50个,较亲本群体高2.09个。亲本群体的平均有效等位基因数(Ne)为2.330,子代群体的平均有效等位基因数为2.306。子代群体包含亲本群体所有的等位基因,并检测到25个子代特有的等位基因。子代群体的Shannon’s信息指数(I)=1.004高于亲本群体的0.992,说明子代群体的遗传多样性略高于亲本群体。子代群体和亲本群体的观测杂合度(Ho)分别为0.525和 0.571,表明子代群体中杂合单株的比例较亲本有所下降。种子园的多位点异交率(tm)是1.012,单位点异交率(ts)为0.991,说明种子园异交率较高。双亲近交系数(tm-ts)为0.021,表明种子园无性系间近交水平比较低。种子园的有效花粉供体数目(Nep)为7.81。种子园的多位点父本相关性[Rp(m)]和单位点父本相关性[Rp(s)]分别为0.128和-0.016,单位点和多位点父本相关性的差值Rp(s)-Rp(m)=-0.144<0,表明亲本间没有明显的近亲关系。家系间的多位点异交率(tm)变化幅度为0.938~1.200,有10个家系的多位点异交率(tm)大于0。家系间近交系数(tm-ts)变化幅度为-0.127~0.150,9个家系的近交系数大于零,说明这些家系存在近交现象。通过父本分析,在80%的置信水平下确定了325个子代的父本来源,占分析子代总数的70.8%。子代的亲本均不是同一无性系,说明种子园无自交现象。各家系子代确定父本的比率不一致,41号家系子代确定父本的比率最高,为93.9%,其余家系子代确定父本比率为54.3%~90.9%。8号家系确定父本的30个子代中,16个子代的父本为同一无性系,占家系子代总数的53.3%;12号家系确定父本的26个子代中,12个子代的父本为同一无性系,占家系子代总数的46.2%,说明无性系间授粉亲和性不同。种子园存在非随机交配现象,在32个潜在无性系中,有26个无性系提供了有效花粉,其中父本贡献率最高的是22号和29号无性系,各为33个子代提供了花粉,其贡献率均为10.2%,其他无性系的父本贡献率为0.3%~8.9%。父本贡献率最高的前11个无性系共计产生了70.2%的子代。【结论】陈山红心杉1.5代种子园遗传多样性丰富,子代保持了亲代的遗传多样性水平;种子园异交率较高,部分家系存在低水平的近交;子代父本分析表明,种子园无自交现象,无性系间授粉亲和性不同,父本贡献率不均等。

