
全球木质林产品碳科学研究动态及未来的重点问题
Research trends and future key issues of global harvested wood products carbon science
【目的】森林在全球碳循环中发挥着重要作用。作为森林资源利用的延伸,木质林产品是缓解气候变化的重要碳库。厘清木质林产品的主要生命周期阶段,归纳总结与之关联的木质林产品碳科学研究热点及未来可能的研究方向,以合理评价木质林产品的气候功能。【方法】以木质林产品的生命周期过程为基础,分“森林—在用—填埋”3个阶段归纳总结了木质林产品碳科学的研究动态及未来可能面临的科学难题。【结果】①森林阶段中,现有研究多采用以经验模型为主、过程模型为辅的方式核算和预测森林碳库碳储量,情景模拟和物质流分析可以利用运输和生产过程将森林阶段与在用阶段相结合,寻求最佳的森林管理策略。②在用阶段中,碳核算方法学的选择是国际争议的重点所在,木质林产品的替代效应也由于其可累积性和永久性成为碳核算过程中不可忽视的重要问题。③填埋阶段中,木质林产品分解缓慢或不分解,可以使碳储存的时间更久,一阶衰减法是估算固体废弃物填埋场中碳储量变化的常用模型,与甲烷排放相关联的可降解有机碳比例、甲烷产出比例等关键参数也是目前的研究重点。【结论】①对森林碳汇计量模型加以改进,解决其区域适应性问题能够降低森林阶段碳核算的不确定性;②合理估算木质林产品的替代因子及实现“碳中和”的时间有利于能源政策和森林管理政策的制定;③考虑固体废弃物填埋场中甲烷的回收再利用能够提高木质林产品全生命周期碳核算的准确性;④改进森林资源清查方法、完善林产品生命周期数据库能够更准确地评估木质林产品的温室气体减排潜力;⑤在全球尺度上统一碳核算方法学,同时公平地认定碳储量的归属、合理地在各贸易国间分配碳排放,将有助于加速木质林产品相关议题的国际谈判进程。
【Objective】Forests play an important role in the global carbon cycle. As an extension of forest resource utilization, harvested wood products are important carbon pools for climate change mitigation. By clarifying the main life cycle stages of harvested wood products, and summarizing the relevant research hotspots and possible future research directions of carbon in harvested wood products, it is of great scientific significance to rationally evaluate the climate function of harvested wood products. 【Method】Based on the life cycle process of harvested wood products, this paper summarizes the research trends and scientific challenges that may be faced in the future regarding the carbon science of harvested wood products in three stages: forest, in-use, and landfill. 【Result】 ① In the forest stage, existing studies mostly used the empirical model as a supplement to the process model to calculate and predict forest carbon stocks. The scenario simulation and material flow analysis can combine the forest stage with the in-use stage by using transport and production processes to seek the best forest management strategy. ② In the in-use stage, the choice of carbon accounting approaches is the focus of international controversy. The substitution effect of harvested wood products is also a major issue that cannot be ignored in the carbon accounting process because of its cumulative and permanent nature. ③ In the landfill stage, harvested wood products decompose slowly or do not decompose at all, consequently storing carbon for a longer time. The first-order decay method is a common model used for estimating the change in carbon storage in solid waste disposal sites. The key parameters associated with methane emission, such as the fraction of degradable organic carbon and the proportion of methane production, are the emphasis of the current study. 【Conclusion】① Improving the measurement model of forest carbon sinks can reduce the uncertainty of forest carbon accounting. ② Reasonable estimation of the displacement factors of harvested wood products and the time required to achieve “carbon neutrality” are conducive to the formulation of policies regarding the energy and forest management. ③ Considering the recovery and reuse of methane in solid waste disposal sites can improve the accuracy of carbon accounting in the entire life cycle of harvested wood products. ④ Improving forest inventory methods and perfecting the database of the forest product life cycle can facilitate a more accurate assessment of the mitigation potential of greenhouse gas emissions from harvested wood products. ⑤ Harmonizing carbon accounting methodologies on a global scale, equitably identifying the ownership of carbon stocks and as well as rationalizing the distribution of carbon emissions among trading countries, will help to accelerate international negotiations on issues related to harvested wood products.
木质林产品 / 生命周期 / 碳核算 / 替代减排 / 碳中和
harvested wood products / life cycle / carbon accounting / reduced emissions through wood substitution / carbon neutrality
[1] |
IPCC. Climate change 2013: The physical science basis[M]. Cambridge, New York: Cambridge University Press, 2013.
|
[2] |
IPCC. Climate change 2014: Mitigation of climate change[M]. Cambridge, New York: Cambridge University Press, 2014.
|
[3] |
IPCC. Global warming of 1.5 ℃[M]. Cambridge, New York: Cambridge University Press, 2018.
|
[4] |
|
[5] |
白彦锋, 姜春前, 张守攻, 等. 气候变化谈判中木质林产品的相关概念及其碳储量核算[J]. 林业科学, 2011, 47(1):158-164.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
IPCC. Revised 1996 IPCC guidelines for national greenhouse gas inventories[R]. Geneva: Intergovernmental Panel on Climate Change, 1996.
|
[17] |
IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[R]. Hayama: The Institute for Global Environmental Strategies (IGES) for the IPCC, 2006.
|
[18] |
IPCC. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. Geneva: Intergovernmental Panel on Climate Change, 2019.
|
[19] |
IPCC. 2013 revised supplementary methods and good practice gui-dance arising from the Kyoto protocol[R]. Geneva: Intergovern-mental Panel on Climate Change, 2014.
|
[20] |
杨红强, 季春艺, 杨惠, 等. 全球气候变化下中国林产品的减排贡献:基于木质林产品固碳功能核算[J]. 自然资源学报, 2013, 28(12):2023-2033.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
陶韵, 杨红强. “伞形集团” 典型国家LULUCF林业碳评估模型比较研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3):202-210.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
杨红强, 王珊珊. IPCC框架下木质林产品碳储核算研究进展:方法选择及关联利益[J]. 中国人口·资源与环境, 2017, 27(2):44-51.
|
[49] |
|
[50] |
|
[51] |
白彦锋, 姜春前, 张守攻. 中国木质林产品碳储量及其减排潜力[J]. 生态学报, 2009, 29(1):399-405.
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
耿爱欣, 杨红强. 生物质能源替代化石能源的成本有效性拓展模型:基于时间价值视角[J]. 资源开发与市场, 2017, 33(5):533-539.
|
[64] |
李忠平. 森林资源连续清查体系优化问题的思考[J]. 林业建设, 2014(6):1-3.
|
/
〈 |
|
〉 |