NO2胁迫下两种鹅耳枥的光合生理特性变化

圣倩倩, 戴安琪, 宋敏, 唐睿, 祝遵凌

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 10-16.

PDF(1886 KB)
PDF(1886 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 10-16. DOI: 10.12302/j.issn.1000-2006.202006062
专题报道(执行主编 方升佐)

NO2胁迫下两种鹅耳枥的光合生理特性变化

作者信息 +

Photosynthetic physiological characteristics of two kinds of hornbeam under NO2 stress

Author information +
文章历史 +

摘要

【目的】评价欧洲鹅耳枥和普陀鹅耳枥对NO2胁迫的耐受力,为选择抗大气污染的园林树种提供参考。【方法】以12.0 mg/m3的NO2对欧洲鹅耳枥和普陀鹅耳枥1年生幼苗进行熏气处理,熏气时间分别为胁迫零点(0 h,CK)、1、6、12、24、48、72 h,以及熏气后30 d测定两种鹅耳枥幼苗的光合生理指标和叶绿素荧光特性,分析不同NO2熏气时间与苗木光合生理响应特征的关系,比较两种鹅耳枥对NO2胁迫的适应性。【结果】NO2胁迫后欧洲鹅耳枥具有较高的最大净光合速率(Pn,max)和暗呼吸速率(Rd),较低的光补偿点(LCP)和较高的光饱和点(LSP),表明欧洲鹅耳枥在较宽泛的光照强度下能够正常生长;欧洲鹅耳枥与普陀鹅耳枥的NO2熏气1 h处理组最大PSⅡ光能转换效率(Fv/Fm)值增加,在6 h处理中仅欧洲鹅耳枥的Fv/Fm值增加,PSⅡ活性增强,用于光合电子传递的能量增多。【结论】推测认为欧洲鹅耳枥能够在NO2胁迫下有序适应外界不良环境,耐受性更强。这对城市道路树种选择与植物配置具有重要意义。

Abstract

【Objective】This paper is to evaluate the tolerance of Carpinus betulus and Carpinus putoensis to NO2 stress, and to provide a reference for the selection of landscape tree species resistant to air pollution.【Method】The annual seedlings of C. betulus and C. putoensis were fumigated with 12.0 mg/m3 NO2 for stress zero point(0 h, CK), 1, 6, 12, 24, 48, 72 h, respectively, the photosynthetic physiological indexes and chlorophyll fluorescence characteristics of C. betulus and C. putoensis seedlings were measured 30 days after fumigation. The relationship between different NO2 fumigation time and photosynthetic physiological response characteristics was analyzed, and the adaptability of C. betulus and C. putoensis seedlings to NO2 stress was compared.【Result】The results showed that after NO2 stress, C. betulus had higher Pn,max and Rd, lower light compensation point (LCP) and higher light saturation point (LSP), which indicated that C. betulus could grow normally under a wide range of light intensity. It is increased that the maximum photosynthetical efficiency (Fv/Fm) of C. betulus and C. putoensis leaf treated by NO2 for 1 hour. Only Fv/Fm value of C. betulus increased, PSⅡ activity and energy for photosynthetic electron transfer increased at 6 h of NO2 stress.【Conclusion】It is suggested that C. betulus could adapt to the adverse environment in an orderly manner under NO2 stress, with stronger tolerance. The results of this study are of great significance to the selection and allocation of urban road species.

关键词

NO2胁迫 / 欧洲鹅耳枥 / 普陀鹅耳枥 / 光合特性指标 / 叶绿素荧光

Key words

NO2 stress / Carpinus betulus / Carpinus putoensis / photosynthetic characteristics index / chlorophyll fluorescence

引用本文

导出引用
圣倩倩, 戴安琪, 宋敏, . NO2胁迫下两种鹅耳枥的光合生理特性变化[J]. 南京林业大学学报(自然科学版). 2021, 45(2): 10-16 https://doi.org/10.12302/j.issn.1000-2006.202006062
SHENG Qianqian, DAI Anqi, SONG Min, et al. Photosynthetic physiological characteristics of two kinds of hornbeam under NO2 stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 10-16 https://doi.org/10.12302/j.issn.1000-2006.202006062
中图分类号: S718;S687   