Abstract

【Objective】 Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an important, fast-growing timber species that is widely distributed in southern China. The Chenshan red-heart Chinese fir is derived from C. lanceolata originating in Jiangxi Province, and its high proportion of shiny, chestnut-brown xylem surrounding the pith is an extremely valuable raw material for craft, architecture and interior decoration. This study aimed to provide a scientific basis for the management of red-heart Chinese fir seed orchards. 【Method】 We investigated the genetic diversity and analyzed the paternity of a 1.5th generation seed orchard of red-heart Chinese fir in the Baiyunshan Mountain Forest Farm (Qingyuan District, Jiangxi Province, China). The genetic diversity of 32 parent trees and 459 open-pollinated progenies from 14 clones in a 1.5th generation clonal seed orchard was analyzed using 12 polymorphic SSR loci. We then conducted a paternity test of the progeny. 【Result】 We detected 3-7 and 4-11 alleles (Na) at averages of 4.41 and 6.50 per SSR loci, respectively, in the parent and progeny populations. The average number of alleles in the progeny population was 2.09, which was higher than that in the parent population. The effective numbers of alleles (Ne) were 2.330 and 2.306 in the parent and progeny populations, respectively. The progeny population contained all alleles detected in the parent population. In addition, 25 alleles detected in the progeny population were undetectable in the parent population. The Shannon information index (I) was 1.004 and 0.992 in the parent and progeny populations, respectively, indicating slightly higher genetic diversity in the progeny than in the parent population. The observed heterozygosity (Ho) was smaller in the progeny, than in the parent population (0.525 vs. 0.571), indicating a slightly lower proportion of heterozygosity in the progeny than in the parents. The multilocus (tm) and single-locus (ts) outcrossing rates in the seed orchard were 1.012 and 0.991, respectively, and the inbreeding between parents was not significant (tm-ts = 0.021). The number of effective pollen donors (Nep) was 7.81. The multilocus [Rp(m)] and single locus [Rp(s)] paternal correlations of the seed orchard were 0.128 and -0.016, respectively. The difference [Rp(s)-Rp(m)] between them was -0.144 < 0, indicating the absence of close relationships among the parents. The multilocus outcrossing rate (tm) among families ranged from 0.938 to 1.200, and the multilocus outcrossing rate (tm) of 10 families was more than 0. The biparental inbreeding (tm-ts) among families ranged from -0.127 to 0.150, and the tm-ts of nine families was more than 0, indicating that these families were inbred. The male parents of 325 progeny were determined at an 80% confidence level, accounting for 70.8% of the total progeny analyzed. The male and female parents of all progeny were generated from different clones, indicating the absence of selfing in this seed orchard. The proportions of paternal identification among families differed. The proportion of paternal identification of family No. 41 was the highest (93.9%), whereas that of the other families ranged from 54.3% to 90.9%. Paternal parents of 30 offspring in family No. 8 were identified, the paternity of 16 offspring was the same clone, accounting for 53.3% of the total offspring of this family. Paternal parents of 26 offspring in family No. 12 were identified, the paternity of 12 offspring was the same clone, accounting for 46.2% of the total offspring of this family. These results indicated that pollination affinity differed among the clones. A non-random mating phenomenon was also identified in the seed orchard. Among 32 clones, 26 provided effective pollen. Clone numbers 22 and 29 provided pollen for 33 offspring with the highest male parent contribution rate of 10.2%, compared with the 0.3%-8.9% rate of other clones. Eleven clones with the highest paternal contribution produced 70.2% of the offspring. 【Conclusion】 The 1.5th generation clonal seed orchard of red-heart Chinese fir was found to have rich genetic diversity, which remained equally in the progeny and parent populations. The outcrossing rate of this seed orchard was high, and some families had a low level of inbreeding. Self-pollination was absent, pollination affinity differed among clones, and the paternal contribution of clones was not equal throughout this red-heart Chinese fir seed orchard.

关键词

陈山红心杉 / 种子园 / SSR / 遗传多样性 / 父本分析

Key words

Chenshan red-heart Chinese fir / seed orchard / SSR / genetic diversity / paternity analysis

引用本文

导出引用
陈兴彬, 徐海宁, 肖复明, . 陈山红心杉1.5代种子园遗传多样性和子代父本分析[J]. 南京林业大学学报(自然科学版). 2021, 45(3): 87-92 https://doi.org/10.12302/j.issn.1000-2006.202005006
CHEN Xingbin, XU Haining, XIAO Fuming, et al. Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 87-92 https://doi.org/10.12302/j.issn.1000-2006.202005006
中图分类号: S718   

