低密度造林对杉木生长、形质和材种结构的影响

熊光康, 厉月桥, 熊有强, 段爱国, 曹德春, 孙建军, 聂林芽, 盛炜彤

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 165-173.

PDF(1574 KB)
PDF(1574 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 165-173. DOI: 10.12302/j.issn.1000-2006.202007021
研究论文

低密度造林对杉木生长、形质和材种结构的影响

作者信息 +

Effects of low stand density afforestation on the growth,stem-form and timber assortment structure of Cunninghamia lanceolata plantations

Author information +
文章历史 +

摘要

【目的】对江西大岗山地区低密度杉木人工林自然稀疏进程、林木生长进程、形质特征、材种结构和经济效益动态变化特征进行调查分析,为杉木低密度造林调控管理提供科学依据。【方法】以2 500株/hm2传统造林密度为对照,对设立在江西省分宜县初植密度为1 111、1 667株/hm2的2种低密度杉木试验林生长发育规律进行了25 a动态监测分析。【结果】林分平均树高、平均胸径、枝下高和蓄积量均随林龄增加而增加,随密度的减小而递增;19~25年生时不同造林密度林分的平均胸径差异达显著水平,8~19年生和22~25年生时分别为枝下高和蓄积量增加最快的时期,但二者受林分密度的影响均不明显;累积枯损率和林木自然分化程度随林龄的增加而增加,随密度的降低而减小,25年生时不同造林密度林分累积枯损率差异达显著水平;林木平均冠幅随年龄增加呈先上升后下降再缓慢上升的趋势,19年生时不同密度的冠幅间差异达显著水平;年均自然稀疏率和林冠重叠度随林龄的增加呈先上升再缓慢下降的趋势,年均自然稀疏率22年生时达最大值,林冠重叠度8年生时达最大值,此时不同密度的林冠重叠度间差异达显著性水平。25年生时,造林密度为1 111和1 667株/hm2林木的胸高形率、心材占比高于造林密度为2 500株/hm2的指标,断梢率、高径比和幼/成龄材比率低于造林密度为2 500 株/hm2的指标,其中高径比密度间差异达显著水平;19~25年生近成熟龄期,林分大径木比例和大径材出材量均随造林密度降低而增加,该时期1 111和1 667株/hm2低密度林分总蓄积量、总出材量和经济材出材量逐渐与造林密度为2 500株/hm2接近,25年生时造林密度为1 667株/hm2的总蓄积量、总出材量和经济材出材量均超越造林密度为2 500株/hm2的指标。经济效益分析表明,造林密度1 667株/hm2林分的纯收入和净现值最大,比2 500株/hm2林分的提高了1.09倍和1.10倍,而造林密度为1 111株/hm2的效益成本比和内部收益率最高,分别为7.35和30.20%。【结论】初植造林密度1 111和1 667株/hm2较适宜在江西大岗山地区杉木人工林造林中选择应用。

