南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 115-121.doi: 10.12302/j.issn.1000-2006.202007007
收稿日期:
2020-07-03
接受日期:
2020-10-10
出版日期:
2022-01-30
发布日期:
2022-02-09
通讯作者:
姜立春
基金资助:
XIN Shidong1(), JIANG Lichun1,*(), MU Lin2
Received:
2020-07-03
Accepted:
2020-10-10
Online:
2022-01-30
Published:
2022-02-09
Contact:
JIANG Lichun
摘要:
【目的】大尺度森林碳储量的估算备受关注,而构建林分乔木层碳储量模型是一种评估森林碳储量快捷且准确的方式。【方法】以黑龙江省(东京城、林口、帽儿山、孟家岗)207块红松人工林样地数据为研究对象,选择聚合法、平差法、分解法作为构建林分碳储量模型的可加性方法,以加权回归来消除碳储量模型的异方差。采用留一交叉验证法(leave-one-out cross validation, LOOCV)对3种可加性方法的碳储量模型进行评价。【结果】基于3种可加性方法林分碳储量模型拟合结果之间存在略微的差异。聚合法的总体预测能力略优于平差法和分解法,具体预测精度排序为聚合法>平差法>分解法。当预测林分总碳储量时,3种可加性方法在不同林分断面积区间的预测能力表现并不一致。【结论】基于聚合法的林分碳储量模型更适合于黑龙江省红松人工林的碳储量预测,但当预测红松人工林的林分总碳储量时,应根据林分断面积区间选择合适的可加性方法。
中图分类号:
辛士冬,姜立春,穆林. 黑龙江省红松人工林林分乔木层可加性碳储量模型[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 115-121.
XIN Shidong, JIANG Lichun, MU Lin. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 115-121.DOI: 10.12302/j.issn.1000-2006.202007007.
表1
红松人工林林分基本信息"
统计量 statistic | 海拔/ m altitude | 坡度/ (°) slope | 林分平均 直径/cm quadratic mean diameter | 平均 树高/m mean tree height | 林分 密度/ (株·hm-2) stand density | 林分断面积/ (m2·hm-2) stand basal area |
---|---|---|---|---|---|---|
最小值 min. | 195 | 5 | 4.6 | 3.8 | 300.0 | 1.3 |
最大值 max. | 673 | 25 | 30.9 | 17.5 | 2 900.0 | 69.1 |
平均值 mean | 363 | 8 | 15.4 | 10.3 | 1 365.4 | 24.5 |
标准差 SD | 117 | 5 | 4.6 | 2.5 | 478.1 | 11.6 |
表3
林分碳储量模型(聚合法、平差法)参数估计值"
方法 method | 分量 component | αi | βi | γi | |||
---|---|---|---|---|---|---|---|
估计值 estimate | 标准误 SE | 估计值 estimate | 标准误 SE | 估计值 estimate | 标准误 SE | ||
聚合法 aggregation | 总量 total | — | — | — | — | — | — |
树根 root | 0.138 6 | 0.005 5 | 1.050 2 | 0.010 4 | 0.323 5 | 0.022 8 | |
树干 stem | 0.728 4 | 0.027 1 | 0.995 8 | 0.007 1 | 0.161 4 | 0.018 8 | |
树枝 branch | 0.121 4 | 0.007 1 | 1.043 9 | 0.011 6 | 0.421 2 | 0.027 1 | |
树叶 leaf | 0.080 9 | 0.007 4 | 1.077 8 | 0.016 6 | -0.001 3 | 0.043 8 | |
平差法 adjustment | 总量 total | 0.990 3 | 0.061 3 | 1.013 3 | 0.016 4 | 0.253 0 | 0.033 5 |
树根 root | 0.143 0 | 0.010 5 | 1.049 2 | 0.021 4 | 0.310 5 | 0.043 4 | |
树干 stem | 0.817 2 | 0.064 7 | 1.011 4 | 0.019 9 | 0.091 3 | 0.042 3 | |
树枝 branch | 0.115 7 | 0.009 9 | 1.030 9 | 0.018 4 | 0.458 2 | 0.039 4 | |
树叶 leaf | 0.071 0 | 0.007 4 | 1.074 5 | 0.019 5 | 0.056 1 | 0.050 1 |
表5
林分碳储量模型拟合优度"
方法 method | 分量 component | R2 | 均方根误差/ (t·hm-2) RMSE | 权函数 weight functions |
---|---|---|---|---|
聚合法 aggregation | 总量 total | 0.973 8 | 3.923 7 | G2.352 5H-2.582 9 |
树根 root | 0.971 4 | 0.806 5 | G1.599 2 | |
树干 stem | 0.963 0 | 2.502 7 | G-0.062 1 | |
树枝 branch | 0.969 3 | 0.936 3 | G-1.103 0H-2.036 2 | |
树叶 leaf | 0.931 9 | 0.335 9 | G-1.112 2 | |
平差法 adjustment | 总量 total | 0.973 8 | 3.930 2 | G2.311 6H-2.309 7 |
树根 root | 0.971 4 | 0.806 1 | G1.599 9 | |
树干 stem | 0.963 2 | 2.493 5 | G0.248 8 | |
树枝 branch | 0.969 3 | 0.937 0 | G-1.225 1H-2.309 7 | |
