南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2): 187-196.doi: 10.12302/j.issn.1000-2006.202007030
王圳1(), 高亚军1, 闫凡峰2, 王晓伟3, 李华清1, 姜雷1
收稿日期:
2020-07-15
接受日期:
2020-12-11
出版日期:
2021-03-30
发布日期:
2021-04-09
基金资助:
WANG Zhen1(), GAO Yajun1, YAN Fanfeng2, WANG Xiaowei3, LI Huaqing1, JIANG Lei1
Received:
2020-07-15
Accepted:
2020-12-11
Online:
2021-03-30
Published:
2021-04-09
摘要:
【目的】对树种进行综合评价可以为自然条件复杂的海滨城市道路绿化和廊道生态系统构建提供科学参考。【方法】以连云港市为例,对道路绿化常见的55个树种进行科学监测、调查和分析,采用层次分析法,设置5个一级指标:生态性、景观性、适应性、经济性和负面性,在此基础上设置30个二级指标,对各指标进行量化打分,确定各评价指标的权重值和赋值,建立海滨城市道路绿化树种综合评价体系。应用该评价体系,明确树种使用过程中存在的优劣势,并以最终得分对树种进行逐级分类。【结果】生态性方面,遮阴降温权重值最高(0.513 7);景观性方面,叶色、叶量和花的权重值最高(0.181 8);适应性方面,抗风、抗病虫害和耐盐碱性的权重值最高(0.174 0);经济性方面,指标层苗木价格和养护强度权重值均为0.4;负面性方面,飞絮花粉权重值最高为0.6。准则层各权重值中,生态性、景观性和适应性均为0.3,占比90%;经济性、负面性权重仅为0.05。评价结果表明,树形高大、枝叶浓密、抗逆性强的树种具有更高的评价得分。【结论】缓解热岛效应、改善生态环境是当前海滨城市绿化的主要目标。在树种选择时,应加大乡土树种应用比例,并在今后的道路绿化上作为骨架树种重点推广使用,同时应统筹考虑养护管理的经济性和飘絮花粉等负面影响。
中图分类号:
王圳,高亚军,闫凡峰,等. 海滨城市道路绿化树种综合评价体系构建[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 187-196.
WANG Zhen, GAO Yajun, YAN Fanfeng, WANG Xiaowei, LI Huaqing, JIANG Lei. Construction of a comprehensive assessment system for road greening tree species in coastal cities[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(2): 187-196.DOI: 10.12302/j.issn.1000-2006.202007030.
表1
试验区常见道路绿化树种"
树种 tree species | 学名 scientific name | 树种 tree species | 学名 scientific name |
---|---|---|---|
二球悬铃木 | Platanus ×acerifolia | 泡桐 | Paulownia duclouxii |
女贞 | Ligustrum lucidum | 枫香 | Liquidambar formosana |
全缘叶栾树 | Koelreuteria bipinnata var. integrifolioa | 枫杨 | Pterocarya stenoptera |
槐 | Sophora japonica | 三角枫 | Acer buergerianum |
银杏 | Ginkgo biloba | 五角枫 | Acer pictum subsp. mono |
榉树 | Zelkova serrata | 重阳木 | Bischofia polycarpa |
香樟 | Cinnamomum camphora | 青桐 | Firmiana platanifolia |
红叶石楠 | Photinia × fraseri | 中山杉 | Taxodium ‘Zhongshansha’ |
广玉兰 | Magnolia grandiflora | 水杉 | Metasequoia glyptostroboides |
落羽杉 | Taxodium distichum | 池杉 | Taxodium distichum var. imbricarium |
雪松 | Cedrus deodara | 垂柳 | Salix babylonica |
合欢 | Albizia julibrissin | 旱柳 | Salix matsudana |
刺槐 | Robinia pseudoacacia | 榔榆 | Ulmus parvifolia |
苦楝 | Melia azedarach | 香椿 | Toona sinensis |
白榆 | Celtis pumila | 毛白杨 | Populus tomentosa |
东京樱花 | Cerasus yedoensis | 黄连木 | Pistacia chinensis |
意杨 | Carolina poplar | 无患子 | Sapindus saponaria |
白蜡 | Fraxinus chinensis | 桑 | Morus alba |
杂交马褂木 | Liriodendron × sinoamericanum | 构树 | Broussonetia papyrifera |
黑松 | Pinus thunbergii | 楸 | Catalpa bungei |
红叶李 | Prunus cerasifera f. atropurpurea | 柿 | Diospyros kaki |
紫薇 | Lagerstroemia indica | 豆梨 | Pyrus calleryana |
桂花 | Osmanthus fragrans | 杜梨 | Pyrus betulifolia |
朴树 | Celtis sinensis | 喜树 | Camptotheca acuminata |
臭椿 | Ailanthus altissima | 薄壳山核桃 | Carya illinoensis |
七叶树 | Aesculus chinensis | 弗吉尼亚栎 | Quercus virginiana |
