
赣中天然闽楠单木冠幅预测模型的研究
Individual tree crown width prediction models for natural Phoebe bournei in central Jiangxi Province
【目的】探讨竞争指标和建模方法对天然闽楠(Phoebe bournei)单木冠幅预测模型的影响,以期为精准预测天然闽楠单木的冠幅提供参考。【方法】以江西省赣中25块闽楠天然次生林典型样地中的1 011株闽楠为研究对象,采用普通最小二乘法(OLS模型)、仅考虑样地水平的混合效应模型、增强回归树和随机森林4种建模方法建立单木冠幅模型,分别添加林分每公顷断面积、大于对象木的断面积之和、林分密度指数和简单竞争指数4种竞争指标,分析竞争指标对冠幅模型的影响,采用决定系数(R2)、均方根误差(RMSE)、平均相对误差绝对值(RMA)和平均绝对误差(MAE)确定最佳模型。【结果】不添加竞争指标时,模型的预测能力表现为:混合效应模型>OLS模型>增强回归树>随机森林;添加竞争指标时,最优模型表现为:混合效应模型>OLS模型>随机森林>增强回归树。OLS模型中添加大于对象木的断面积之和竞争指标时预测能力最佳;增强回归树中添加固定半径为7 m的简单竞争指数时预测能力最佳;随机森林中添加林分每公顷断面积竞争指标时预测能力最佳;混合效应模型不添加竞争指标时预测能力最佳(RMSE为0.846 0,RMA为0.211 1,MAE为0.650 1),并且都优于其他模型。【结论】研究结果可对天然闽楠单木冠幅生长进行精准预测,并为提高闽楠天然次生林的林分质量提供理论依据。
【Objective】 The influence of competitive indices and modeling methods on the prediction of individual tree crowns of natural Phoebe bournei in Jiangxi Province was discussed to provide a reference for accurately predicting the crown width of natural Phoebe bournei.【Method】An individual crown width model was developed based on a dataset comprising 1 011 Phoebe bournei from 25 typical plots of natural secondary Phoebe bournei forest located in Jiangxi Province. The individual tree crown width model was established using four modeling methods: ordinary least squares (OLS) model, mixed effects model, boosted regression trees, and random forest. Four competitive indices, namely, basal area, basal area of larger trees, stand density, and simple competition, were added to reflect the influence of competition on the crown width model. The model evaluation criteria included determination coefficient (R2), root-mean-square error (RMSE), relative mean absolute error (RMA) and mean absolute error (MAE).【Result】The results demonstrated that when no competition index was added, the order of model accuracy was mixed effects model > OLS model > boosted regression trees > random forest; when the competition index was added, the optimal model was as follows: mixed effects model > OLS model> random forest > boosted regression trees (BRT). The OLS model had the best predictive ability when the basal area of larger trees was added; the BRT had the best predictive ability when a simple competition index with a fixed radius of 7 m was added; the random forest had the best predictive ability when the basal area was added. The mixed effects model had the best predictive ability when no competitive index was added (RMSE is 0.846 0, RMA is 0.211 1, MAE is 0.650 1), and it was superior to the other models. 【Conclusion】The results of this study accurately predicted the growth of Phoebe bournei individual tree crowns, thereby providing a theoretical basis for improving the forest quality of natural secondary Phoebe bournei forest.
闽楠 / 冠幅模型 / 竞争指标 / 混合效应模型 / 刀切法
Phoebe bournei / crown width model / competitive index / mixed effect model / Jack knife
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
符亚健, 吕飞舟, 朱光玉, 等. 华北落叶松天然次生林单木冠幅模型构建[J]. 林业资源管理, 2016(5):65-70.
|
[7] |
刘月, 王君, 杨雨春, 等. 不同林分密度胡桃楸胸径、树高、材积与冠幅关系[J]. 森林工程, 2021, 37(3):28-35.
|
[8] |
|
[9] |
雷相东, 张则路, 陈晓光. 长白落叶松等几个树种冠幅预测模型的研究[J]. 北京林业大学学报, 2006, 28(6):75-79.
