黑龙江省红松人工林林分乔木层可加性碳储量模型

辛士冬, 姜立春, 穆林

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 115-121.

PDF(1415 KB)
PDF(1415 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 115-121. DOI: 10.12302/j.issn.1000-2006.202007007
研究论文

黑龙江省红松人工林林分乔木层可加性碳储量模型

作者信息 +

Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China

Author information +
文章历史 +

摘要

【目的】大尺度森林碳储量的估算备受关注,而构建林分乔木层碳储量模型是一种评估森林碳储量快捷且准确的方式。【方法】以黑龙江省(东京城、林口、帽儿山、孟家岗)207块红松人工林样地数据为研究对象,选择聚合法、平差法、分解法作为构建林分碳储量模型的可加性方法,以加权回归来消除碳储量模型的异方差。采用留一交叉验证法(leave-one-out cross validation, LOOCV)对3种可加性方法的碳储量模型进行评价。【结果】基于3种可加性方法林分碳储量模型拟合结果之间存在略微的差异。聚合法的总体预测能力略优于平差法和分解法,具体预测精度排序为聚合法>平差法>分解法。当预测林分总碳储量时,3种可加性方法在不同林分断面积区间的预测能力表现并不一致。【结论】基于聚合法的林分碳储量模型更适合于黑龙江省红松人工林的碳储量预测,但当预测红松人工林的林分总碳储量时,应根据林分断面积区间选择合适的可加性方法。

Abstract

【Objective】 The estimation of large-scale forest carbon storage has attracted much attention, and the establishment of forest tree layer carbon storage model is an effective method to evaluate forest carbon storage. 【Method】 A total of 207 plots in a Korean pine plantation in Heilongjiang Province (Dongjingcheng, Linkou, Maoershan, Mengjiagang) were studied for modeling stand carbon storage, and choose the aggregation method, adjustment method, disaggregation method as the additivity method of establishing the stand carbon storage model, the research used the weighted regression to eliminate the heteroscedasticity of the carbon storage model, and adopted the leave-one-out cross validation method to evaluate the carbon stock model based on three additivity methods. 【Result】 There were slight differences between the fitting results of the forest carbon storage model based on the three additivity methods. The overall prediction ability of the aggregation method was slightly better than the adjustment method and the disaggregation method, and the specific prediction precision was ranked as the aggregation method > adjustment method > disaggregation method. When predicting stand total carbon storage, the predictability of the three additivity methods in different stand basal area intervals was not consistent. 【Conclusion】 The stand carbon storage model based on aggregation method was more suitable for the prediction of carbon storage of Korean pine plantation in Heilongjiang Province. However, when predicting the total carbon storage of Korean pine plantations, the appropriate additive method should be selected according to the stand basal area interval.

关键词

红松人工林 / 可加性方法 / 碳储量 / 预测精度

Key words

Pinus koraiensis (Korean pine) plantation / additivity methods / carbon storage / prediction precision

引用本文

导出引用
辛士冬, 姜立春, 穆林. 黑龙江省红松人工林林分乔木层可加性碳储量模型[J]. 南京林业大学学报(自然科学版). 2022, 46(1): 115-121 https://doi.org/10.12302/j.issn.1000-2006.202007007
XIN Shidong, JIANG Lichun, MU Lin. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 115-121 https://doi.org/10.12302/j.issn.1000-2006.202007007
中图分类号: S758.5   

