[1] |
LIETH H, WJITTAKER R H. Primary productivity of the biosphere[M]. New York: Springer-Verland Press, 1975.
|
[2] |
肖和善. 植被净初级生产力模型研究[J]. 亚热带水土保持, 2007, 19(4):24-28.
|
|
XIAO H S. Research on the model of vegetation net primary productivity[J]. Subtrop Soil Water Conserv, 2007, 19(4):24-28.DOI: 10.3969/j.issn.1002-2651.2007.04.007.
doi: 10.3969/j.issn.1002-2651.2007.04.007
|
[3] |
吴文浩, 李明阳, 卜子汇. 基于开放式数据库的江苏省植被净生产力遥感估测方法研究[J]. 西北林学院学报, 2010, 25(5):146-151.
|
|
WU W H, LI M Y, BU Z H. Estimation of net primary productivity of vegetation in Jiangsu Province based on open datasets[J]. Journal of Northwest Forestry University, 2010, 25(5):146-151.
|
[4] |
徐新良, 曹明奎. 森林生物量遥感估算与应用分析[J]. 地球信息科学, 2006, 8(4):122-128.
|
|
XU X L, CAO M K. An analysis of the applications of remote sensing method to the forest biomass estimation[J]. Geo-Infor-mation Science, 2006, 8(4):122-128.DOI: 10.3969/j.issn.1560-8999.2006.04.024.
doi: 10.3969/j.issn.1560-8999.2006.04.024
|
[5] |
朱教君, 康宏樟, 胡理乐. 应用全天空照片估计林分透光孔隙度(郁闭度)[J]. 生态学杂志, 2005, 24(10):1234-1240.
|
|
ZHU J J, KANG H Z, HU L L. Estimation on optical porosity or canopy closure for a forest stand with hemispherical images[J]. Chinese Journal of Ecology, 2005, 24(10):1234-1240.
|
[6] |
肖兴威. 中国森林生物量与生产力的研究[D]. 哈尔滨:东北林业大学, 2005.
|
|
XIAO X W. Study on forest biomass and productivity in China[D]. Harbin:Northeast Forestry University, 2005.
|
[7] |
LI Y C, LI C, LI M Y, et al. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms[J]. Forests, 2019, 10(12):1073.DOI: 10.3390/f10121073.
doi: 10.3390/f10121073
|
[8] |
余超, 王斌, 刘华, 等. 中国森林植被净生产量及平均生产力动态变化分析[J]. 林业科学研究, 2014, 27(4):542-550.
|
|
YU C, WANG B, LIU H, et al. Dynamic change of net production and mean net primary productivity of China’s forests[J]. Forest Research, 2014, 27(4):542-550.DOI: 10.13275/j.cnki.lykxyj.2014.04.016.
doi: 10.13275/j.cnki.lykxyj.2014.04.016
|
[9] |
ZHAO M, ZHOU G S. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data[J]. Forest Ecology & Management, 2005, 207(3):295-313. DOI: 10.1016/j.foreco.2004.10.049.
doi: 10.1016/j.foreco.2004.10.049
|
[10] |
JOSHI C, LEEUW J D, SKIDMORE A K, et al. Remotely sensed estimation of forest canopy density: a comparison of the performance of four methods[J]. International Journal of Applied Earth Observations & Geoinformation, 2006, 8(2):84-95.DOI: 10.1016/j.jag.2005.08.004.
doi: 10.1016/j.jag.2005.08.004
|
[11] |
RIKIMARU A. Landsat TM data processing guide for forest canopy density mapping and monitoring model[C]// ITTO workshopon utilization of sensing in site assessment and planning for rehabilitation of logged-over forest, Bankok, 1996: 1-8.
|
[12] |
ROY P S, RIKIMARU A, MIYATAKE S. Tropical forest cover density mapping[J]. Tropical Ecology, 2002, 43(1):39-47.
|
[13] |
姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(1):137-141.
|
|
YAO D J, YANG J, ZHAN X J. Feature selection algorithm based on random forest[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(1):137-141.DOI: 10.13229/j.cnki.jdxbgxb201401024.
doi: 10.13229/j.cnki.jdxbgxb201401024
|
[14] |
曹正凤. 随机森林算法优化研究[D]. 北京:首都经济贸易大学, 2014.