|
[10] |
贺梦莹, 董利虎, 李凤日. 长白落叶松-水曲柳混交林冠幅预测模型[J]. 北京林业大学学报, 2020, 42(7):23-32.
|
[11] |
覃阳平, 张怀清, 陈永富, 等. 基于简单竞争指数的杉木人工林树冠形状模拟[J]. 林业科学研究, 2014, 27(3):363-366.
|
[12] |
符利勇, 孙华. 基于混合效应模型的杉木单木冠幅预测模型[J]. 林业科学, 2013, 49(8):65-74.
|
[13] |
张鹏, 王新杰, 高志雄, 等. 将乐地区马尾松最优冠幅模型研究[J]. 西北林学院学报, 2015, 30(4):94-98.
|
[14] |
|
[15] |
韩艳刚, 雷泽勇, 赵国军, 等. 樟子松人工固沙林冠幅:胸径模型[J]. 干旱区研究, 2018, 35(5):1129-1137.
|
[16] |
|
[17] |
徐奇刚, 雷相东, 国红, 等. 基于多层感知机的长白落叶松人工林林分生物量模型[J]. 北京林业大学学报, 2019, 41(5):97-107.
|
[18] |
沈剑波, 王应宽, 雷相东, 等. 基于BP神经网络的广东省针阔混交异龄林立地质量评价[J]. 北京林业大学学报, 2019, 41(5):38-47.
|
[19] |
曹梦, 潘萍, 欧阳勋志, 等. 基于哑变量的闽楠天然次生林单木胸径和树高生长模型研究[J]. 北京林业大学学报, 2019, 41(5):88-96.
|
[20] |
曹梦, 潘萍, 欧阳勋志, 等. 天然次生林中闽楠生物量分配特征及相容性模型[J]. 浙江农林大学学报, 2019, 36(4):764-773.
|
[21] |
褚欣, 潘萍, 李琦, 等. 闽楠天然次生林直径分布模拟研究[J]. 江西农业大学学报, 2019, 41(2):273-280.
|
[22] |
欧建德. 林下闽楠更新层生境质量评价模型的建立与应用[J]. 西南林业大学学报, 2015, 35(2):73-78.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
欧强新, 李海奎, 雷相东, 等. 基于清查数据的福建省马尾松生物量转换和扩展因子估算差异解析:3种集成学习决策树模型的比较[J]. 应用生态学报, 2018, 29(6):2007-2016.
|
[27] |
|
[28] |
汤孟平, 陈永刚, 施拥军, 等. 基于Voronoi图的群落优势树种种内种间竞争[J]. 生态学报, 2007, 27(11):4707-4716.
|
[29] |
华伟平, 丘甜, 江希钿, 等. 黄山松单木竞争分析及模型建立[J]. 森林与环境学报, 2017, 37(2):201-206.
|
[30] |
曾思齐, 龙时胜, 肖化顺, 等. 南方地区青冈栎次生林种内与种间竞争研究[J]. 中南林业科技大学学报, 2016, 36(10):1-5.
|
[31] |
宋博, 李凤日, 董利虎, 等. 黑龙江西部地区人工小黑杨立木可加性生物量模型[J]. 北京林业大学学报, 2018, 40(11):58-68.
|
[32] |
刘平, 王玉涛, 马履一. 低山侧柏人工林单木冠幅预测模型及精度评价[J]. 林业资源管理, 2014(2):52-57,104.
|
[33] |
|
[34] |
李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3):343-348.
|
[35] |
吕乐, 董利虎, 李凤日. 黑龙江省东部地区天然椴树单木冠幅预测模型[J]. 东北林业大学学报, 2019, 47(7):37-42.
|
[36] |
田德超, 李凤日, 董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8):41-46.
|
[37] |
符亚健. 华北落叶松天然林单木冠幅模型研究[D]. 长沙:中南林业科技大学, 2017.
|
[38] |
|
[39] |
李永亮, 张怀清, 杨廷栋, 等. 基于自适应神经模糊系统的杉木冠幅估算方法[J]. 林业科学, 2019, 55(11):45-51.
|
/
〈 |
|
〉 |