基于TLS数据的杨树削度方程建立及材积估算

花伟成, 田佳榕, 孙心雨, 徐雁南

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 41-48.

PDF(1941 KB)
PDF(1941 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 41-48. DOI: 10.12302/j.issn.1000-2006.202006023
专题报道I (执行主编李凤日)

基于TLS数据的杨树削度方程建立及材积估算

作者信息 +

Assessing the stem taper function and volume estimation of poplar (Populus) by terrestrial laser scanning

Author information +
文章历史 +

摘要

【目的】削度方程可以很好地描述树干直径随树高变化的情况,基于地基激光雷达(terrestrial laser scanner, TLS)的高精度三维点云数据建立准确的削度方程并进行立木材积估算,对活立木尺度的材积估计具有重要意义。【方法】以江苏省黄海海滨国家森林公园杨树人工林为研究对象,获取4块样地的TLS点云数据,通过MATLAB 2020a软件计算点云平坦度和法向量以提取单木主干,采用圆拟合方法进行不同高度处的直径拟合,利用32株样木的数据,选取6种削度模型进行建模,得到杨树树干削度方程最优拟合模型,并进行材积估算。【结果】利用TLS数据提取的胸径能替代实测胸径,其平均误差小于0.90 cm。通过对6种模型的拟合优度检验,Schumacher and Hall模型为该地区杨树削度方程最优拟合模型,模型的决定系数R2=0.984,均方根误差为1.00 cm,相对百分误差为2.79%,平均预估误差为0.271%。利用Schumacher and Hall 削度方程最优拟合模型进行活立木材积的估算,经与二元材积方程估计结果进行对比,其相对差异为3.34%,二者在统计上无显著差异。【结论】该方法可以减少地面调查对树木造成的永久性破坏,为人工林的蓄积量调查提供有效的技术支持。

Abstract

【Objective】The taper function can describe variations in the trunk diameter and tree height, and it is important to estimate standing tree volume using an accurate taper function based on the high-precision three-dimensional point cloud data of the terrestrial laser scanner (TLS). 【Method】 A poplar (Populus) artificial forest in Huanghai Haibin National Forest Park, Jiangsu Province, was examined, and TLS was used to obtain point cloud data from four sampling plots. The single tree trunk point cloud was extracted by calculating flatness and a normal vector using MATLAB 2020a software. The circular fitting method was used to fit diameters at different heights. Using data of 32 sample trees, six types of taper functions were selected for modeling. The poplar tree volume was estimated using an optimized taper function. 【Result】The DBH(diameter at breast height) produced from TLS data corresponds to the measured DBH values, with an average error of less than 0.90 cm. According to the goodness of fit test of six models, a Schumacher and Hall model was the optimal taper function for poplars in this region, with an R2 value of 0.984, RMSE is 1.00 cm, MAPE is 2.79%, and MPE is 0.271%. Volumes of standing trees were estimated using the optimal taper function. Compared with the estimation results of the binary volume equation, the relative difference was 3.34%, and there was no significant difference between them. 【Conclusion】This method may help reduce ground surveys and provide an effective technical support for artificial forest volume investigations.

关键词

杨树 / 地基激光雷达 / 削度方程 / 材积 / 主干提取 / 点云数据

Key words

poplar (Populus spp.) / terrestrial laser scanner (TLS) / taper function / tree volume / trunk detection / point cloud data

引用本文

导出引用
花伟成, 田佳榕, 孙心雨, . 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版). 2021, 45(4): 41-48 https://doi.org/10.12302/j.issn.1000-2006.202006023
HUA Weicheng, TIAN Jiarong, SUN Xinyu, et al. Assessing the stem taper function and volume estimation of poplar (Populus) by terrestrial laser scanning[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 41-48 https://doi.org/10.12302/j.issn.1000-2006.202006023
中图分类号: S758   