乌桕 | Triadica sebifera | 北美红栎 | Quercus rubra |
白玉兰 | Magnolia denudata |
表2
海滨城市道路绿化树种综合评价体系"
准则层 rule layer | 指标层 index layer | 调查因子 survey factors | 数据来源 data sources | |||
---|---|---|---|---|---|---|
生态性 B1 | 遮阴降温能力C1 | 冠幅、树高、总叶面积、叶片大小 | 实验测量 | |||
蒸腾增湿能力C2 | 蒸腾速率、总叶面积、叶片大小、光合速率、树种喜水性 | 实验测量、文献查询 | ||||
固碳释氧能力C3 | 光合速率、叶面积指数、单株最大生物量 | 实验测量、文献查询 | ||||
降低噪音能力C4 | 树木高度、叶面积指数、叶片大小、叶期 | 实验测量、文献查询 | ||||
滞尘能力C5 | 枝叶粗糙程度、叶面积指数、叶期 | 实验测量、文献查询 | ||||
吸收污染物能力C6 | 植物特性、叶面积指数、单株生物量 | 实验测量、文献查询 | ||||
营养物质积累能力C7 | 光合速率、叶面积指数、单株最大生物量 | 实验测量、文献查询 | ||||
景观性 B2 | 叶色C8 | 常绿、彩叶、一般落叶 | 常年监测资料 | |||
叶量C9 | 总叶面积 | 实验测量 | ||||
冠形C10 | 树冠的整齐度、景观效果、冠高比 | 实验测量、专家测评 | ||||
树干C11 | 树高、干型、胸径、树皮 | 专家测评 | ||||
花C12 | 花色、花形、花期、花量 | 常年监测资料 | ||||
果C13 | 果形、果色、果期、果用 | 常年监测资料 | ||||
气味C14 | 芳香类型、浓度、持续时间 | 常年监测资料 | ||||
文化内涵C15 | 珍贵濒危、特殊寓意、地方特色 | 资料查阅、民众测评 | ||||
适应性 B3 | 抗风能力C16 | 木材材性、根系特性 | 文献查询 | |||
抗病虫害能力C17 | 存活状况、病虫害对生长势影响 | 常年监测资料 | ||||
抗有害气体能力C18 | NO2、SO2、O3耐受性 | 环保监测数据、常年监测资料 | ||||
耐盐碱性C19 | pH、土壤含盐量 | 实验测量、常年监测资料 | ||||
耐寒性C20 | 极端低温下生长状况 | 常年监测资料 | ||||
耐旱性C21 | 干旱胁迫下生长状况 | 常年监测资料 | ||||
耐贫瘠性C22 | 贫瘠立地条件下生长状况 | 常年监测资料 | ||||
耐强光高温性C23 | 高温环境下生长状况 | 常年监测资料 | ||||
耐水湿性C24 | 高地下水位、高湿度环境下生长状况 | 常年监测资料 | ||||
经济性 B4 | 苗木价格C25 | 单株相当规格苗木市场时价、苗木就近供应难易程度 | 苗木交易网、杂志查询 | |||
养护强度C26 | 修剪、支撑、浇灌、松土、防虫害等人工管护成本及缓苗期长短 | 常年监测资料、文献查询 | ||||
苗木更新率C27 | 树木寿命、多因素影响下植物死亡或树势衰退影响景观导致树木更换率 | 常年监测资料、文献查询 | ||||
负面性 B5 | 飞絮花粉C28 | 对人生活造成明显影响的毛絮花粉量 | 常年监测资料 | |||
黏液分泌物C29 | 对林下道路、车辆、行人造成影响的黏液分泌物 | 常年监测资料 | ||||
果实污染C30 | 带刺鼻气味、丰富带颜色浆液、超量明显有负面影响的果实 | 常年监测资料 |
表3
生态性功能指标归一化数据"
遮阴降温 能力C1 shading and cooling | 蒸腾增湿 能力C2 transpiration and humidification | 固碳释氧 能力C3 carbon fixation and oxygen release | 降低噪音 能力C4 noise reduction | 滞尘能力 C5 keep dust down | 吸收污染物 能力C6 absorption of pollutant | 营养物质 积累能力C7 nutrient accumulation |
---|---|---|---|---|---|---|
0.25 | 0.25 | 0.25 | 0.333 333 333 | 0.50 | 0.75 | 0.25 |
0.75 | 0.75 | 0.75 | 0.333 333 333 | 0.50 | 0.50 | 0.75 |
0.75 | 0.50 | 0.50 | 0 | 0.50 | 0.50 | 0.75 |
0.50 | 0.50 | 0.50 | 0 | 0.25 | 0.50 | 0.50 |
0.75 | 1.00 | 0.50 | 0.333 333 333 | 1.00 | 1.00 | 0.75 |
0.75 | 1.00 | 0.75 | 0.666 666 667 | 1.00 | 0.75 | 0.75 |
0.00 | 0.25 | 0.00 | 0 | 0.50 | 0.25 | 0.00 |
0.25 | 0.50 | 0.25 | 0.666 666 667 | 1.00 | 0.50 | 0.25 |
0.50 | 1.00 | 1.00 | 0.666 666 667 | 1.00 | 1.00 | 1.00 |
0.50 | 0.50 | 0.50 | 1.000 000 000 | 1.00 | 1.00 | 0.50 |
0.50 | 0.50 | 0.25 | 0 | 0.25 | 0.50 | 0.50 |
0.50 | 0.75 | 0.50 | 0.333 333 333 | 0.50 | 0.75 | 0.75 |
0.75 | 1.00 | 0.75 | 0.333 333 333 | 0.75 | 1.00 | 0.75 |
1.00 | 1.00 | 1.00 | 0.333 333 333 | 1.00 | 1.00 | 1.00 |
0.25 | 0.25 | 0.25 | 0 | 0.25 | 0.25 | 0.25 |
1.00 | 1.00 | 1.00 | 1.000 000 000 | 1.00 | 1.00 | 1.00 |
0.50 | 0.50 | 0.50 | 0.333 333 333 | 1.00 | 1.00 | 0.50 |
1.00 | 1.00 | 1.00 | 1.000 000 000 | 0.75 | 1.00 | 0.75 |