树叶 leaf | 0.931 1 | 0.338 0 | G-1.083 1 | |
分解法 disaggregation | 总量 total | 0.973 7 | 3.934 6 | G2.329 6H-2.334 2 |
树根 root | 0.970 9 | 0.812 8 | G1.717 7 | |
树干 stem | 0.963 4 | 2.489 8 | G-0.062 3 | |
树枝 branch | 0.969 2 | 0.937 5 | G-0.522 3 | |
树叶 leaf | 0.931 6 | 0.336 7 | G-1.109 5 |
表6
林分碳储量模型检验结果"
方法 method | 分量 component | 平均误差 绝对值 MAE | 相对误差 绝对值 MPE | 平均相对 误差/% MRE |
---|---|---|---|---|
聚合法 aggregation | 总量 total | 2.420 2 | 5.197 5 | -1.375 5 |
树根 root | 0.535 9 | 6.166 7 | -1.663 1 | |
树干 stem | 1.687 9 | 6.532 1 | -2.766 6 | |
树枝 branch | 0.666 3 | 7.054 7 | -0.975 7 | |
树叶 leaf | 0.264 4 | 10.215 8 | 1.847 6 | |
平差法 adjustment | 总量 total | 2.437 5 | 5.234 8 | -1.011 3 |
树根 root | 0.538 2 | 6.192 7 | -1.173 7 | |
树干 stem | 1.673 7 | 6.477 0 | -2.595 4 | |
树枝 branch | 0.672 9 | 7.124 3 | -0.348 6 | |
树叶 leaf | 0.267 7 | 10.342 0 | 2.924 8 | |
分解法 disaggregation | 总量 total | 2.464 4 | 5.292 5 | -1.579 9 |
树根 root | 0.542 5 | 6.243 1 | -1.677 8 | |
树干 stem | 1.697 5 | 6.569 1 | -3.403 5 | |
树枝 branch | 0.679 0 | 7.189 1 | -0.366 2 | |
树叶 leaf | 0.266 1 | 10.278 6 | 2.374 4 |
[1] |
YEN T M, HUANG K L, LI L E, et al. Assessing carbon sequestration in plantation forests of important conifers based on the system of permanent sample plots across Taiwan[J]. J Sustain For, 2020, 39(4):392-406. DOI: 10.1080/10549811.2019.1673181.
doi: 10.1080/10549811.2019.1673181 |
[2] |
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993. DOI: 10.1126/science.1201609.
doi: 10.1126/science.1201609 |
[3] |
ZHANG Y D, GU F X, LIU S R, et al. Variations of carbon stock with forest types in subalpine region of southwestern China[J]. For Ecol and Manag, 2013, 300:88-95. DOI: 10.1016/j.foreco.2012.06.010.
doi: 10.1016/j.foreco.2012.06.010 |
[4] | 李海奎, 雷渊才, 曾伟生. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 2011, 47(7):7-12. |
LI H K, LEI Y C, ZENG W S. Forest carbon storage in China estimated using forestry inventory data[J]. Sci Silvae Sin, 2011, 47(7):7-12. | |
[5] |
GÓMEZ-GARCíA E. Estimating the changes in tree carbon stocks in Galician forests (NW Spain) between 1972 and 2009[J]. For Ecol and Manag, 2020, 467:118157. DOI: 10.1016/j.foreco.2020.118157.
doi: 10.1016/j.foreco.2020.118157 |
[6] |
DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190. DOI: 10.1126/science.263.5144.185.
doi: 10.1126/science.263.5144.185 |
[7] | 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学:D辑, 2007, 37(6):804-812. |
FANG J Y, GUO Z D, PIAO S L, et al. Estimation of carbon sequestration of terrestrial plant in China during 1981-2000[J]. Sci China: Ser D, 2007, 37(6):804-812. DOI: 10.3969/j.issn.1674-7240.2007.06.012.
doi: 10.3969/j.issn.1674-7240.2007.06.012 |
|
[8] |
CASTEDO-DORADO F, GÓMEZ-GARCÍA E, DIÉGUEZ-ARANDA U, et al. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain[J]. Ann For Sci, 2012, 69(6):735-746. DOI: 10.1007/s13595-012-0191-6.