参考文献

[1]
孟宪宇. 测树学[M]. 3版.北京: 中国林业出版社, 2006:159-170.
MENG X Y. Forest mensutation[M].3rd ed. Beijing: China Forestry Publishing House, 2006:159-170.
[2]
庞丽峰, 贾宏炎, 陆元昌, 等. 分段削度方程2种估计方法比较[J]. 林业科学, 2015, 51(12):141-148.
PANG L F, JIA H Y, LU Y C, et al. Comparison of two parameters estimation methods for segmented taper equations[J]. Sci Silvae Sin, 2015, 51(12):141-148.
[3]
KUBLIN E, BREIDENBACH J, KÄNDLER G. A flexible stem taper and volume prediction method based on mixed-effects B-spline regression[J]. Eur J For Res, 2013, 132(5/6):983-997.DOI: 10.1007/s10342-013-0715-0.
[4]
田佳榕, 代婷婷, 徐雁南, 等. 基于地基激光雷达的采矿废弃地生态修复的植被参数提取[J]. 生态与农村环境学报, 2018, 34(8):686-691.
TIAN J R, DAI T T, XU Y N, et al. Extraction of vegetation parameters in different stages of ecological restoration on abandoned mine area based on T-LiDAR[J]. J Ecol Rural Environ, 2018, 34(8):686-691.DOI: 10.11934/j.issn.1673-4831.2018.08.003.
[5]
庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3):129-136.
PANG Y, LI Z Y, CHEN E X, et al. Lidar remote sensing technology and its application in forestry[J]. Sci Silvae Sin, 2005, 41(3):129-136.DOI: 10.3321/j.issn:1001-7488.2005.03.022.
[6]
晏颖杰, 范少辉, 官凤英. 地基激光雷达技术在森林调查中的应用研究进展[J]. 世界林业研究, 2018, 31(4):42-47.
YAN Y J, FAN S H, GUAN F Y. Research progress in TLS technology in forest investigation[J]. World For Res, 2018, 31(4):42-47.DOI: 10.13348/j.cnki.sjlyyj.2018.0055.y.
[7]
刘鲁霞, 庞勇, 李增元, 等. 用地基激光雷达提取单木结构参数:以白皮松为例[J]. 遥感学报, 2014, 18(2):365-377.
LIU L X, PANG Y, LI Z Y, et al. Retrieving structural parameters of individual tree through terrestrial laser scanning data[J]. J Remote Sens, 2014, 18(2):365-377.DOI: 10.11834/jrs.20143091.
[8]
SUN Y, LIANG X L, LIANG Z Y, et al. Deriving merchantable volume in poplar through a localized tapering function from non-destructive terrestrial laser scanning[J]. Forests, 2016, 7(12):87.DOI: 10.3390/f7040087.
[9]
杨玉泽, 张珊珊, 林文树. 依据地面三维激光扫描及点云数据建立的白桦树干削度方程[J]. 东北林业大学学报, 2018, 46(12):58-63.
YANG Y Z, ZHANG S S, LIN W S. Stem taper function of Betula platyphylla with terrestrial 3D laser scanning[J]. J Northeast For Univ, 2018, 46(12):58-63.DOI: 10.13759/j.cnki.dlxb.2018.12.011.
[10]
梅光义, 孙玉军. 国内外削度方程研究进展[J]. 世界林业研究, 2015, 28(4):44-49.
MEI G Y, SUN Y J. Research progress in stem taper equation[J]. World For Res, 2015, 28(4):44-49.DOI: 10.13348/j.cnki.sjlyyj.2015.04.006.
[11]
王鹏程, 庄尔奇, 涂炳坤, 等. 湖北省马尾松人工林削度方程及材种出材率表的研究[J]. 华中农业大学学报, 2001, 20(1):67-72.
WANG P C, ZHUANG E Q, TU B K, et al. A study on the taper function and merchantable volume yielding rate table of mason pine in Hubei Province[J]. J Huazhong Agric, 2001, 20(1):67-72.DOI: 10.13300/j.cnki.hnlkxb.2001.01.017.
[12]
梁子瑜, 孙圆, 梁欣廉, 等. 基于地面激光扫描仪的树干削度方程提取[J]. 南京林业大学学报(自然科学版), 2014, 38(5):6-10.
LIANG Z Y, SUN Y, LIANG X L, et al. The extraction of stem taper equation based on terrestrial laser scanning[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(5):6-10. DOI: 10.3969/j.issn.1000-2006.2014.05.002.
[13]
TAO S L, WU F F, GUO Q H, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS J Photogramm Remote Sens, 2015, 110:66-76.DOI: 10.1016/j.isprsjprs.2015.10.007.
[14]
PUESCHEL P, NEWNHAM G, ROCK G, et al. The influence of scan mode and circle fitting on tree stem detection,stem diameter and volume extraction from terrestrial laser scans[J]. ISPRS J Photogramm Remote Sens, 2013, 77:44-56.DOI: 10.1016/j.isprsjprs.2012.12.001.
[15]
VERMA V, KUMAR R, HSU S. 3D building detection and modeling from aerial LIDAR data [C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06).June 17-22,2006,New York,NY,USA.IEEE, 2006:2213-2220.DOI: 10.1109/CVPR.2006.12.
[16]
LIANG X, HYYPPÄ J. Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels[J]. Sensors (Basel), 2013, 13(2):1614-1634.DOI: 10.3390/s130201614.
[17]