0.00 | 0.00 | 0.25 | 0 | 1.00 | 0.75 | 0.25 |
表4
二级指标权重因子"
准则层 rule layer | 指标层 index layer | 权重值 weight | 准则层 rule layer | 指标层 index layer | 权重值 weight |
---|---|---|---|---|---|
生态性 B1 | 遮阴降温能力C1 | 0.513 7 | 适应性 B3 | 抗风能力C16 | 0.174 0 |
蒸腾增湿能力C2 | 0.064 8 | 抗病虫害能力C17 | 0.174 0 | ||
固碳释氧能力C3 | 0.129 6 | 抗有害气体能力C18 | 0.058 5 | ||
降低噪音能力C4 | 0.064 8 | 耐盐碱性C19 | 0.174 0 | ||
滞尘能力C5 | 0.064 8 | 耐寒性C20 | 0.136 3 | ||
吸收污染物能力C6 | 0.129 6 | 耐旱性C21 | 0.107 5 | ||
营养物质积累能力C7 | 0.032 7 | 耐贫瘠性C22 | 0.058 5 | ||
景观性 B2 | 叶色C8 | 0.181 8 | 耐强光高温性C23 | 0.058 5 | |
叶量C9 | 0.181 8 | 耐水湿性C24 | 0.058 5 | ||
冠形C10 | 0.090 9 | 经济性 B4 | 苗木价格C25 | 0.400 0 | |
树干C11 | 0.090 9 | 养护强度C26 | 0.400 0 | ||
花C12 | 0.181 8 | 苗木更新率C27 | 0.200 0 | ||
果C13 | 0.090 9 | 负面性 B5 | 飞絮花粉C28 | 0.600 0 | |
气味C14 | 0.090 9 | 黏液分泌物C29 | 0.200 0 | ||
文化内涵C15 | 0.090 9 | 果实污染C30 | 0.200 0 |
表5
道路绿化树种综合评价结果"
树种 tree species | B1 | B2 | B3 | B4 | B5 | 综合得分 comprehensive score | 分类 classification |
---|---|---|---|---|---|---|---|
二球悬铃木 | 1.000 002 | 0.613 636 | 0.711 298 | 1.00 | 0.20 | 0.757 481 | Ⅰ |
女贞 | 0.336 398 | 0.409 091 | 0.291 104 | 0.50 | 0.50 | 0.360 978 | Ⅳ |
全缘叶栾树 | 0.674 404 | 0.772 727 | 0.247 598 | 0.40 | 0.40 | 0.548 418 | Ⅲ |
槐 | 0.604 206 | 0.469 697 | 0.563 742 | 0.55 | 0.55 | 0.546 293 | Ⅲ |
银杏 | 0.451 403 | 0.462 121 | 0.497 377 | 0.55 | 0.70 | 0.485 770 | Ⅳ |
榉树 | 0.755 401 | 0.545 454 | 0.613 085 | 0.50 | 1.00 | 0.649 182 | Ⅱ |
香樟 | 0.777 001 | 0.818 181 | 0.305 739 | 0.10 | 0.70 | 0.610 276 | Ⅱ |
红叶石楠 | 0.080 998 | 0.446 969 | 0.645 552 | 0.55 | 0.85 | 0.422 056 | Ⅳ |
广玉兰 | 0.374 197 | 0.765 151 | 0.237 768 | 0.25 | 1.00 | 0.475 634 | Ⅳ |
落羽杉 | 0.721 547 | 0.568 181 | 0.759 212 | 0.80 | 0.70 | 0.689 682 | Ⅱ |
雪松 | 0.629 597 | 0.772 727 | 0.447 459 | 0.45 | 0.40 | 0.597 435 | Ⅲ |
合欢 | 0.419 004 | 0.643 939 | 0.491 364 | 0.30 | 0.55 | 0.508 792 | Ⅲ |
刺槐 | 0.545 976 | 0.492 424 | 0.738 166 | 0.85 | 1.00 | 0.625 470 | Ⅱ |
苦楝 | 0.771 601 | 0.590 909 | 0.853 652 | 0.90 | 0.75 | 0.747 348 | Ⅰ |
白榆 | 0.956 803 | 0.363 636 | 0.883 718 | 0.90 | 0.85 | 0.748 747 | Ⅰ |
东京樱花 | 0.233 801 | 0.500 000 | 0.277 840 | 0.20 | 0.85 | 0.355 992 | Ⅳ |
意杨 | 1.000 002 | 0.409 091 | 0.888 124 | 1.00 | 0.40 | 0.759 165 | Ⅰ |
白蜡 | 0.586 398 | 0.356 060 | 0.553 912 | 0.40 | 0.70 | 0.503 911 | Ⅲ |
杂交马褂木 | 0.975 626 | 0.840 908 | 0.482 963 | 0.35 | 1.00 | 0.757 349 | Ⅰ |
黑松 | 0.202 570 | 0.613 636 | 0.752 403 | 0.25 | 0.40 | 0.503 083 | Ⅲ |
红叶李 | 0.266 200 | 0.583 333 | 0.725 933 | 0.90 | 0.85 | 0.560 140 | Ⅲ |
紫薇 | 0.032 399 | 0.613 636 | 0.657 785 | 0.40 | 1.00 | 0.461 146 | Ⅳ |
桂花 | 0.224 170 | 0.810 605 | 0.276 867 | 0.10 | 1.00 | 0.448 493 | Ⅳ |
朴树 | 0.849 975 | 0.477 272 | 1.000 000 | 0.70 | 1.00 | 0.783 174 | Ⅰ |
臭椿 | 0.763 425 | 0.500 000 | 0.854 050 | 0.85 | 0.95 | 0.725 242 | Ⅰ |
