
结合冠层密度的森林净初级生产力遥感估测
Combining crown density to estimate forest net primary productivity by using remote sensing data
【目的】 森林冠层密度与林分年龄、植被生长状况有关,在区域森林净初级生产力遥感估测中,结合森林冠层密度以期提高估测精度。【方法】 以广东省韶关市为研究对象,选用2017年Landsat-8 OLI影像、2017年357块森林资源连续清查固定样地数据为主要信息源,分别采用随机森林、多元线性回归、人工神经网络和K最近邻分类法等4种模型,结合森林冠层密度制图器(FCD)进行区域森林净初级生产力特征变量的选取、参数建模、模型精度评价和森林净初级生产力空间制图。【结果】 特征变量中,红光波段(B4)、归一化植被指数(NDVI)、比值植被指数(RVI)、叶面积指数(LAI)、缨帽变换土壤植被因子、纹理特征和地形特征在森林净初级生产力反演中有重要作用。将森林冠层密度因子加入反演模型后,4种遥感估测模型精度均有大幅度提高。对4种遥感估测模型进行性能比较,随机森林模型精度最高,其次是多元线性回归模型、人工神经网络模型,K-最近邻分类模型精度最低。研究区内森林净初级生产力平均值为10.689 t/(hm2·a),高森林净初级生产力 [≥18 t/(hm2·a)]林分面积仅占研究区的19.61%,主要分布在海拔较高的西北部。【结论】 结合冠层密度进行森林净初级生产力的建模,可有效提高模型估测精度。
【Objective】 Forest canopy density is related to stand age and vegetation growth status. In the remote sensing estimation of regional forest net primary productivity, combining forest canopy density may substantially improve the estimation accuracy. 【Method】 In this study, Shaoguan City in Guangdong Province was used as the case study area; the Landsat-8 OLI images and the fixed sample plot data of 357 forest resources continuous inventory in 2017 were collected as the main information sources. Using four models of random forest the multiple linear regression, artificial neural network and K-nearest neighbor classification methods, and forest canopy density, the selection of modeling variables, the evaluation of model accuracy, and the creation of a spatial map of net primary productivity of regional forest vegetation were performed. 【Result】 The results showed that among the characteristic variables, red band (B4), normalized vegetation index (NDVI), ratio vegetation index (RVI), leaf area index (LAI), soil vegetation factor of tassel cap transformation, texture characteristics, and terrain characteristics played important roles in the prediction of vegetation net primary productivity. After adding the forest canopy density factor into the inversion model, the accuracy of the four remote sensing estimation models was substantially improved. The performance comparison of the four remote sensing-based models indicated that the random forest model had the highest accuracy, followed by the multiple linear regression model and artificial neural network model; the K-nearest neighbor classification model had the lowest accuracy. The average net primary productivity of forests in the study area was 10.689 t/(hm2·a), and the area of high forest net primary productivity (≥18 t/(hm2·a)) accounted for 19.61% of the total area in the study area, which was mainly distributed in the northwest region at higher altitudes. 【Conclusion】 In this study, at the regional scale, the model prediction accuracy of forest net primary productivity can be effectively improved by combining canopy density.
森林净初级生产力 / 冠层密度 / 遥感反演 / 广东韶关市
forest net primary productivity / canopy density / remote sensing retrieval / Shaoguan City / Guangdong Province
[1] |
|
[2] |
肖和善. 植被净初级生产力模型研究[J]. 亚热带水土保持, 2007, 19(4):24-28.
|
[3] |
吴文浩, 李明阳, 卜子汇. 基于开放式数据库的江苏省植被净生产力遥感估测方法研究[J]. 西北林学院学报, 2010, 25(5):146-151.
|
[4] |
徐新良, 曹明奎. 森林生物量遥感估算与应用分析[J]. 地球信息科学, 2006, 8(4):122-128.
|
[5] |
朱教君, 康宏樟, 胡理乐. 应用全天空照片估计林分透光孔隙度(郁闭度)[J]. 生态学杂志, 2005, 24(10):1234-1240.
|
[6] |
肖兴威. 中国森林生物量与生产力的研究[D]. 哈尔滨:东北林业大学, 2005.
|
[7] |
|
[8] |
余超, 王斌, 刘华, 等. 中国森林植被净生产量及平均生产力动态变化分析[J]. 林业科学研究, 2014, 27(4):542-550.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(1):137-141.
|
[14] |
曹正凤. 随机森林算法优化研究[D]. 北京:首都经济贸易大学, 2014.
|
[15] |
李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 50(4):1190-1197.
|
[16] |
张宝光. 人工神经网络在遥感数字图像分类处理中的应用[J]. 国土资源遥感, 1998, 10(1):3-5.
|
[17] |
滕敏, 卫文学, 滕宁. K-最近邻分类算法应用研究[J]. 软件导刊, 2015, 14(3):44-46.
|
[18] |
陈尔学, 李增元, 武红敢, 等. 基于K-NN和Landsat数据的小面积统计单元森林蓄积估测方法[J]. 林业科学研究, 2008, 21(6):745-750.
|
[19] |
|
[20] |
胡小飞, 唐宪, 胡月明, 等. 广州市城市森林净初级生产力遥感估算[J]. 中南林业科技大学学报, 2016, 36(5):19-25.
|
[21] |
姜春. 广东省土地利用/覆盖变化对植被净初级生产力的影响研究[D]. 广州:中国科学院大学, 2015.
|
[22] |
周爱萍, 向悟生, 姚月锋, 等. 广西植被净初级生产力(NPP)时空演变及主要影响因素分析[J]. 广西植物, 2014, 34(5):622-628,588.
|
[23] |
江洪. 基于森林碳汇信息的福建省低碳发展研究[D]. 福州:福州大学, 2011.
|
[24] |
吴国训. 江西省森林植被净初级生产力及碳储量估算[D]. 南京:南京林业大学, 2015.
|
/
〈 |
|
〉 |