doi: 10.1007/s13595-012-0191-6 |
[9] |
DONG L H, ZHANG L J, LI F R. Evaluation of stand biomass estimation methods for major forest types in the eastern Daxing’an Mountains, northeast China[J]. Forests, 2019, 10(9):715. DOI: 10.3390/f10090715.
doi: 10.3390/f10090715 |
[10] |
PARÉ D, BERNIER P, LAFLEUR B, et al. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests[J]. Can J For Res, 2013, 43(7):599-608. DOI: 10.1139/cjfr-2012-0454.
doi: 10.1139/cjfr-2012-0454 |
[11] | 徐凯健, 曾宏达, 朱小波, 等. 基于五种大气校正的多时相森林碳储量遥感反演研究[J]. 光谱学与光谱分析, 2017, 37(11):3493-3498. |
XU K J, ZENG H D, ZHU X B, et al. Evaluation of five commonly used atmospheric correction algorithms for multi-temporal aboveground forest carbon storage estimation[J]. Spectrosc Spectr Anal, 2017, 37(11):3493-3498. DOI: 10.3964/j.issn.1000-0593(2017)11-3493-06.
doi: 10.3964/j.issn.1000-0593(2017)11-3493-06 |
|
[12] | 陈幸良, 巨茜, 林昆仑. 中国人工林发展现状、问题与对策[J]. 世界林业研究, 2014, 27(6):54-59. |
CHEN X L, JU Q, LIN K L. Development status, issues and countermeasures of China’s plantation[J]. World For Res, 2014, 27(6):54-59. DOI: 10.13348/j.cnki.sjlyyj.2014.06.008.
doi: 10.13348/j.cnki.sjlyyj.2014.06.008 |
|
[13] |
YIN Y, MA D, WU S. Climate change risk to forests in China associated with warming[J]. Sci Rep, 2018, 8(1):493. DOI: 10.1038/s41598-017-18798-6.
doi: 10.1038/s41598-017-18798-6 |
[14] |
HU H F, WANG G G. Changes in forest biomass carbon storage in the south Carolina Piedmont between 1936 and 2005[J]. For Ecol and Manag, 2008, 255(5/6):1400-1408. DOI: 10.1016/j.foreco.2007.10.064.
doi: 10.1016/j.foreco.2007.10.064 |
[15] |
DONG L H, ZHANG L J, LI F R. Developing additive systems of biomass equations for nine hardwood species in northeast China[J]. Trees, 2015, 29(4):1149-1163. DOI: 10.1007/s00468-015-1196-1.
doi: 10.1007/s00468-015-1196-1 |
[16] |
WANG C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol and Manag, 2006, 222(1/2/3):9-16. DOI: 10.1016/j.foreco.2005.10.074.
doi: 10.1016/j.foreco.2005.10.074 |
[17] | 贾炜玮. 东北林区各林分类型森林生物量和碳储量[M]. 哈尔滨: 黑龙江科学技术出版社, 2014. |
JIA W W. Forest biomass and carbon storage of various forest types in northeast China forest area[M]. Harbin: Heilongjiang Science and Technology Press, 2014. | |
[18] | 贾炜玮, 孙赫明, 李凤日. 包含哑变量的黑龙江省落叶松人工林碳储量预测模型系统[J]. 应用生态学报, 2019, 30(3):814-822. |
JIA W W, SUN H M, LI F R. Prediction model system with dummy variables for carbon storage of larch plantation in Heilongjiang Province, China[J]. Chin J Appl Ecol, 2019, 30(3):814-822. DOI: 10.13287/j.1001-9332.201903.013.
doi: 10.13287/j.1001-9332.201903.013 |
|
[19] | 贾炜玮, 林键. 黑龙江省主要林分类型林分碳储量预估模型[J]. 东北林业大学学报, 2017, 45(8):30-38. |
JIA W W, LIN J. Carbon stock predicting models of main forest types in Heilongjiang Province[J]. J Northeast For Univ, 2017, 45(8):30-38. DOI: 10.13759/j.cnki.dlxb.2017.08.007.
doi: 10.13759/j.cnki.dlxb.2017.08.007 |
|
[20] |
BI H Q, LONG Y S, TURNER J, et al. Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations[J]. For Ecol and Manag, 2010, 259(12):2301-2314. DOI: 10.1016/j.foreco.2010.03.003.
doi: 10.1016/j.foreco.2010.03.003 |
[21] |
GONZÁLEZ-GARCÍA M, HEVIA A, MAJADA J, et al. Above-ground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in northwest Spain[J]. Biomass Bioenergy, 2013, 54:147-157. DOI: 10.1016/j.biombioe.2013.03.019.