七叶树 | 0.306 775 | 0.712 121 | 0.524 244 | 0.45 | 0.70 | 0.520 442 | Ⅲ |
乌桕 | 0.635 150 | 0.613 636 | 0.861 478 | 0.90 | 0.85 | 0.720 579 | Ⅰ |
白玉兰 | 0.282 400 | 0.712 121 | 0.208 498 | 0.25 | 0.85 | 0.415 905 | Ⅳ |
泡桐 | 0.967 603 | 0.613 636 | 0.623 887 | 0.80 | 0.85 | 0.744 038 | Ⅰ |
枫香 | 0.483 802 | 0.628 787 | 0.557 743 | 0.45 | 0.85 | 0.566 100 | Ⅲ |
枫杨 | 0.736 578 | 0.636 363 | 0.715 705 | 0.80 | 0.55 | 0.694 094 | Ⅱ |
三角枫 | 0.521 600 | 0.628 787 | 0.783 677 | 0.45 | 1.00 | 0.652 719 | Ⅱ |
五角枫 | 0.777 001 | 0.704 545 | 0.900 357 | 0.45 | 0.95 | 0.784 571 | Ⅰ |
重阳木 | 0.733 802 | 0.545 454 | 0.497 598 | 0.40 | 0.80 | 0.593 056 | Ⅲ |
青桐 | 0.483 802 | 0.636 363 | 0.835 009 | 0.65 | 0.90 | 0.664 052 | Ⅱ |
中山杉 | 0.726 947 | 0.568 181 | 0.746 404 | 0.65 | 0.70 | 0.679 960 | Ⅱ |
水杉 | 0.279 776 | 0.431 818 | 0.516 242 | 0.35 | 0.90 | 0.430 851 | Ⅳ |
池杉 | 0.368 950 | 0.409 091 | 0.705 300 | 0.50 | 0.40 | 0.490 002 | Ⅳ |
垂柳 | 0.743 147 | 0.522 727 | 0.599 820 | 0.65 | 0.30 | 0.607 208 | Ⅱ |
旱柳 | 0.983 803 | 0.522 727 | 0.782 468 | 0.70 | 0.30 | 0.736 699 | Ⅰ |
榔榆 | 0.793 200 | 0.590 909 | 1.000 000 | 0.60 | 1.00 | 0.795 233 | Ⅰ |
香椿 | 0.583 775 | 0.696 969 | 0.680 024 | 0.75 | 0.95 | 0.673 230 | Ⅱ |
毛白杨 | 1.000 002 | 0.431 818 | 0.897 955 | 1.00 | 0.40 | 0.768 932 | Ⅰ |
黄连木 | 0.591 798 | 0.643 939 | 0.869 083 | 0.50 | 1.00 | 0.706 446 | Ⅰ |
无患子 | 0.559 399 | 0.643 939 | 0.477 760 | 0.35 | 0.45 | 0.544 329 | Ⅲ |
桑 | 1.000 002 | 0.628 787 | 0.801 111 | 0.80 | 0.25 | 0.781 470 | Ⅰ |
构树 | 0.624 197 | 0.250 000 | 0.757 207 | 0.45 | 0.30 | 0.526 921 | Ⅲ |
楸树 | 0.578 375 | 0.621 212 | 0.393 327 | 0.45 | 1.00 | 0.550 374 | Ⅲ |
柿 | 0.384 996 | 0.560 606 | 0.926 826 | 0.55 | 1.00 | 0.639 228 | Ⅱ |
豆梨 | 0.859 606 | 0.674 242 | 0.844 220 | 0.45 | 0.85 | 0.778 420 | Ⅰ |
杜梨 | 0.233 801 | 0.590 909 | 0.636 518 | 0.35 | 0.85 | 0.498 368 | Ⅳ |
喜树 | 0.537 800 | 0.530 303 | 0.480 163 | 0.25 | 0.80 | 0.516 979 | Ⅲ |
薄壳山核桃 | 0.782 401 | 0.674 242 | 0.696 266 | 0.40 | 0.85 | 0.708 372 | Ⅰ |
弗吉尼亚栎 | 0.279 623 | 0.462 121 | 0.380 917 | 0.05 | 1.00 | 0.389 298 | Ⅳ |
北美红栎 | 0.473 002 | 0.492 424 | 0.327 979 | 0.20 | 1.00 | 0.448 021 | Ⅳ |
[1] | 徐彩瑶, 濮励杰, 朱明. 沿海滩涂围垦对生态环境的影响研究进展[J]. 生态学报, 2018,38(3):1148-1162. |
XU C Y, PU L J, ZHU M. Effect of reclamation activity on coastal ecological environment:progress and perspectives[J]. Acta Ecol Sin, 2018,38(3):1148-1162. DOI: 10.5846/stxb201611142316. | |
[2] | 孟紫琪, 龙凌波, 佘倩楠, 等. 基于土地利用/覆盖变化的中国大陆沿海地区生态状况评价[J]. 应用生态学报, 2018,29(10):3337-3346. |
MENG Z Q, LONG L B, SHE Q N, et al. Assessment of ecological conditions over China’s coastal areas based on land use/cover change[J]. Chin J Appl Ecol, 2018,29(10):3337-3346. DOI: 10.13287/j.1001-9332.201810.016. | |
[3] | 许凤娇, 吕晓. 基于土地利用变化的江苏沿海地区生态风险格局[J]. 生态学报, 2018,38(20):7312-7325. |