|
|
CAO Z F. Study on optimization of random forests algorithm[D]. Beijing:Capital University of Economics and Business, 2014.
|
[15] |
李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 50(4):1190-1197.
|
|
LI X H. Using random forest for classification and regression[J]. Chinese Journal of Applied Entomology, 2013, 50(4):1190-1197.DOI: 10.7679/j.issn.2095-1353.2013.163.
doi: 10.7679/j.issn.2095-1353.2013.163
|
[16] |
张宝光. 人工神经网络在遥感数字图像分类处理中的应用[J]. 国土资源遥感, 1998, 10(1):3-5.
|
|
ZHANG B G. The application of artificial neural network to classification processing of remote sensing digital images[J]. Remote Sensing Forest & Resources, 1998, 10(1):3-5.DOI: 10.6046/gtzyyg.1998.01.04.
doi: 10.6046/gtzyyg.1998.01.04
|
[17] |
滕敏, 卫文学, 滕宁. K-最近邻分类算法应用研究[J]. 软件导刊, 2015, 14(3):44-46.
|
|
TENG M, WEI W X, TENG N. Application research of K-nearest neighbor classification algorithm[J]. Software Guide, 2015, 14(3):44-46.DOI: 10.11907/rjdk.143927.
doi: 10.11907/rjdk.143927
|
[18] |
陈尔学, 李增元, 武红敢, 等. 基于K-NN和Landsat数据的小面积统计单元森林蓄积估测方法[J]. 林业科学研究, 2008, 21(6):745-750.
|
|
CHEN E X, LI Z Y, WU H G, et al. Forest volume estimation method for small areas based on K-NN and Landsat data[J]. Forest Research, 2008, 21(6):745-750.DOI: 10.3321/j.issn:1001-1498.2008.06.002.
doi: 10.3321/j.issn:1001-1498.2008.06.002
|
[19] |
ZHENG B, AGRESTI A. Summarizing the predictive power of a generalized linear model[J]. Statistics in Medicine, 2000, 19(13):1771-1781.DOI: 10.1002/1097-0258(20000715)19:13<1771:aid-sim485>3.0.co;2-p.
doi: 10.1002/1097-0258(20000715)19:13<1771:aid-sim485>3.0.co
|
[20] |
胡小飞, 唐宪, 胡月明, 等. 广州市城市森林净初级生产力遥感估算[J]. 中南林业科技大学学报, 2016, 36(5):19-25.
|
|
HU X F, TANG X, HU M Y, et al. Estimation of net primary productivity of urban forest ecological system in Guangzhou City[J]. Journal of Central South University of Forestry & Technology, 2016, 36(5):19-25.DOI: 10.14067/j.cnki.1673-923x.2016.05.004.
doi: 10.14067/j.cnki.1673-923x.2016.05.004
|
[21] |
姜春. 广东省土地利用/覆盖变化对植被净初级生产力的影响研究[D]. 广州:中国科学院大学, 2015.
|
|
JIANG C. Analyzing the effects of land cover change on vegetation net primary productivity in Guangdong Province[D]. Guangzhou: University of Chinese Academy of Sciences, 2015.
|
[22] |
周爱萍, 向悟生, 姚月锋, 等. 广西植被净初级生产力(NPP)时空演变及主要影响因素分析[J]. 广西植物, 2014, 34(5):622-628,588.
|
|
ZHOU A P, XIANG W S, YAO Y F, et al. Analyzing variation characteristics of vegetation net primary productivity (NPP) in Guangxi[J]. Guihaia, 2014, 34(5):622-628,588.DOI: 10.3969/j.issn.1000-3142.2014.05.008.
doi: 10.3969/j.issn.1000-3142.2014.05.008
|
[23] |
江洪. 基于森林碳汇信息的福建省低碳发展研究[D]. 福州:福州大学, 2011.
|
|
JIANG H. Low carbon development study in Fujian Province,China based on forest carbon sinks information[D]. Fuzhou:Fuzhou University, 2011.
|
[24] |
吴国训. 江西省森林植被净初级生产力及碳储量估算[D]. 南京:南京林业大学, 2015.
|
|
WU G X. Net primary productivity and carbon storage estimation of forest in Jiangxi Province,China[D]. Nanjing:Nanjing Forestry University, 2015.
|