鹅耳枥属树种叶绿体基因组结构及变异分析

赵儒楠, 褚晓洁, 刘维, 何倩倩, 祝遵凌

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 25-34.

PDF(15813 KB)
PDF(15813 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (2) : 25-34. DOI: 10.12302/j.issn.1000-2006.202009007
专题报道(执行主编 方升佐)

鹅耳枥属树种叶绿体基因组结构及变异分析

作者信息 +

Structure and variation analyses of chloroplast genomes in Carpinus

Author information +
文章历史 +

摘要

【目的】了解鹅耳枥属(Carpinus)树种叶绿体基因组基因组成及结构特征,为鹅耳枥属的系统发育及基因组进化研究提供参考。【方法】获取鹅耳枥属16个树种的叶绿体基因组,对其进行基因注释,利用生物信息学方法比较叶绿体基因组间的结构特征与变异程度,并以麻栎(Quercus acutissima)为外类群分析了鹅耳枥属的系统发育关系。【结果】鹅耳枥属16个树种的叶绿体基因组均为双链环形结构,均包含1个长单拷贝区(LSC)、1个短单拷贝区(SSC)以及2个反向重复区(IRa和IRb)。叶绿体基因组大小差异较小,最大差异仅1 902 bp。基因排列顺序基本一致,各基因数量相对保守,其中核糖体RNA(rRNA)数量最为保守,所有树种均为8个。此外,鹅耳枥属树种叶绿体基因组在序列长度、基因组成以及GC含量等方面相对保守,但4个边界存在明显的多样性。鹅耳枥属叶绿体基因组中非基因编码区存在较大差异,变异程度较高,而基因编码区差异较小,具有较高的保守性。在叶绿体基因组4个部分中,LSC区的变异程度最高,IRa区的变异程度最低。鹅耳枥属叶绿体基因组中psbArps16atpArps19ndhFndhI以及ycf1等基因的编码区存在显著差异。此外,ycf3-trnS, trnS-rps4, trnH-psbA, psbZ-trnfM, matK-rps16, rps16-trnQ, trnQ-psbK, ccsA-ndhD, accD-psaI, ndhC-trnV, trnT-trnL, trnF-ndhJ, atpB-rbcL, trnT-psbD, trnE-trnT, trnD-trnY, rpl32-trnl等基因间隔区的非编码区差异较大。绝大部分基因的编码区长度十分保守,含内含子的蛋白编码基因长度变异主要来源于内含子长度或编码区长度。系统发育分析结果将鹅耳枥属划分为鹅耳枥组与千金榆组,此外由于地理隔离导致欧洲鹅耳枥(C. betulus)、美洲鹅耳枥(C. caroliniana)与鹅耳枥属其他树种表现出较远的亲缘关系。【结论】鹅耳枥属树种叶绿体基因组具有较高的保守性,其基因排列顺序基本一致,未检测到大规模的倒位或基因重排,但其IR区与单拷贝区(SC)边界存在明显的多样性。基于叶绿体基因组构建的系统发育树在一定程度上可以揭示鹅耳枥属树种的系统发育关系。