参考文献

[1]
YEN T M, HUANG K L, LI L E, et al. Assessing carbon sequestration in plantation forests of important conifers based on the system of permanent sample plots across Taiwan[J]. J Sustain For, 2020, 39(4):392-406. DOI: 10.1080/10549811.2019.1673181.
[2]
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993. DOI: 10.1126/science.1201609.
[3]
ZHANG Y D, GU F X, LIU S R, et al. Variations of carbon stock with forest types in subalpine region of southwestern China[J]. For Ecol and Manag, 2013, 300:88-95. DOI: 10.1016/j.foreco.2012.06.010.
[4]
李海奎, 雷渊才, 曾伟生. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 2011, 47(7):7-12.
LI H K, LEI Y C, ZENG W S. Forest carbon storage in China estimated using forestry inventory data[J]. Sci Silvae Sin, 2011, 47(7):7-12.
[5]
GÓMEZ-GARCíA E. Estimating the changes in tree carbon stocks in Galician forests (NW Spain) between 1972 and 2009[J]. For Ecol and Manag, 2020, 467:118157. DOI: 10.1016/j.foreco.2020.118157.
[6]
DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190. DOI: 10.1126/science.263.5144.185.
[7]
方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学:D辑, 2007, 37(6):804-812.
FANG J Y, GUO Z D, PIAO S L, et al. Estimation of carbon sequestration of terrestrial plant in China during 1981-2000[J]. Sci China: Ser D, 2007, 37(6):804-812. DOI: 10.3969/j.issn.1674-7240.2007.06.012.
[8]
CASTEDO-DORADO F, GÓMEZ-GARCÍA E, DIÉGUEZ-ARANDA U, et al. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain[J]. Ann For Sci, 2012, 69(6):735-746. DOI: 10.1007/s13595-012-0191-6.
[9]
DONG L H, ZHANG L J, LI F R. Evaluation of stand biomass estimation methods for major forest types in the eastern Daxing’an Mountains, northeast China[J]. Forests, 2019, 10(9):715. DOI: 10.3390/f10090715.
[10]
PARÉ D, BERNIER P, LAFLEUR B, et al. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests[J]. Can J For Res, 2013, 43(7):599-608. DOI: 10.1139/cjfr-2012-0454.
[11]
徐凯健, 曾宏达, 朱小波, 等. 基于五种大气校正的多时相森林碳储量遥感反演研究[J]. 光谱学与光谱分析, 2017, 37(11):3493-3498.
XU K J, ZENG H D, ZHU X B, et al. Evaluation of five commonly used atmospheric correction algorithms for multi-temporal aboveground forest carbon storage estimation[J]. Spectrosc Spectr Anal, 2017, 37(11):3493-3498. DOI: 10.3964/j.issn.1000-0593(2017)11-3493-06.
[12]
陈幸良, 巨茜, 林昆仑. 中国人工林发展现状、问题与对策[J]. 世界林业研究, 2014, 27(6):54-59.
CHEN X L, JU Q, LIN K L. Development status, issues and countermeasures of China’s plantation[J]. World For Res, 2014, 27(6):54-59. DOI: 10.13348/j.cnki.sjlyyj.2014.06.008.
[13]
YIN Y, MA D, WU S. Climate change risk to forests in China associated with warming[J]. Sci Rep, 2018, 8(1):493. DOI: 10.1038/s41598-017-18798-6.
[14]
HU H F, WANG G G. Changes in forest biomass carbon storage in the south Carolina Piedmont between 1936 and 2005[J]. For Ecol and Manag, 2008, 255(5/6):1400-1408. DOI: 10.1016/j.foreco.2007.10.064.
[15]
DONG L H, ZHANG L J, LI F R. Developing additive systems of biomass equations for nine hardwood species in northeast China[J]. Trees, 2015, 29(4):1149-1163. DOI: 10.1007/s00468-015-1196-1.
[16]
WANG C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol and Manag, 2006, 222(1/2/3):9-16. DOI: 10.1016/j.foreco.2005.10.074.
[17]
贾炜玮. 东北林区各林分类型森林生物量和碳储量[M]. 哈尔滨: 黑龙江科学技术出版社, 2014.