Abstract

【Objective】 The goal of this study was to clarify the growth process, shape, quality characteristics, timber species structure and dynamic change characteristics of the economic benefits of low-density Cunninghamia lanceolata plantations in the Dagangshan area of Jiangxi Province. 【Method】 Using the traditional planting density of 2 500 individuals/hm 2 as the control, the growth and development of two low-density Chinese fir experimental forests with an initial planting density of 1 111 and 1 667 individuals per hectare in Fenyi County of Jiangxi Province were monitored and analyzed for 25 years. 【Result】 The average tree height, average diameter at breast height (DBH), under branch height, and stock volume increased with stand age and decreasing densities. The average DBH of different stand densities at 19-25 years of age differed significantly, and the height under branches and volume increased the fastest at 8-19 years and 22-25 years of age, respectively. The results showed that the degree of natural differentiation increased with an increase in forest age and decreased with a decrease in densities. The cumulative withering rate was 25 years, and the difference between densities was significant. The average crown width of trees first increased, then decreased, and then increased slowly with an increase in age, and reached significant differences among densities at 19 years old. The annual average sparse rate and degree of crown overlap of natural lines first increased and then decreased slowly with an increase in forest age; the annual average natural sparsity rate reached a maximum value at 22 years of age, and the canopy overlap degree reached a maximum value at 8 years of age. The difference between the densities was significant. At 25 years, the breast height form ratio and heartwood ratio of 1 111 individuals per hectare and 1 667 individuals per hectare were higher than 2 500 individuals per hectare , and the rate of broken shoots, ratio of height to diameter, and young-adult wood ratio were lower than 2 500 individuals per hectare , and the difference in the height diameter ratio density was significant. At the near mature age of 19-25 years, the proportion of large diameter trees and volume of large-diameter timber increased with the decrease in stand densities, and 1 111 individuals per hectare and 1 667 individuals per hectare occurred in this period. The results showed that the total volume, total timber output, and economic timber output of the low-density stands were close to 2 500 individuals per hectare , and the total volume, total timber output, and economic timber output of 1 667 individuals per hectare stand exceeded 2 500 individuals per hectare at 25 years, respectively. The economic benefit analysis showed that the net income and net present value of the 1 667 individuals per hectare stand were the highest, which were 1.09 and 1.10 times higher than those of the 2 500 individuals per hectare , respectively, whereas 1 111 individuals per hectare had the highest benefit-cost ratio and internal rate of return, which were 7.35 and 30.20%, respectively. 【Conclusion】 The initial planting density of 1 111 individuals per hectare and 1 667 individuals per hectare can be selected and applied in the plantations of Cunninghamia lanceolata in the Dagangshan area of the Jiangxi Province.

关键词

杉木 / 低密度试验 / 林木生长 / 形质 / 材种结构

Key words

Cunninghamia lanceolata / low stand density afforestation / tree growth / stem-form / timber assortment structure

引用本文

导出引用
熊光康, 厉月桥, 熊有强, . 低密度造林对杉木生长、形质和材种结构的影响[J]. 南京林业大学学报(自然科学版). 2021, 45(3): 165-173 https://doi.org/10.12302/j.issn.1000-2006.202007021
XIONG Guangkang, LI Yueqiao, XIONG Youqiang, et al. Effects of low stand density afforestation on the growth,stem-form and timber assortment structure of Cunninghamia lanceolata plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 165-173 https://doi.org/10.12302/j.issn.1000-2006.202007021
中图分类号: S725   