Abstract

【Objective】Chloroplasts are the organelles responsible for the photosynthesis in green plants. The chloroplast genome structure and gene composition of higher plants are relatively conservative, but can show different degrees of variation due to hybridization, evolution and gene introgression. It contains a significant amount of DNA information, which is used in species classification, phylogeny and origin. Carpinus is one of the most evolved genus in the Betulaceae family. Although the chloroplast genomes of more than ten species of Carpinus have been sequenced and assembled, only a few of these have been fully studied. Therefore, this study aimed to understand the chloroplast genome gene composition and structural characteristics of Carpinus, reveal the contraction and expansion of the inverted repeat (IR) region boundary, and lay a foundation for further studies on phylogenetic relationships, species identification, genome evolution and resource utilization and provide a reference for the development of Carpinus DNA barcoding. 【Method】GeSeq was used to annotate the chloroplast genome with Ostrya rehdariana as the reference genome. Then, the number of genes, genomic DNA base composition (GC) content, large single copy (LSC), small single copy (SSC) and two IR regions of the chloroplast genomes of 16 Carpinus species were obtained. The structure, boundary contraction and expansion, and sequence variation were then compared by using OGDRAW, IRscope and mVISTA programs. The phylogenetic relationship of Carpinus was analyzed with Quercus acutissima as an outgroup. 【Result】We found that the chloroplast genomes of 16 species were circular, double-stranded, which were tetrads containing one LSC and SSC and two IRs. The difference in genome size was small, and the maximum difference was only 1 902 bp. The differences in IR region length and GC content among species were small. The gene sequence length and composition were relatively conservative, with the number of rRNAs (8) as the most conservative; however, there was significant diversity at the four boundaries. There were differences in the non-coding regions, and the degree of variation was high; however, the difference in gene coding region was small and highly conservative. Among the four parts of the chloroplast genome, the LSC region had the highest degree of variation, while the IRa region had the lowest. There were significant differences in the coding regions of psbA, rps16, atpA, rps19, ndhF, ndhI and ycf1 genes. In addition, the non-coding regions of the intergenic regions of ycf3-trnS, trnS-rps4, trnH-psbA, psbZ-trnfM, matK-rps16, rps16-trnQ, trnQ-psbK, ccsA-ndhD, accD-psaI, ndhC-trnV, trnT-trnL, trnF-ndhJ, atpB-rbcL, trnT-psbD, trnE-trnT, trnD-trnY, and rpl32-trnL were significantly different. In addition, the coding region length of most genes was very conservative, and the variation of coding gene length of proteins containing introns originated from the change in intron length or coding region length. The phylogenetic tree supported a division of Carpinus and Distegocarpus sections. In addition, due to the significant geographical isolation,C. caroliniana and C. betulus showed a relatively distant phylogenetic relationship with other species of Carpinus. 【Conclusion】The chloroplast genome of Carpinus was highly conservative with little gene sequence differences; no large-scale inversion or gene rearrangement was detected. However, the IRs and SC boundaries had significant diversity. In addition, some genes with significant differences in coding or non-coding regions may provide a reference for developing new DNA barcodes of Carpinus species.

关键词

鹅耳枥属 / 叶绿体基因组 / 变异 / 进化 / 系统发育

Key words

Carpinus / chloroplast genome / variation / evolution / phylogeny

引用本文

导出引用
赵儒楠, 褚晓洁, 刘维, . 鹅耳枥属树种叶绿体基因组结构及变异分析[J]. 南京林业大学学报(自然科学版). 2021, 45(2): 25-34 https://doi.org/10.12302/j.issn.1000-2006.202009007
ZHAO Runan, CHU Xiaojie, LIU Wei, et al. Structure and variation analyses of chloroplast genomes in Carpinus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 25-34 https://doi.org/10.12302/j.issn.1000-2006.202009007
中图分类号: Q941   