JIA W W. Forest biomass and carbon storage of various forest types in northeast China forest area[M]. Harbin: Heilongjiang Science and Technology Press, 2014.
[18]
贾炜玮, 孙赫明, 李凤日. 包含哑变量的黑龙江省落叶松人工林碳储量预测模型系统[J]. 应用生态学报, 2019, 30(3):814-822.
JIA W W, SUN H M, LI F R. Prediction model system with dummy variables for carbon storage of larch plantation in Heilongjiang Province, China[J]. Chin J Appl Ecol, 2019, 30(3):814-822. DOI: 10.13287/j.1001-9332.201903.013.
[19]
贾炜玮, 林键. 黑龙江省主要林分类型林分碳储量预估模型[J]. 东北林业大学学报, 2017, 45(8):30-38.
JIA W W, LIN J. Carbon stock predicting models of main forest types in Heilongjiang Province[J]. J Northeast For Univ, 2017, 45(8):30-38. DOI: 10.13759/j.cnki.dlxb.2017.08.007.
[20]
BI H Q, LONG Y S, TURNER J, et al. Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations[J]. For Ecol and Manag, 2010, 259(12):2301-2314. DOI: 10.1016/j.foreco.2010.03.003.
[21]
GONZÁLEZ-GARCÍA M, HEVIA A, MAJADA J, et al. Above-ground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in northwest Spain[J]. Biomass Bioenergy, 2013, 54:147-157. DOI: 10.1016/j.biombioe.2013.03.019.
[22]
袁位高, 江波, 葛永金, 等. 浙江省重点公益林生物量模型研究[J]. 浙江林业科技, 2009, 29(2):1-5.
YUAN W G, JIANG B, GE Y J, et al. Study on biomass model of key ecological forest in Zhejiang Province[J]. J Zhejiang For Sci Technol, 2009, 29(2):1-5. DOI: 10.3969/j.issn.1001-3776.2009.02.001.
[23]
PARRESOL B R. Additivity of nonlinear biomass equations[J]. Can J For Res, 2001, 31(5):865-878. DOI: 10.1139/x00-202.
[24]
唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法的研究[J]. 林业科学, 2000, 36(S1):19-27.
TANG S Z, ZHANG H R, XU H. Study on establish and estimate method of compatible biomass model[J]. Sci Silvae Sin, 2000, 36(S1):19-27.
[25]
唐守正, 朗奎建, 李海奎. 统计和生物数学模型计算:ForStat教程[M]. 北京: 科学出版社, 2008.
TANG S Z, LANG K J, LI H K. Statistics and computation of biomathematical models:ForStat tutorial [M]. Beijing: Science Press, 2008.
[26]
曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137-143.
ZENG W S, TANG S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. For Res, 2011, 24(2):137-143. DOI: 10.13275/j.cnki.lykxyj.2011.02.011.
[27]
DONG L H, LIU Y S, ZHANG L J, et al. Variation in carbon concentration and allometric equations for estimating tree carbon contents of 10 broadleaf species in natural forests in northeast China[J]. Forests, 2019, 10(10):928. DOI: 10.3390/f10100928.
[28]
ZHAO D H, KANE M, MARKEWITZ D, et al. Additive tree biomass equations for midrotation loblolly pine plantations[J]. For Sci, 2015, 61(4):613-623. DOI: 10.5849/forsci.14-193.
[29]
GONZALEZ-BENECKE C, ZHAO D H, SAMUELSON L, et al. Local and general above-ground biomass functions for Pinus palustris trees[J]. Forests, 2018, 9(6):310. DOI: 10.3390/f9060310.
[30]
TIMILSINA N, STAUDHAMMER C L. Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed modeling[J]. For Sci, 2013, 59(1):27-37. DOI: 10.5849/forsci.10-028.
[31]
TEMESGEN H, MONLEON V J, HANN D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Can J For Res, 2008, 38(3):553-565. DOI: 10.1139/x07-104.

基金

国家重点研发计划(2017YFB0502700)
黑龙江省应用技术研究与开发计划项目(GA19C006)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1415 KB)

Accesses

Citation

Detail

段落导航
相关文章

/