参考文献

[1]
张兴赢, 张鹏, 方宗义, 等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007,33(7):3-14.
ZHANG X Y, ZHANG P, FANG Z Y, et al. The progress in trace gas remote sensing study based on the satellite monitoring[J]. Meteorol Mon, 2007,33(7):3-14. DOI: 10.3969/j.issn.1000-0526.2007.07.001.
[2]
江文华, 马建中, 颜鹏, 等. 利用GOME卫星资料分析北京大气NO2污染变化[J]. 应用气象学报, 2006,17(1):67-72.
JIANG W H, MA J Z, YAN P, et al. Characterization of NO2 pollution changes in Beijing using GOME satellite data[J]. J Appl Meteorol Sci, 2006,17(1):67-72. DOI: 10.3969/j.issn.1001-7313.2006.01.009.
[3]
张兴赢, 张鹏, 张艳, 等. 近10年中国对流层NO2的变化趋势, 时空分布特征及其来源解析[J]. 中国科学: D辑, 2007,37(10):1409-1416. DOI: 10.3969/j.issn.1674-7240.2007.10.013.
[4]
CHAMEIDES W L, YU H, LIU S C, et al. Case study of the effects of atmospheric aerosols and regional haze on agriculture:an opportunity to enhance crop yields in China through emission controls?[J]. Proc Natl Acad Sci USA, 1999,96(24):13626-13633.DOI: 10.1073/pnas.96.24.13626.
[5]
任剑锋, 王增长, 牛志卿. 大气中氮氧化物的污染与防治[J]. 科技情报开发与经济, 2003,13(5):92-93.
REN J F, WANG Z C, NIU Z Q. Study on pollution and control of NOx in air environment[J]. Sci/tech Inf Dev Econ, 2003,13(5):92-93. DOI: 10.3969/j.issn.1005-6033.2003.05.057.
[6]
CRUTZEN P J, HEIDT L E, KRASNEC J P, et al. Biomass burning as a source of atmospheric gases CO,H2,N2O,NO,CH3Cl and COS[J]. Nature, 1979,282(5736):253.DOI: 10.1038/282253a0.
[7]
李明月, 王健, 王振兴, 等. 模拟氮沉降条件下木荷幼苗光合特性、生物量与C、N、P分配格局[J]. 生态学报, 2013,33(5):1569-1577.
LI M Y, WANG J, WANG Z X, et al. Photosynthetic characteristics,biomass allocation, C, N and P distribution of Schima superba seedlings in response to simulated nitrogen deposition[J]. Acta Ecol Sin, 2013,33(5):1569-1577.DOI: 10.5846/stxb201209101277.
[8]
衣艳君, 李芳柏, 刘家尧. 尖叶走灯藓(Plagiomnium cuspidatum) 叶绿素荧光对复合重金属胁迫的响应[J]. 生态学报, 2008,28(11):5437-5444.
YI Y J, LI F B, LIU J Y. Physiological response of chlorophyll fluorescence in moss Plagiomnium cuspidatum to mixture heavy metal solution[J]. Acta Ecol Sin, 2008,28(11):5437-5444.DOI: 10.3321/j.issn:1000-0933.2008.11.027.
[9]
BAKER N R, ROSENQVIST E. Applications of chlorophyll fluorescence can improve crop production strategies:an examination of future possibilities[J]. J Exp Bot, 2004,55(403):1607-1621.DOI: 10.1093/jxb/erh196.
[10]
SAYED O H. Chlorophyll fluorescence as a tool in cereal crop research[J]. Photosynthetica, 2003,41(3):321-330.DOI: 10.1023/B:PHOT.0000015454.36367.e2.
[11]
ARAUS J L, AMARO T, VOLTAS J, et al. Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under mediterranean conditions[J]. Field Crop Res, 1998,55(3):209-223.DOI: 10.1016/S0378-4290(97)00079-8.
[12]
李泽, 谭晓风, 卢锟, 等. 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响[J]. 生态学报, 2017,37(5):1515-1524.
LI Z, TAN X F, LU K, et al. Influence of drought stress on the growth,leaf gas exchange,and chlorophyll fluorescence in two varieties of tung tree seedlings[J]. Acta Ecol Sin, 2017,37(5):1515-1524.DOI: 10.5846/stxb201509201939.
[13]
DOMINGUES T F, ISHIDA F Y, FELDPAUSCH T R, et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon[J]. Oecologia, 2015,178(3):659-672.DOI: 10.1007/s00442-015-3250-5.
[14]
DOMINGUES T F, MEIR P, FELDPAUSCH T R, et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in west Africa woodlands[J]. Plant Cell Environ, 2010,33(6):959-980. DOI: 10.1111/j.1365-3040.2010.02119.x.