参考文献

[1]
NEUHAUS H E, EMES M J. Nonphotosynthetic metabolism in plastids[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000,51(1):111-140.DOI: 10.1146/annurev.arplant.51.1.111.
[2]
SHINOZAKI K, OHME M, TANAKA M, et al. The complete nucleotide sequence of the tobacco chloroplast genome[J]. Plant Mol Biol Report, 1986,4(3):111-148.DOI: 10.1007/BF02669253.
[3]
NOCK C J, WATERS D L, EDWARDS M A, et al. Chloroplast genome sequences from total DNA for plant identification[J]. Plant Biotechnol J, 2011,9(3):328-333.DOI: 10.1111/j.1467-7652.2010.00558.x.
[4]
RAVI V, KHURANA J P, TYAGI A K, et al. An update on chloroplast genomes[J]. Plant Syst Evol, 2008,271(1/2):101-122.DOI: 10.1007/s00606-007-0608-0.
[5]
HU Y, ZHANG Q, RAO G, et al. Occurrence of plastids in the sperm cells of Caprifoliaceae:biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance[J]. Plant Cell Physiol, 2008,49(6):958-968.DOI: 10.1093/pcp/pcn069.
[6]
ZHANG Q SODMERGE N. Why does biparental plastid inheritance revive in angiosperms?[J]. J Plant Res, 2010,123(2):201-206.DOI: 10.1007/s10265-009-0291-z.
[7]
陈之端. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报, 1994,32(2):101-153.
CHEN Z D. Phylogeny and phytogeography of the Betulaceae (cont.)[J]. Acta Phytotaxon Sin, 1994,32(2):101-153.
[8]
李沛群, 郑斯绪. 中国植物志:第21卷[M]. 北京: 科学出版社, 1979: 84-85.
LI P Q, ZHENG S X. Flora republicae popularis sinica: Vol. 21[M]. Beijing: Science Press, 1979: 84-85.
[9]
LI P C, SKVORTSOV A K. Flora of China: Vol. 4[M]. Beijing: Science Press, 1999: 289-300.
[10]
李素梅, 汪庆, 王淑安, 等. 江苏宝华山宝华鹅耳枥种群现状分析[J]. 植物资源与环境学报, 2020,29(1):52-58.
LI S M, WANG Q, WANG S A, et al. Analysis on population status of Carpinus oblongifolia in Baohua Mountain of Jiangsu Province[J]. J Plant Resour Environ, 2020,29(1), 52-58 DOI: 10.3969/j.issn.1674-7895.2020.01.07.
[11]
FENG S, XIE X Y, WANG M C, et al. Characterization of the complete chloroplast genome of Carpinus putoensis[J]. Conserv Genet Resour, 2017,9(1):127-129.DOI: 10.1007/s12686-016-0604-1.
[12]
YANG Y Z, WANG M C, LU Z Q, et al. Characterization of the complete chloroplast genome of Carpinus tientaiensis[J]. Conserv Genet Resour, 2017,9(2):339-341.DOI: 10.1007/s12686-016-0668-y.
[13]
WANG G N, LI Y. The complete chloroplast genome of Carpinus hebestroma,a critically endangered species endemic to Taiwan[J]. Mitochondrial DNA Part B, 2018,3(2):693-694.DOI: 10.1080/23802359.2018.1481784.
[14]
WANG J R, WANG M H. Complete chloroplast genome sequence of Carpinus oblongifolia (Betulaceae) and phylogenetic analysis[J]. Mitochondrial DNA Part B, 2019,4(1):1304-1305.DOI: 10.1080/23802359.2019.1591216.
[15]
LEE M W, KIM S C, AHN J Y, et al. The complete chloroplast genome of Carpinus laxiflora (Betulaceae)[J]. Mitochondrial DNA Part B, 2019,4(1):1643-1644.DOI: 10.1080/23802359.2019.1604184.
[16]
LI Y, YANG Y Z, YU L, et al. Plastomes of nine hornbeams and phylogenetic implications[J]. Ecol Evol, 2018,8(17):8770-8778.DOI: 10.1002/ece3.4414.
[17]
杨霄月. 桦木科叶绿体基因组的系统发育分析[D]. 兰州:兰州大学, 2019.
YANG X Y. Phylogenetic analysis of Betulaceae plastomes[D]. Lanzhou:Lanzhou University, 2019.
[18]
YANG X Y, WANG Z F, LUO W C, et al. Plastomes of Betulaceae and phylogenetic implications[J]. J Syst Evol, 2019,57(5):508-518.DOI: 10.1111/jse.12479.
[19]
GREINER S, LEHWARK P, BOCK R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:Expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Res, 2019,47(W1):W59-W64.DOI: 10.1093/nar/gkz238.