参考文献

[1]
GONZAGA J, MANOEL R, SOUSA A, et al. Pollen contamination and nonrandom mating in a Eucalyptus camaldulensis Dehnh seedling seed orchard[J]. Silvae Genet, 2016,65:1-11. DOI: org/10.1515/sg-2016-0001.
[2]
HANSEN O K, KJAER E D. Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions[J]. Can J For Res, 2006,36(4):1054-1058.DOI: 10.1139/x05-299.
[3]
FERNANDES L, ROCHETA M, CORDEIRO J, et al. Genetic variation,mating patterns and gene flow in a Pinus pinaster Aiton clonal seed orchard[J]. Ann For Sci, 2008,65(7):706.DOI: 10.1051/forest:2008049.
[4]
PLOMION C, LEPROVOST G, POT D, et al. Pollen contamination in a maritime pine polycross seed orchard and certification of improved seeds using chloroplast microsatellites[J]. Can J For Res, 2001,31(10):1816-1825.DOI: 10.1139/x01-115.
[5]
DUREL C E, BERTIN P, KREMER A. Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster)[J]. Theor Appl Genet, 1996,92(3):347-356.DOI: 10.1007/bf00223678.
[6]
DERING M, MISIORNY A, CHALUPKA W. Inter-year variation in selfing,background pollination,and paternal contribution in a Norway spruce clonal seed orchard[J]. Can J For Res, 2014,44(7):760-767.DOI: 10.1139/cjfr-2014-0061.
[7]
曾志光, 杨先锋, 肖复明, 等. 陈山红心杉材性变异及其基因资源利用的研究[J]. 江西林业科技, 2001,29(3):1-6,39.
ZENG Z G, YANG X F, XIAO F M, et al. Study on variability of timber characters and gene resources utilization for Chenshan red-heart Chinese fir[J]. Jiangxi For Sci Technol, 2001,29(3):1-6,39.DOI: 10.16259/j.cnki.36-1342/s.2001.03.001.
[8]
葛艺早, 刘文飞, 吴建平, 等. 不同施肥处理对杉木种子园种子品质的影响[J]. 森林与环境学报, 2016,36(4):442-448.
GE Y Z, LIU W F, WU J P, et al. Effects of different fertilization treatments on quality of the seeds in a third generation seed orchard of Cunninghamia lanceolata[J]. J For Environ, 2016,36(4):442-448.DOI: 10.13324/j.cnki.jfcf.2016.04.010.
[9]
郑仁华. 杉木种子园自由授粉子代遗传变异及优良遗传型选择[J]. 南京林业大学学报(自然科学版), 2006,30(1):8-12.
ZHENG R H. Genetic variations of seed orchard open-pollinated progenies and selection of superior genotypes of Chinese fir[J]. J Nanjing For Univ (Nat Sci Ed), 2006,30(1):8-12.DOI: 10.3969/j.issn.1000-2006.2006.01.002.
[10]
陈兴彬, 何龙燕, 肖复明, 等. 基于转录组测序的陈山红心杉EST-SSR开发及应用[J]. 中南林业科技大学学报, 2020,40(8):120-127.
CHEN X B, HE L Y, XIAO F M, et al. Development and application of EST-SSR markers in Chenshan red-heart Chinese fir based on transcriptome sequencing[J]. J Central South Univ For Technol, 2020,40(8):120-127.DOI: 10.14067/j.cnki.1673-923x.2020.08.015.
[11]
RITLAND K. Extensions of models for the estimation of mating systems using n independent loci[J]. Heredity, 2002,88(4):221-228.DOI: 10.1038/sj.hdy.6800029.
[12]
SUN M, RITLAND K. Mating system of yellow starthistle (Centaurea solstitialis),a successful colonizer in north America[J]. Heredity, 1998,80(2):225-232.DOI: 10.1046/j.1365-2540.1998.00290.x.
[13]
KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Mol Ecol, 2007,16(5):1099-1106.DOI: 10.1111/j.1365-294X.2007.03089.x.
[14]
乔东亚, 王鹏, 王淑安, 等. 基于SNP标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2020,44(4):21-28.
QIAO D Y, WANG P, WANG S A, et al. Genetic diversity analysis of Lagerstroemia germplasm resources based on SNP markers[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(4):21-28. DOI: 10.3969/j.issn.1000-2006.202003075.