参考文献

[1]
彭万喜, 吴义强, 张仲凤, 等. 中国的杉木研究现状与发展途径[J]. 世界林业研究, 2006,19(5):54-58.
PENG W X, WU Y Q, ZHANG Z F, et al. Situation and developing trends of Chinese-fir[J]. World For Res, 2006,19(5):54-58.DOI: 10.3969/j.issn.1001-4241.2006.05.010.
[2]
YU Y C, YANG J Y, ZENG S C, et al. Soil pH,organic matter,and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China[J]. J Soils Sediments, 2017,17(9):2230-2238.DOI: 10.1007/s11368-016-1472-8.
[3]
盛炜彤. 中国人工林及其育林体系[M]. 北京: 中国林业出版社, 2014.
[4]
杨桂娟, 胡海帆, 孙洪刚, 等. 林分年龄、造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响[J]. 林业科学, 2019,55(11):126-136.
YANG G J, HU H F, SUN H G, et al. The influences of stand age,planting density and self-thinning on relationship between size inequality and periodic annual increment in Chinese fir (Cunninghamia lanceolata) plantations[J]. Sci Silvae Sin, 2019,55(11):126-136.
[5]
卢立华, 农友, 李华, 等. 保留密度对杉木人工林生长和生物量及经济效益的影响[J]. 应用生态学报, 2020,31(3):717-724.
LU L H, NONG Y, LI H, et al. Effects of retention density on growth, biomass and economic benefit of Cunninghadumia lanceolata plantation[J]. Chinese Journal of Applied Ecology, 2020,31(3):717-724. DOI: 10.13287/j.1001-9332.202003.002.
[6]
肖文发, 徐德应, 刘世荣, 等. 杉木人工林针叶光合与蒸腾作用的时空特征[J]. 林业科学, 2002,38(5):38-46.
XIAO W F, XU D Y, LIU S R, et al. The spatial and temporal characteristics of photosynjournal and transpiration of needles of Chinese fir[J]. Sci Silvae Sin, 2002,38(5):38-46.DOI: 10.3321/j.issn:1001-7488.2002.05.007.
[7]
盛炜彤. 杉木林的密度管理与长期生产力研究[J]. 林业科学, 2001,37(5):2-9.
SHENG W T. A study on stand density management andlong-term productive of Chinese fir(Cunninghamia lanceolata) plantation[J]. Sci Silvae Sin, 2001,37(5):2-9.DOI: 10.3321/j.issn:1001-7488.2001.05.002.
[8]
郭光智, 段爱国, 张建国, 等. 南亚热带杉木人工林材种结构长期立地与密度效应[J]. 林业科学研究, 2020,33(1):35-43.
GUO G Z, DUAN A G, ZHANG J G, et al. Long-term effects of site and density on timber assortment structure of Chinese fir plantations in South Subtropical Area, China[J]. For Res, 2020,33(1):35-43.DOI: 10.13275/j.cnke.lykxyj.2020.01.005.
[9]
郭光智, 段爱国, 张建国. 南亚热带杉木林分蓄积量生长立地与密度效应[J]. 林业科学研究, 2019,32(4):19-25.
GUO G Z, DUAN A G, ZHANG J G. The site and planting density effects on the wood volume growth of Chinese fir plantations in South Subtropical Area[J]. For Res, 2019,32(4):19-25.DOI: 10.13275/j.cnki.lykxyj.2019.04.003.
[10]
盛炜彤. 不同密度杉木人工林林下植被发育与演替的定位研究[J]. 林业科学研究, 2001,14(5):463-471.
SHENG W T. A long-term study on development and succession of undergrowth vegetations in Chinese fir (Cunninghamia lanceolata) plantations with different density[J]. For Res, 2001,14(5):463-471.DOI: 10.3321/j.issn:1001-1498.2001.05.001.
[11]
张勇强, 李智超, 厚凌宇, 等. 林分密度对杉木人工林下物种多样性和土壤养分的影响[J]. 土壤学报, 2020,57(1):239-250.
ZHANG Y Q, LI Z C, HOU L Y, et al. Effects of stand density on understory species diversity and soil nutrients in Chinese fir plantation[J]. Acta Pedol Sin, 2020,57(1):239-250.DOI: 10.11766/trxb201904080633.
[12]
李智超, 张勇强, 厚凌宇, 等. 杉木人工林土壤微生物对林分密度的响应[J]. 浙江农林大学学报, 2020,37(1):76-84.