XU F J, LYU X. Ecological risk pattern based on land use changes in Jiangsu coastal areas[J]. Acta Ecol Sin, 2018,38(20):7312-7325.DOI: 10.5846/stxb201709041596. | |
[4] | 高宾, 李小玉, 李志刚, 等. 基于景观格局的锦州湾沿海经济开发区生态风险分析[J]. 生态学报, 2011,31(12):3441-3450. |
GAO B, LI X Y, LI Z G, et al. Assessment of ecological risk of coastal economic developing zone in Jinzhou Bay based on landscape pattern[J]. Acta Ecol Sin, 2011,31(12):3441-3450. | |
[5] | HUBBARD R K, STRICKLAND T C, PHATAK S. Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA[J]. Soil Tillage Res, 2013,126:276-283. DOI: 10.1016/j.still.2012.07.009. |
[6] | 毛志刚, 谷孝鸿, 刘金娥, 等. 盐城海滨盐沼湿地及围垦农田的土壤质量演变[J]. 应用生态学报, 2010,21(8):1986-1992. |
MAO Z G, GU X H, LIU J E, et al. Evolvement of soil quality in salt marshes and reclaimed farmlands in Yancheng coastal wetland[J]. Chin J Appl Ecol, 2010,21(8):1986-1992. | |
[7] | 张濛, 濮励杰, 王小涵, 等. 长期耕种对江苏沿海围垦区滨海盐土理化性质和小麦产量的影响[J]. 生态学报, 2016,36(16):5088-5097. |
ZHANG M, PU L J, WANG X H, et al. Effects of long-time cultivation on physicochemical properties of coastal saline soil and wheat production at reclamation areas of Jiangsu Province[J]. Acta Ecol Sin, 2016,36(16):5088-5097. DOI: 10.5846/stxb201502060296. | |
[8] | 牛东玲, 王启基. 盐碱地治理研究进展[J]. 土壤通报, 2002,33(6):449-455. |
NIU D L, WANG Q J. Research progress on saline-alkali field control[J]. Chin J Soil Sci, 2002,33(6):449-455. DOI: 10.3321/j.issn:0564-3945.2002.06.014. | |
[9] | 赖小红, 李名扬, 刘聪, 等. 植物物候对重庆主城区热岛效应的响应[J]. 生态学报, 2019,39(19):7025-7034. |
LAI X H, LI M Y, LIU C, et al. The phenological responses of plants to the heat island effect in the main urban area of Chongqing[J]. Acta Ecol Sin, 2019,39(19):7025-7034. DOI: 10.5846/stxb201809252082. | |
[10] | 武小钢, 蔺银鼎. 城市道路隔离带绿化模式对人行道空气质量的影响评价[J]. 环境科学学报, 2015,35(4):984-990. |
WU X G, LIN Y D. Impact of plant configuration mode of greening segregating belt on air quality of adjacent sidewalk in urban street[J]. Acta Sci Circumstantiae, 2015,35(4):984-990. DOI: 10.13671/j.hjkxxb.2014.0863. | |
[11] | 李萍, 王松, 王亚英, 等. 城市道路绿化带 “微峡谷效应” 及其对非机动车道污染物浓度的影响[J]. 生态学报, 2011,31(10):2888-2896. |
LI P, WANG S, WANG Y Y, et al. “Micro-canyon effect” of city road green belt and its effect on the pollutant concentration above roads for non-motorized vehicles[J]. Acta Ecol Sin, 2011,31(10):2888-2896. | |
[12] | 蔡红艳, 杨小唤, 张树文. 植物物候对城市热岛响应的研究进展[J]. 生态学杂志, 2014,33(1):221-228. |
CAI H Y, YANG X H, ZHANG S W. Research advances in plant phenological responses to urban heat island[J]. Chin J Ecol, 2014,33(1):221-228.DOI: 10.13292/j.1000-4890.20131220.0003. | |
[13] | 许格希, 裴顺祥, 郭泉水, 等. 城市热岛效应对气候变暖和植物物候的影响[J]. 世界林业研究, 2011,24(6):12-17. |
XU G X, PEI S X, GUO Q S, et al. Influence of urban heat island effect on climate warming and plant phenology[J]. World For Res, 2011,24(6):12-17.DOI: 10.13348/j.cnki.sjlyyj.2011.06.003. | |