doi: 10.1016/j.biombioe.2013.03.019 |
[22] | 袁位高, 江波, 葛永金, 等. 浙江省重点公益林生物量模型研究[J]. 浙江林业科技, 2009, 29(2):1-5. |
YUAN W G, JIANG B, GE Y J, et al. Study on biomass model of key ecological forest in Zhejiang Province[J]. J Zhejiang For Sci Technol, 2009, 29(2):1-5. DOI: 10.3969/j.issn.1001-3776.2009.02.001.
doi: 10.3969/j.issn.1001-3776.2009.02.001 |
|
[23] |
PARRESOL B R. Additivity of nonlinear biomass equations[J]. Can J For Res, 2001, 31(5):865-878. DOI: 10.1139/x00-202.
doi: 10.1139/x00-202 |
[24] | 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法的研究[J]. 林业科学, 2000, 36(S1):19-27. |
TANG S Z, ZHANG H R, XU H. Study on establish and estimate method of compatible biomass model[J]. Sci Silvae Sin, 2000, 36(S1):19-27. | |
[25] | 唐守正, 朗奎建, 李海奎. 统计和生物数学模型计算:ForStat教程[M]. 北京: 科学出版社, 2008. |
TANG S Z, LANG K J, LI H K. Statistics and computation of biomathematical models:ForStat tutorial [M]. Beijing: Science Press, 2008. | |
[26] | 曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137-143. |
ZENG W S, TANG S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. For Res, 2011, 24(2):137-143. DOI: 10.13275/j.cnki.lykxyj.2011.02.011.
doi: 10.13275/j.cnki.lykxyj.2011.02.011 |
|
[27] |
DONG L H, LIU Y S, ZHANG L J, et al. Variation in carbon concentration and allometric equations for estimating tree carbon contents of 10 broadleaf species in natural forests in northeast China[J]. Forests, 2019, 10(10):928. DOI: 10.3390/f10100928.
doi: 10.3390/f10100928 |
[28] |
ZHAO D H, KANE M, MARKEWITZ D, et al. Additive tree biomass equations for midrotation loblolly pine plantations[J]. For Sci, 2015, 61(4):613-623. DOI: 10.5849/forsci.14-193.
doi: 10.5849/forsci.14-193 |
[29] |
GONZALEZ-BENECKE C, ZHAO D H, SAMUELSON L, et al. Local and general above-ground biomass functions for Pinus palustris trees[J]. Forests, 2018, 9(6):310. DOI: 10.3390/f9060310.
doi: 10.3390/f9060310 |
[30] |
TIMILSINA N, STAUDHAMMER C L. Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed modeling[J]. For Sci, 2013, 59(1):27-37. DOI: 10.5849/forsci.10-028.
doi: 10.5849/forsci.10-028 |
[31] |
TEMESGEN H, MONLEON V J, HANN D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Can J For Res, 2008, 38(3):553-565. DOI: 10.1139/x07-104.
doi: 10.1139/x07-104 |
[1] | 杨宇萍, 胡文敏, 贾冠宇, 李果, 李毅. 基于InVEST与ANN-CA模型的环洞庭湖区土地利用碳储量情景模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 175-184. |
[2] | 沈浩, 姜姜, 周晨, 潘庆全. 江西石城不同起源阔叶林碳储量驱动因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 185-190. |
[3] | 张育诚, 韩念龙, 胡珂, 于淼, 黎兴强. 海南岛中部山区土地利用变化对碳储量时空分异的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 115-122. |
[4] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[5] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[6] | 王大卫, 沈文星. 中国主要树种人工乔木林碳储量测算及固碳潜力分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 11-19. |
[7] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[8] | 肖君. 福建省天然乔木林碳储量动态变化及增汇策略[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 27-32. |
[9] | 王有良, 林开敏, 宋重升, 崔朝伟, 彭丽鸿, 郑宏, 郑鸣鸣, 任正标, 邱明镜. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 65-73. |
[10] | 辛士冬, 何培, 姜立春. 不同矫正位置对落叶松分位数削度方程预测精度的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 182-188. |
[11] | 吴国训,唐学君,阮宏华,罗细芳. 基于森林资源清查的江西省森林碳储量及固碳潜力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 105-110. |
[12] | 范立红,朱建华,李奇,冯源,肖文发. 三峡库区土地利用/覆被变化对碳储量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 53-60. |
[13] | 孟雪,刘雪惠,高媛赟,刘俊,温小荣,林国忠,徐达. 基于区域转换因子的不同立地质量阔叶林碳储量估测[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 87-92. |
[14] | 莫祝平,童德文,袁胜,韦立权,张小全. 广西珠江流域治理再造林项目碳汇监测研究[J]. 南京林业大学学报(自然科学版), 2015, 39(03): 156-160. |
[15] | 方岳,刘华,白志强,臧润国,张帆,叶高,韩燕梁. 新疆喀纳斯保护区森林碳储量及碳密度研究[J]. 南京林业大学学报(自然科学版), 2014, 38(06): 17-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||