LI Z C, ZHANG Y Q, HOU L Y, et al. Response of soil microorganism to stand density in Cunninghamia lanceolata plantation[J]. J Zhejiang A & F Univ, 2020,37(1):76-84.
[13]
郭佳欢, 孙杰杰, 冯会丽, 等. 杉木人工林土壤肥力质量的演变趋势及维持措施的研究进展[J]. 浙江农林大学学报, 2020,37(4):801-809.
GUO J H, SUN J J, FENG H L, et al. Research progress on evolution trends and maintenance measures of soil fertility quality in Cunninghamia lanceolata plantations[J]. J Zhejiang A&F Univ, 2020,37(4):801-809.DOI: 10.11833/j.issn.2095-0756.20190478.
[14]
许冠军, 郑宏, 林开敏, 等. 间伐密度管理模式对杉木大径材生长的影响[J]. 福建农林大学学报(自然科学版), 2019,48(6):753-759.
XU G J, ZHENG H, LIN K M, et al. Effects of thinning management mode on the growth of large diameter timber of Chinese fir[J]. J Fujian Agric For Univ (Nat Sci Ed), 2019,48(6):753-759.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2019.06.011.
[15]
赵朝辉, 方晰, 田大伦, 等. 间伐对杉木林林下地被物生物量及土壤理化性质的影响[J]. 中南林业科技大学学报, 2012,32(5):102-107.
ZHAO Z H, FANG X, TIAN D L, et al. Effects of thinning on biomass of under-story,soil physical and chemical properties in Cunninghamia lanceolata plantation[J]. J Central South Univ For Technol, 2012,32(5):102-107.DOI: 10.3969/j.issn.1673-923X.2012.05.022.
[16]
惠刚盈, 胡艳波, 罗云伍, 等. 杉木中大径材成材机理的研究[J]. 林业科学研究, 2000,13(2):177-181.
HUI G Y, HU Y B, LUO Y W, et al. Study on the mechanism of producing high quality wood of Chinese fir[J]. For Res, 2000,13(2):177-181.DOI: 10.3321/j.issn:1001-1498.2000.02.011.
[17]
刘青华, 金国庆, 张蕊, 等. 24年生马尾松生长、形质和木材基本密度的种源变异与种源区划[J]. 林业科学, 2009,45(10):55-61.
LIU Q H, JIN G Q, ZHANG R, et al. Provenance variation in growth,stem-form and wood density of masson pine at 24-year-old and the provenance division[J]. Sci Silvae Sin, 2009,45(10):55-61.DOI: 10.3321/j.issn:1001-7488.2009.10.010.
[18]
赵丹丹, 李凤日, 董利虎. 落叶松人工林直径分布动态预估模型[J]. 东北林业大学学报, 2015,43(5):42-48.
ZHAO D D, LI F R, DONG L H. Predicting models of diameter distribution dynamic for larch plantation[J]. J Northeast For Univ, 2015,43(5):42-48.DOI: 10.13759/j.cnki.dlxb.20150522.024.
[19]
刘景芳, 童书振. 全国杉木人工林间伐表编制的研究[J]. 林业科学研究, 1996(2):47-52.
LIU J F, TONG S Z. Establishment of tending thinning table for the national Chinese fir plantations[J]. For Res, 1996(2):47-52.
[20]
蔡学林, 张志云, 欧阳勋志. 应用削度方程研制材种出材率表[J]. 江西农业大学学报, 1997,19(6):127-137.
CAI X L, ZHANG Z Y, OUYANG X Z. A study on outturn table of log assortment by means of taper equation[J]. Acta Agric Univ Jiangxiensis, 1997,19(6):127-137.
[21]
施新程, 王洪友, 黄旺志, 等. 豫南杉木人工林主伐年龄研究[J]. 福建林业科技, 2009,36(3):49-53.
SHI X C, WANG H Y, HUANG W Z, et al. Study on the cutting age of Chinese fir plantation in the southern area of Henan Province[J]. J Fujian For Sci Technol, 2009,36(3):49-53.DOI: 10.3969/j.issn.1002-7351.2009.03.012.
[22]
童书振, 盛炜彤, 张建国. 杉木林分密度效应研究[J]. 林业科学研究, 2002,15(1):66-75.
TONG S Z, SHENG W T, ZHANG J G. Studies on the density effects of Chinese fir stands[J]. For Res, 2002,15(1):66-75.DOI: 10.3321/j.issn:1001-1498.2002.01.011.

基金

中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2014MB007)
亚林中心省级杉木、马尾松等良种基地建设补贴项目()

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1574 KB)

Accesses

Citation

Detail

段落导航
相关文章

/