[15]
艾畅, 徐立安, 赖焕林, 等. 马尾松种子园的遗传多样性与父本分析[J]. 林业科学, 2006,42(11):146-150.
AI C, XU L A, LAI H L, et al. Genetic diversity and paternity analysis of a seed orchard in Pinus massoniana[J]. Sci Silvae Sin, 2006,42(11):146-150.DOI: 10.3321/j.issn:1001-7488.2006.11.026.
[16]
于大德, 袁定昌, 张登荣, 等. 华北落叶松种子园不同世代间遗传多样性变化[J]. 植物遗传资源学报, 2014,15(5):940-947.
YU D D, YUAN D C, ZHANG D R, et al. Genetic diversity of Larix principis-rupprechtii Mayr.seed orchard among generations[J]. J Plant Genet Resour, 2014,15(5):940-947.DOI: 10.13430/j.cnki.jpgr.2014.05.004.
[17]
赵奋成, 郭文冰, 林昌明, 等. 不同近交程度对湿地松结实与生长的影响[J]. 南京林业大学学报(自然科学版), 2019,43(1):9-17.
ZHAO F C, GUO W B, LIN C M, et al. Effects of different inbreeding levels on seed characteristics and growth of slash pine[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(1):9-17.DOI: 10.3969/j.issn.1000-2006.201712043.
[18]
谭小梅, 周志春, 金国庆, 等. 马尾松二代无性系种子园遗传多样性和交配系统分析[J]. 林业科学, 2012,48(2):69-74.
TAN X M, ZHOU Z C, JIN G Q, et al. Genetic diversity and mating system analysis of Pinus massoniana in a second-generation clonal seed orchard[J]. Sci Silvae Sin, 2012,48(2):69-74.
[19]
MORIGUCHI Y, YAMAZAKI Y, TAIRA H, et al. Mating patterns in an indoor miniature Cryptomeria japonica seed orchard as revealed by microsatellite markers[J]. New For, 2010,39(3):261-273.DOI: 10.1007/s11056-009-9169-0.
[20]
叶培忠, 陈岳武, 蒋恕, 等. 杉木种子生活力变异的研究[J]. 南京林业大学学报, 1981,5(3):22-32.
YE P Z, CHEN Y W, JIANG S, et al. A preliminary study on the variation of seed vigor of Chinese fir[J]. J Nanjing For Univ, 1981,5(3):22-32.
[21]
GONZÁLEZ-MARTÍNEZ S C, GERBER S, CERVERA M T, et al. Selfing and sibship structure in a two-cohort stand of maritime pine (Pinus pinaster Ait.) using nuclear SSR markers[J]. Ann For Sci, 2003,60(2):115-121.DOI: 10.1051/forest:2003003.
[22]
DE-LUCAS A I, ROBLEDO-ARNUNCIO J J, HIDALGO E, et al. Mating system and pollen gene flow in Mediterranean maritime pine[J]. Heredity (Edinb), 2008,100(4):390-399.DOI: 10.1038/sj.hdy.6801090.
[23]
GRATTAPAGLIA D, AMARAL DIENER P S, SANTOS G A. Performance of microsatellites for parentage assignment following mass controlled pollination in a clonal seed orchard of loblolly pine (Pinus taeda L.)[J]. Tree Genet Genomes, 2014,10(6):1631-1643.DOI: 10.1007/s11295-014-0784-3.
[24]
DERING M, MISIORNY A, CHALUPKA W. Inter-year variation in selfing,background pollination,and paternal contribution in a Norway spruce clonal seed orchard[J]. Can J For Res, 2014,44(7):760-767.DOI: 10.1139/cjfr-2014-0061.
[25]
CHEN X B, SUN X M, DONG L M, et al. Mating patterns and pollen dispersal in a Japanese larch (Larix kaempferi) clonal seed orchard:a case study[J]. Sci China Life Sci, 2018,61(9):1011-1023.DOI: 10.1007/s11427-018-9305-7.
[26]
SHIMONO A, WANG X R, TORIMARU T, et al. Spatial variation in local pollen flow and mating success in a Picea abies clone archive and their implications for a novel “breeding without breeding” strategy[J]. Tree Genet Genomes, 2011,7(3):499-509.DOI: 10.1007/s11295-010-0351-5.

基金

江西省重点研发计划项目(20181ACF60011)
江西省林业科技创新项目(201702)
江西省林业科技创新项目(201802)
江西省林业科学院青年科技人才培养项目(2018521101)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1871 KB)

Accesses

Citation

Detail

段落导航
相关文章

/