[20]
AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018,34(17):3030-3031.DOI: 10.1093/bioinformatics/bty220.
[21]
FRAZER K A, PACHTER L, POLIAKOV A, et al. VISTA:computational tools for comparative genomics[J]. Nucleic Acids Res, 2004,32(suppl_2):W273-W279.DOI: 10.1093/nar/gkh458.
[22]
KUMAR S, STECHER G, LI M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018,35(6):1547-1549.DOI: 10.1093/molbev/msy096.
[23]
CHUMLEY T W, PALMER J D, MOWER J P, et al. The complete chloroplast genome sequence of Pelargonium × hortorum:organization and evolution of the largest and most highly rearranged chloroplast genome of land plants[J]. Mol Biol Evol, 2006,23(11):2175-2190.DOI: 10.1093/molbev/msl089.
[24]
SERRANO M, WANG B, ARYAL B, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5[J]. Plant Physiol, 2013,162(4):1815-1821.DOI: 10.1104/pp.113.218156.
[25]
GUISINGER M M, KUEHL J V, BOORE J L, et al. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae:rearrangements,repeats,and codon usage[J]. Mol Biol Evol, 2011,28(1):583-600.DOI: 10.1093/molbev/msq229.
[26]
HIRAO T, WATANABE A, KURITA M, et al. Complete nucleotide sequence of the Cryptomeria japonica D.Don.chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species[J]. BMC Plant Biol, 2008,8(1):70.DOI: 10.1186/1471-2229-8-70.
[27]
PALMER J D, THOMPSON W F. Rearrangements in the chloroplast genomes of mung bean and pea[J]. PNAS, 1981,78(9):5533-5537.DOI: 10.1073/pnas.78.9.5533.
[28]
MAIER R M, NECKERMANN K, IGLOI G L, et al. Complete sequence of the maize chloroplast genome: gene content,hotspots of divergence and fine tuning of genetic information by transcript editing[J]. J Mol Biol, 1995,251(5):614-628.DOI: 10.1006/jmbi.1995.0460.
[29]
DEMPEWOLF H, KANE N C, OSTEVIK K L, et al. Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass: the development of a library of expressed sequence tags,microsatellite loci,and the sequencing of its chloroplast genome[J]. Mol Ecol Resour, 2010,10(6):1048-1058.DOI: 10.1111/j.1755-0998.2010.02859.x.
[30]
童毅华, 彭权森, 夏念和. 香港桦木科一新种:香港鹅耳枥[J]. 热带亚热带植物学报, 2014(2):121-124.
TONG Y H, PANG Q S, XIA N H. Carpinus insularis(Betulaceae): a new species from Hong Kong,China[J]. J Trop Subtrop Bot, 2014(2):121-124.DOI: 10.3969/j.issn.1005-3395.2014.02.002.
[31]
LU Z Q, LIU S Y, YANG X Y, et al. Carpinus langaoensis (Betulaceae),a new hornbeam species from the Daba Mountains in Shaanxi,China[J]. Phytotaxa, 2017,295(2):185.DOI: 10.11646/phytotaxa.295.2.6.
[32]
LU Z, LI Y, YANG X, et al. Carpinus tibetana(Betulaceae): a new species from southeast Tibet,China[J]. PhytoKeys, 2018(98):1-13.DOI: 10.3897/phytokeys.98.23639.
[33]
LU Z. Carpinus gigabracteatus: a new species from Southeast Yunnan,China[J]. PhytoKeys, 2020,145:47-56.DOI: 10.3897/phytokeys.145.49488.
[34]
CHEN Z D, MANCHESTER S R, SUN H Y. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences,morphology,and paleobotany[J] . Am J Bot, 1999,86(8):1168-1181.DOI: 10.2307/2656981.
[35]
鲁志强. 中国桦木科榛亚科的物种界定研究[D]. 兰州:兰州大学, 2017.
LU Z Q. Species delimitation in the subfamily coryloideae of Betulaceae in China[D]. Lanzhou:Lanzhou University, 2017.

基金

林业科技成果国家级推广项目(2019133119)
江苏省“333工程”项目(BRA2018065)
国家自然科学基金项目(31770752)

编辑: 涂忠华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(15813 KB)

Accesses

Citation

Detail

段落导航
相关文章

/