RAUMONEN P, KAASALAINEN M, ÅKERBLOM M, et al. Fast automatic precision tree models from terrestrial laser scanner data[J]. Remote Sens, 2013, 5(2):491-520.DOI: 10.3390/rs5020491.
[18]
LIANG X L, LITKEY P, HYYPPA J, et al. Automatic stem mapping using single-scan terrestrial laser scanning[J]. IEEE Trans Geosci Remote Sens, 2012, 50(2):661-670.DOI: 10.1109/TGRS.2011.2161613.
[19]
PITKÄNEN T P, RAUMONEN P, KANGAS A. Measuring stem diameters with TLS in boreal forests by complementary fitting procedure[J]. ISPRS J Photogramm Remote Sens, 2019, 147:294-306.DOI: 10.1016/j.isprsjprs.2018.11.027.
[20]
KOZAK A, MUNRO D D, SMITH J H G. Taper functions and their application in forest inventory[J]. For Chron, 1969, 45(4):278-283.DOI: 10.5558/tfc45278-4.
[21]
KOZAK A, SMITH J H G. Critical analysis of multivariate techniques for estimating tree taper suggests that simpler methods are best[J]. For Chron, 1966, 42(4):458-463.DOI: 10.5558/tfc42458-4.
[22]
SCHUMACHER F X, HALL F D S. Logarithmic expression of timber-tree volume[J]. Journal of Agricultural Research, 1933, 47(9):719-734.
[23]
ORMEROD D W. A simple Bole model[J]. For Chron, 1973, 49(3):136-138.DOI: 10.5558/tfc49136-3.
[24]
曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997, 33(2):32-37.
ZENG W S, LIAO Z Y. A study on taper equation[J]. Sci Silvae Sin, 1997, 33(2):32-37.
[25]
严若海, 吴富桢. 商品材积变型估测系统的研究[J]. 南京林业大学学报, 1992, 16(3):31-37.
YAN R H, WU F Z. A study on the variable merchantable volume estimation system[J]. J Nanjing For Univ, 1992, 16(3):31-37.
[26]
肖君. 南方型杨树人工林生长与收获模型的研究[D]. 南京:南京林业大学, 2006.
XIAO J. Studies on the growth and yield models of poplar plantations in southern area[D]. Nanjing:Nanjing Forestry University, 2006.
[27]
WAN P, WANG T J, ZHANG W M, et al. Quantification of occlusions influencing the tree stem curve retrieving from single-scan terrestrial laser scanning data[J]. For Ecosyst, 2019, 6(1):1-13.DOI: 10.1186/s40663-019-0203-1.
[28]
CABO C, ORDÓÑEZ C, LÓPEZ-SÁNCHEZ C A, et al. Automatic dendrometry:tree detection,tree height and diameter estimation using terrestrial laser scanning[J]. Int J Appl Earth Obs Geoinformation, 2018(69):164-174.DOI: 10.1016/j.jag.2018.01.011.
[29]
KOREŇ M, MOKROŠ M, BUCHA T. Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods[J]. Int J Appl Earth Obs Geoinformation , 2017(63):122-128.DOI: 10.1016/j.jag.2017.07.015.
[30]
骆钰波, 黄洪宇, 唐丽玉, 等. 基于地面激光雷达点云数据的森林树高、胸径自动提取与三维重建[J]. 遥感技术与应用, 2019, 34(2):243-252.
LUO Y B, HUANG H Y, TANG L Y, et al. Tree height and diameter extraction with 3D reconstruction in a forest based on TLS[J]. Remote Sens Technol Appl, 2019, 34(2):243-252.
[31]
张煜星, 王雪军, 刘明博. 基于无人机遥感影像的DSM及遥感数据林分平均高提取[J]. 林业资源管理, 2017(2):23-27,52.
ZHANG Y X, WANG X J, LIU M B. Extraction of DSM and mean forest stand height from UAV imagery[J]. For Resour Manag, 2017(2):23-27,52.DOI: 10.13466/j.cnki.lyzygl.2017.02.005.
[32]
杨坤, 赵艳玲, 张建勇, 等. 利用无人机高分辨率影像进行树木高度提取[J]. 北京林业大学学报, 2017, 39(8):17-23.
YANG K, ZHAO Y L, ZHANG J Y, et al. Tree height extraction using high-resolution imagery acquired from an unmanned aerial vehicle (UAV)[J]. J Beijing For Univ, 2017, 39(8):17-23.DOI: 10.13332/j.1000-1522.20160428.
[33]
张良, 姜晓琦, 周薇薇, 等. 大光斑激光雷达数据的森林冠层高度反演[J]. 测绘科学, 2018, 43(3):148-153,160.
ZHANG L, JIANG X Q, ZHOU W W, et al. Retrieval of forest canopy height based on large-footprint LiDAR data[J]. Sci Surv Mapp, 2018, 43(3):148-153,160.DOI: 10.16251/j.cnki.1009-2307.2018.03.025.
[34]
刘方舟, 刘浩, 云挺. 基于分水岭优化思想的单木信息分割算法[J]. 林业工程学报, 2020, 5(5):109-116.
LIU F Z, LIU H, YUN T. Individual tree crown separation using the improved watershed method[J]. J For Eng, 2020, 5(5):109-116. DOI: 10.13360/j.issn.2096-1359.202001021.

基金

国家重点研发计划(2019YFD1100404)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1941 KB)

Accesses

Citation

Detail

段落导航
相关文章

/