[15]
潘文, 张卫强, 张方秋, 等. 红花荷等植物对SO2和NO2的抗性[J]. 生态环境学报, 2012,21(11):1851-1858.
PAN W, ZHANG W Q, ZHANG F Q, et al. Resistance of Rhodoleia championii and other plants to sulfur dioxide and nitrogen dioxide[J]. Ecol Environ Sci, 2012,21(11):1851-1858. DOI: 10.3969/j.issn.1674-5906.2012.11.014.
[16]
SRIVASTAVA H S, JOLLIffE P A, RUNECKLES V C. Inhibition of gas exchange in bean leaves by NO2[J]. Can J Bot, 1975,53(5):466-474.DOI: 10.1139/b75-057.
[17]
SRIVASTAVA H S, JOLLIffE P A, RUNECKLES V C. The effects of environmental conditions on the inhibition of leaf gas exchange by NO2[J]. Can J Bot, 1975,53(5):475-482.DOI: 10.1139/b75-058.
[18]
CARLSON R W. Interaction between SO2 and NO2 and their effects on photosynthetic properties of soybean Glycine max[J]. Environ Pollut Ser A Ecol Biol, 1983,32(1):11-38.DOI: 10.1016/0143-1471(83)90071-5.
[19]
MORIKAWA H, HIGAKI A, NOHNO M, et al. More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa[J]. Plant Cell Environ, 1998,21(2):180-190.DOI: 10.1046/j.1365-3040.1998.00255.x.
[20]
TAKAHASHI M, NAKAGAWA M, SAKAMOTO A, et al. Atmospheric nitrogen dioxide gas is a plant vitalization signal to increase plant size and the contents of cell constituents[J]. New Phytol, 2005,168(1):149-154.DOI: 10.1111/j.1469-8137.2005.01493.x.
[21]
WU G, SHORTT B J, LAWRENCE E B, et al. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants[J]. Plant Cell, 1995,7(9):1357-1368.DOI: 10.1105/tpc.7.9.1357.
[22]
SHALATA A, NEUMANN P M. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation[J]. J Exp Bot, 2001,52(364):2207-2211.DOI: 10.1093/jexbot/52.364.2207.
[23]
HU Y, BELLALOUI N, SUN G, et al. Exogenous sodium sulfide improves morphological and physiological responses of a hybrid Populus species to nitrogen dioxide[J]. J Plant Physiol, 2014,171(10):868-875.DOI: 10.1016/j.jplph.2013.10.018.
[24]
SHENG Q Q, ZHU Z L. Physiological response of European hornbeam leaves to nitrogen dioxide stress and self-recovery[J]. J Amer Soc Hort Sci, 2019,144(1):23-30.DOI: 10.21273/jashs04489-18.
[25]
BERRY J A, DOWNTON W J S. Environmental regulation of photosynbook[M]// Photosynbook.Amsterdam:Elsevier, 1982: 263-343.DOI: 10.1016/b978-0-12-294302-7.50017-3.
[26]
孙淑萍. 3种垂直绿化植物对污染物的富集及生理响应[D]. 南京:南京林业大学, 2011.
SUN S P. Absorption and physiological response of three vertical greening plant species to pollutants[D]. Nanjing:Nanjing Forestry University, 2011.
[27]
黄芳, 王建明, 徐玉梅. 二氧化硫污染对几种作物的伤害研究[J]. 山西农业科学, 2007,35(11):56-58.
HUANG F, WANG J M, XU Y M. Reseach on effect of sulfur dioxide to some enzymes in different crops[J]. J Shanxi Agric Sci, 2007,35(11):56-58.
[28]
马纯艳, 徐昕, 郝林, 等. 小白菜幼苗对二氧化氮胁迫的应答及过氧化氢的调节[J]. 中国农业科学, 2007,40(11):2556-2562.
MA C Y, XU X, HAO L, et al. Responses of Brassica campestris seedlings to nitrogen dioxide stress and modulation of hydrogen peroxide[J]. Sci Agric Sin, 2007,40(11):2556-2562.DOI: 10.3321/j.issn:0578-1752.2007.11.021.
[29]
LIU X, HOU F, LI G, et al. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants[J]. J Environ Sci (China), 2015,34:93-99.DOI: 10.1016/j.jes.2015.03.011.
[30]