[14] | MORRIS C J G, SIMMONDS I. Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne,Australia[J]. Int J Climatol, 2000,20(15):1931-1954. DOI: 10.1002/1097-0088(200012)20:151931::AID-JOC578>3.0.CO;2-D. |
[15] | 马赫, 张天海, 罗宏森, 等. 沿海快速城市化地区能值生态足迹变化分析[J]. 生态学报, 2018,38(18):6465-6472. |
MA H, ZHANG T H, LUO H S, et al. Analysis of emergy ecological footprint change of coastal rapid urbanization areas[J]. Acta Ecol Sin, 2018,38(18):6465-6472. DOI: 10.5846/stxb201803010409. | |
[16] | 马静娜. 防护林生态效益评价研究综述[J]. 防护林科技, 2012(1):79-82.DOI: 10.3969/j.issn.1005-5215.2012.01.027. |
[17] | 李庆贱, 陈志强, 时瑞亭, 等. 白榆家系苗期耐盐碱研究[J]. 北京林业大学学报, 2010,32(5):74-81. |
LI Q J, CHEN Z Q, SHI R T, et al. Alkaline-salt tolerance indices of Ulmus pumila L.seedling and family evaluation on alkaline-salt tolerance[J]. J Beijing For Univ, 2010,32(5):74-81.DOI: 10.13332/j.1000-1522.2010.05.023. | |
[18] | 张华新, 刘正祥, 刘秋芳. 盐胁迫下树种幼苗生长及其耐盐性[J]. 生态学报, 2009,29(5):2263-2271. |
ZHANG H X, LIU Z X, LIU Q F. Seedling growth and salt tolerance of tree species under NaCl stress[J]. Acta Ecol Sin, 2009,29(5):2263-2271. DOI: 10.3321/j.issn:1000-0933.2009.05.010. | |
[19] | 韩燕燕, 鲁艳, 吕光辉. 植物耐盐的生理机制及基因工程新进展[J]. 生物技术通报, 2007(4):10-14,18. |
HAN Y Y, LU Y, LYU G H. Advances in research on the mechanism of plant salinity tolerance and recent experimentation with transgenic plants[J]. Biotechnol Bull, 2007(4):10-14,18. DOI: 10.3969/j.issn.1002-5464.2007.04.003. | |
[20] | ZHU J K. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002,53:247-273. DOI: 10.1146/annurev.arplant.53.091401.143329. |
[21] | 唐桂兰, 游良旺, 芦建国. 城市道路绿化对行车视线诱导的植物合理种植间距[J]. 南京林业大学学报(自然科学版), 2017,41(5):180-184. |
TANG G L, YOU L W, LU J G. The reasonable planting distance of urban road greening induced by driving sight line[J]. J Nanjing For Univ (Nat Sci Ed), 2017,41(5):180-184. DOI: 10.3969/j.issn.1000-2006.201605002. | |
[22] | LI H E, LI B T. Relation between traffic environment and heavy metal, Lead and Cadium contents of roadside trees in urban[J]. Environmental Protection in Transportation, 2001,22(5):10-14. |
[23] | CHRISTOFOROU C S, SALMON L G, HANNIGAN M P, et al. Trends in fine particle concentration and chemical composition in southern California[J]. J Air Waste Manag Assoc, 2000,50(1):43-53. DOI: 10.1080/10473289.2000.10463985. |
[24] | FREER-SMITH P H, HOLLOWAY S, GOODMAN A. The uptake of particulates by an urban woodland:Site description and particulate composition[J]. Environ Pollut, 1997,95(1):27-35. DOI: 10.1016/S0269-7491(96)00119-4. |
[25] | ZHOU X H, BRANDLE J R, MIZE C W, et al. Three-dimensional aerodynamic structure of a tree shelterbelt:definition,characterization and working models[J]. Agroforest Syst, 2005,63(2):133-147. DOI: 10.1007/s10457-004-3147-5. |
[26] | SHASHUA-BAR L, POTCHTER O, BITAN A, et al. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean City of Tel Aviv,Israel[J]. Int J Climatol, 2010,30(1):44-57. DOI: 10.1002/joc.1869. |
[27] | 于金涛, 肖文发, 王鹏程, 等. 防护林健康评价研究进展[J]. 世界林业研究, 2013,26(1):31-36. |
YU J T, XIAO W F, WANG P C, et al. Research advances of health assessment of shelterbelts[J]. World For Res, 2013,26(1):31-36. | |
[28] | 杨琴军, 苏洪明, 夏欣, 等. 基于植物多样性的武汉市道路绿化研究[J]. 南京林业大学学报(自然科学版), 2007,31(4):98-102. |
YANG Q J, SU H M, XIA X, et al. Researches of street greening based on plant diversity investigation in Wuhan[J]. J Nanjing For Univ (Nat Sci Ed), 2007,31(4):98-102. DOI: 10.3969/j.issn.1000-2006.2007.04.022. | |
[29] | 赵瑾, 李文银, 魏国仁, 等. 宝鸡市5种乡土树种抗旱性综合评价和研究[J]. 西北林学院学报, 2019,34(6):74-81. |
ZHAO J, LI W Y, WEI G R, et al. Comprehensive study and evaluationon drought resistance of nativetress speciesin BaoJi[J]. J Northwest For Univ, 2019,34(6):74-81. DOI: 10.3969/j.issn.1001-7461.2019.06.12. | |
[30] | 闫晓云, 张秋良, 韩鹏, 等. 呼和浩特市绿化树种综合评价及树种选择[J]. 干旱区资源与环境, 2011,25(3):135-140. |
YAN X Y, ZHANG Q L, HAN P, et al. Comprehensive assessment and selection for urban tree species in Hohhot[J]. J Arid Land Resour Environ, 2011,25(3):135-140.DOI: 10.13448/j.cnki.jalre.2011.03.026. | |
[31] | 丁纯璐, 马健霄, 朱宁. 基于层次分析法的城市绿道综合评价研究[J]. 森林工程, 2020,36(2):81-90. |
DING C L, MA J X, ZHU N. Research on comprehensive evaluation of urban greenway based on AHP[J]. Forest Engineering, 2020,36(2):81-90. | |
[32] | 林玮, 白青松, 陈雪梅, 等. 华南主要造林树种碳汇能力评价体系构建及优良碳汇树种筛选[J]. 西南林业大学学报, 2020,40(1):28-37. |
LIN W, BAI Q S, CHEN X M, et al. Construction of the carbon sink capacity evaluation system of main afforestation tree species in south China and selection of the fine carbon sink species[J]. J Southwest For Univ, 2020,40(1):28-37. DOI: 10.11929/j.swfu.201812070. | |
[33] | 张锁成, 谷建才, 王秀芳, 等. 基于AHP方法的高速公路中央分隔带绿化植物综合评价[J]. 西北林学院学报, 2012,27(4):100-102,107. |
ZHANG S C, GU J C, WANG X F, et al. Evaluation of greening plants in expressway divider based on AHP method[J]. J Northwest For Univ, 2012,27(4):100-102,107. DOI: 10.3969/j.issn.1001-7461.2012.04.18. | |
[34] | 国家市场监督管理总局, 国家标准化管理委员会. 森林生态系统服务功能评估规范 GB/T 38582—2020[S]. 北京: 中国标准出版社, 2020. |
[35] | 王嘉楠, 赵德先, 刘慧, 等. 不同类型参与者对城市绿地树种的评价与选择[J]. 浙江农林大学学报, 2017,34(6):1120-1127. |
WANG J N, ZHAO D X, LIU H, et al. Selection of tree species in an urban green space by local participants[J]. Journal of Zhejiang A & F University, 2017,34(6):1120-1127. DOI: 10.11833/j.issn.2095-0756.2017.06.021. | |
[36] | 黄少雄, 卢明明, 陈捷, 等. 层次分析法在粤北高速公路沿线绿化树种选择中的运用[J]. 亚热带植物科学, 2016,45(2):177-182. |
HUANG S X, LU M M, CHEN J, et al. The application of analytic hierarchy process on choice of greening tree species along expressway in north of Guangdong Province[J]. Subtrop Plant Sci, 2016,45(2):177-182.DOI: 10.3969/j.issn.1009-7791.2016.02.017. | |
[37] | 许秀玉, 肖莉, 王明怀, 等. 沿海抗台风树种评价体系构建与选择[J]. 浙江农林大学学报, 2015,32(4):516-522. |