HU Y B, BELLALOUI N, TIGABU M, et al. Gaseous NO2 effects on stomatal behavior,photosynjournal and respiration of hybrid poplar leaves[J]. Acta Physiol Plant, 2015,37(2):1-8.DOI: 10.1007/s11738-014-1749-8.
[31]
SHENG Q Q, ZHU Z L. Photosynthetic capacity,stomatal behavior and chloroplast ultrastructure in leaves of the endangered plant Carpinus putoensis W.C.Cheng during gaseous NO2 exposure and after recovery[J]. Forests, 2018,9(9):561.DOI: 10.3390/f9090561.
[32]
叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010,34(6):727-740.
YE Z P. A review on modeling of responses of photosynjournal to light and CO2[J]. Chin J Plant Ecol, 2010,34(6):727-740.DOI: 10.3773/j.issn.1005-264x.2010.06.012.
[33]
白伟岚, 任建武. 园林植物的耐荫性研究[J]. 林业科技通讯, 1999(2):12-15.
[34]
采列尼克尔. 木本植物耐荫性的生理学原理[M]. 北京: 科学出版社, 1986: 180-196.
[35]
刘云峰, 秦洪文, 石雷, 等. 水淹对水芹叶片结构和光系统Ⅱ光抑制的影响[J]. 植物学报, 2010,45(4):426-434.
LIU Y F, QIN H W, SHI L, et al. Effects of submergence on leaf anatomy and photoinhibition of photosystem Ⅱ in Oenanthe javanica plants[J]. Chin Bull Bot, 2010,45(4):426-434.
[36]
耿东梅, 单立山, 李毅, 等. 土壤水分胁迫对红砂幼苗叶绿素荧光和抗氧化酶活性的影响[J]. 植物学报, 2014,49(3):282-291.
GENG D M, SHAN L S, LI Y, et al. Effect of soil water stress on chlorophyll fluorescence and antioxidant enzyme activity in Reaumuria soongorica seedlings[J]. Bull Bot, 2014,49(3):282-291.DOI: 10.3724/SP.J.1259.2014.00282.
[37]
李鹏民, 高辉远, RETO J S. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005,31(6):559-566.
LI P M, GAO H Y, RETO J S. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynjournal study[J]. J Plant Physiol Mol Biol, 2005,31(6):559-566.DOI: 10.3321/j.issn:1671-3877.2005.06.001.
[38]
VAN KOOTEN O, SNEL J F. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynth Res, 1990,25(3):147-150.DOI: 10.1007/bf00033156.
[39]
冯志立, 冯玉龙, 曹坤芳. 光强对砂仁叶片光合作用光抑制及热耗散的影响[J]. 植物生态学报, 2002,26(1):77-82.
FENG Z L, FENG Y L, CAO K F. Effects of light intensity on photoinhition of photosynjournal and thermal dissipation in Amomum villosum Lour[J]. Acta Phytoecol Sin, 2002,26(1):77-82.
[40]
ÖQUIST G, WASS R. A portable,microprocessor operated instrument for measuring chlorophyll fluorescence kinetics in stress physiology[J]. Physiol Plant, 1988,73(2):211-217.DOI: 10.1111/j.1399-3054.1988.tb00588.x.
[41]
吴文杰, 王文卿, 钱莲文, 等. 铝胁迫对常绿杨叶绿素荧光和叶绿体超微结构的影响[J]. 厦门大学学报(自然科学版), 2015,54(1):52-58.
WU W J, WANG W Q, QIAN L W, et al. Chlorophyll fluorescence and chloroplast ultrastructure of evergreen poplar under aluminum stress[J]. J Xiamen Univ (Nat Sci), 2015,54(1):52-58.DOI: 10.6043/j.issn.0438-0479.2015.01.010.
[42]
梁英, 冯力霞, 尹翠玲, 等. 叶绿素荧光技术在微藻环境胁迫研究中的应用现状及前景[J]. 海洋科学, 2007,31(1):71-76.
LIANG Y, FENG L X, YIN C L, et al. Current status and prospect of chlorophyll fluorescence technique in the study of responses of microalgae to environmental stress[J]. Mar Sci, 2007,31(1):71-76. DOI: 10.3969/j.issn.1000-3096.2007.01.013.
[43]
GUIDI L, NALI C, LORENZINI G, et al. Effect of chronic ozone fumigation on the photosynthetic process of poplar clones showing different sensitivity[J]. Environ Pollut, 2001,113(3):245-254. DOI: 10.1016/s0269-7491(00)00194-9.

基金

林业科技成果国家级推广项目(2019133119)
国家自然科学基金项目(31770752)
江苏省“333 工程”项目(BRA2018065)
江苏省科技支撑计划(BM2013478)
2020年江苏省产学研合作项目(FZ20200041)

编辑: 郑琰燚

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1886 KB)

Accesses

Citation

Detail

段落导航
相关文章

/