XU X Y, XIAO L, WANG M H, et al. A comprehensive evaluation system for anti-typhoon performance of trees in coastal areas[J]. J Zhejiang For Coll, 2015,32(4):516-522.DOI: 10.11833/j.issn.2095-0756.2015.04.004. | |
[38] | 林玮, 白青松, 陈雪梅, 等. 华南主要造林树种碳汇能力评价体系构建及优良碳汇树种筛选[J]. 西南林业大学学报, 2020,40(1):28-37. |
LIN W, BAI Q S, CHEN X M, et al. Construction of the carbon sink capacity evaluation system of main afforestation tree species in south China and selection of the fine carbon sink species[J]. J Southwest For Univ, 2020,40(1):28-37.DOI: 10.11929/j.swfu.201812070. | |
[39] | 谢春平, 方彦, 刘大伟, 等. 基于层次分析法的江苏宁镇山脉乡土树种评价[J]. 亚热带植物科学, 2019,48(2):161-168. |
XIE C P, FANG Y, LIU D W, et al. Evaluation of native trees species in Ningzhen Mountains of Jiangsu Province by analytic hierarchy process[J]. Subtrop Plant Sci, 2019,48(2):161-168.DOI: 10.16590/j.cnki.1001-4705.2019.04.148. | |
[40] | 杨静怡, 张政文, 吴峰. 贵阳市主要绿化树种功能评价[J]. 江苏农业科学, 2020,48(3):156-161. DOI: 10.15889/j.issn.1002-1302.2020.03.027. |
[41] | 张德顺, 刘鸣. 基于“植物功能性状-生态系统服务”评价框架的园林树种选择方法:以上海为例[J]. 中国园林, 2020,36(2):106-111. |
ZHANG D S, LIU M. A “Plant Functional Traits-ecosystem Services” approach for the selection of landscape trees:a case study in Shanghai[J]. Chin Landsc Archit, 2020,36(2):106-111. DOI: 10.19775/j.cla.2020.02.0106. |
[1] | 曹加杰, 朱莹露, 陈煜, 傅剑玮, 冯肖, 杨佩莹, 王浩. 城市水敏性河道的景观质量评价模型与方法[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 288-293. |
[2] | 圣倩倩, 戴安琪, 张慧会, 徐晶圆, 祝遵凌. 常见园林植物对NO2胁迫的耐受性及吸收与恢复能力[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 127-134. |
[3] | 郭佳惠, 教忠意, 何旭东, 诸葛强, 周洁. 基于层次分析法对柳树观赏性及适应性的综合评价[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 169-176. |
[4] | 曹加杰, 王杰, 吴向崇, 丁昌辉, 王伟希, 王浩. 城市河道开放空间景观修复后评价研究——以南京内秦淮河东段为例[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 195-201. |
[5] | 张彩红, 薛伟, 辛颖, 高玉娟. 基于层次分析法的贵州玉舍国家森林公园休养地适宜度评价[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 215-219. |
[6] | 黄正金,卫云丽,张春红,闾连飞,李维林,吴文龙. 基于层次分析法的5个黑莓杂交品系综合评价[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 135-140. |
[7] | 唐桂兰,游良旺,芦建国. 城市道路绿化对行车视线诱导的植物合理种植间距[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 180-184. |
[8] | 吴晓星,刘凤栾,房义福,姜楠南,姜莉华,宋国防. 36个欧美观赏海棠品种(种)应用价值的综合评价[J]. 南京林业大学学报(自然科学版), 2015, 39(01): 93-98. |
[9] | 史佑海,祝晓航. 海口市城市公园主要观花树种资源及观赏特性评价[J]. 南京林业大学学报(自然科学版), 2014, 38(增刊): 118-124. |
[10] | 方金生,戴启培,吴雯雯. 节约型园林指标体系的构建与评价[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 170-174. |
[11] | 徐达,刘安兴,翁卫松,温小荣,谭莹. 基于AHP的县级森林综合效益最优目标规划[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 70-74. |
[12] | 王晓荣,刘学全,唐万鹏,庞宏东. 丹江口库区龙口林场水源涵养林林分质量评价[J]. 南京林业大学学报(自然科学版), 2013, 37(04): 63-68. |
[13] | 王劲修,齐实,张耀启,王惠,李林英,王棣,余晓燕,刘劲. 山西沁河上游河岸植被缓冲带综合评价[J]. 南京林业大学学报(自然科学版), 2012, 36(01): 152-155. |
[14] | 马存琛,丁彦芬. 新农村村庄植被景观综合评价体系及应用[J]. 南京林业大学学报(自然科学版), 2010, 34(06): 77-80. |
[15] | 芦建国,李舒仪. 公园植物景观综合评价方法及其应用[J]. 南京林业大学学报(自然科学版), 2009, 33(06): 139-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||