基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测

赵颖慧, 杨海城, 甄贞

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 23-32.

PDF(1823 KB)
PDF(1823 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 23-32. DOI: 10.12302/j.issn.1000-2006.202009021
专题报道I (执行主编李凤日)

基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测

作者信息 +

Tree height estimations for different forest canopies in natural secondary forests based on ULS, TLS and ultrasonic altimeter systems

Author information +
文章历史 +

摘要

【目的】应用不同数据源分析不同林冠层中探测提取树高的异同,探索适用于中国北方天然次生林树高估测的方法。【方法】以东北林业大学帽儿山实验林场中林施业区0.25 hm2样地为研究区域,基于无人机激光雷达(unmanned aerial vehicle laser scanning, ULS)、地基激光雷达(terrestrial laser scanning,TLS)和Vertex IV超声测高仪实测单木树高,根据冠层高度分布(canopy height distribution, CHD)对林冠层进行分层,对不同林冠层(上层和下层)、不同树木类型(针叶树和阔叶树)探测提取的树高进行对比与分析。【结果】由CHD计算得到的冠层分层阈值为8.5 m。树高的离群值大多产生在林冠上层,阔叶树比针叶树更容易产生离群值,ULS比TLS更容易产生离群值。在林冠上层,ULS比TLS估测树高的相对均方根误差(rRMSE)低2.56%,ULS提取针叶树树高的rRMSE比阔叶树低2.68%;在林冠下层,ULS仅能探测到少量树木,ULS比TLS探测提取树高的 rRMSE高6.31%,TLS提取针叶树树高的rRMSE比阔叶树低1.16%。【结论】针叶树的树高估测精度普遍高于阔叶树;当TLS和ULS均能对单木进行完全扫描时,具有准确提取树高的潜力;树高离群值多由冠型不规则或相互交叉的阔叶树产生,而大部分针叶树,由于具有规则的冠型,所以产生的离群值较少;基于CHD对林冠层进行划分能够较好地反映不同数据源估测树高的适用范围,具有一定的推广意义。

Abstract

【Objective】 A comparison of tree heights, estimated from different data sources for different forest canopies, was performed in natural secondary forests of Northern China to identify the optimal data source for different forest canopy layers. 【Method】 The study area, with a plot of 0.25 hm2, was located in the Maoershan Forest Farm of the Northeast Forestry University. We conducted a performance comparison of terrestrial laser scanning (TLS), unmanned aerial vehicle laser scanning (ULS), and the Vertex IV ultrasonic instrument system in the estimation of individual tree heights. The forest canopy was stratified according to the canopy height distribution (CHD), and individual tree heights of different tree types (coniferous and broadleaved) were estimated and compared according to different canopy layers (overstory and understory). 【Result】 The threshold of canopy stratification calculated by CHD was 8.5 m. We also found that the outliers of tree heights mostly occurred in the overstory canopy, deciduous trees were more prone to outliers than coniferous trees, and ULS was more prone to outliers than TLS. Stratification of the forest canopy based on CHD can reflect the scope of tree height estimation using different data sources. In the overstory, the relative root mean square error (rRMSE) of tree height estimated by ULS was 2.56% lower than that estimated by TLS, while the rRMSE of coni-ferous tree height estimated by ULS was 2.68% lower than that of deciduous trees. ULS can only detect a small number of trees and had a higher rRMSE of 6.31% compared to TLS. Furthermore, the rRMSE of coniferous tree height estimated by TLS was 1.16% lower than that of deciduous trees. 【Conclusion】 For different canopy layers, the accuracy of conife-rous tree height was generally higher than that of deci-duous tree height. When both TLS and ULS can scan a single tree completely, both have the potential to accurately obtain the tree height. Most outliers of tree height were caused by deci-duous trees that had irregular or intertwined crowns. Most coniferous trees had few outliers in tree height due to their regular crown shapes. It is important to note that the stratification of the forest canopy based on CHD could reflect the scope of the applications of different data sources on the tree height estimation.

关键词

无人机激光雷达 / 地基激光雷达 / 超声测高仪 / 树高 / 森林冠层 / 天然次生林

Key words

unmanned aerial vehicle laser scanning(ULS) / terrestrial laser scanning(TLS) / ultrasonic instrument systems / tree height / forest canopy / natural secondary forests

引用本文

导出引用
赵颖慧, 杨海城, 甄贞. 基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测[J]. 南京林业大学学报(自然科学版). 2021, 45(4): 23-32 https://doi.org/10.12302/j.issn.1000-2006.202009021
ZHAO Yinghui, YANG Haicheng, ZHEN Zhen. Tree height estimations for different forest canopies in natural secondary forests based on ULS, TLS and ultrasonic altimeter systems[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 23-32 https://doi.org/10.12302/j.issn.1000-2006.202009021
中图分类号: S758   

参考文献

[1]
ZHAO D H, KANE M, MARKEWITZ D, et al. Additive tree biomass equations for midrotation loblolly pine plantations[J]. For Sci, 2015, 61(4):613-623. DOI: 10.5849/forsci.14-193.
[2]
ZOU W T, ZENG W S, ZHANG L J, et al. Modeling crown biomass for four pine species in China[J]. Forests, 2015, 6(12):433-449. DOI: 10.3390/f6020433.
[3]
LARJAVAARA M, MULLER-LANDAU H C, METCALF J. Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest[J]. Methods Ecol Evol, 2013, 4(9):793-801. DOI: 10.1111/2041-210x.12071.
[4]
ZHEN Z, QUACKENBUSH L J, ZHANG L J. Trends in automatic individual tree crown detection and delineation: evolution of LiDAR data[J]. Remote Sens, 2016, 8(4):333. DOI: 10.3390/rs8040333.
[5]
ANDERSON K, GASTON K J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Front Ecol Environ, 2013, 11(3):138-146. DOI: 10.1890/120150.
[6]
LIN Y, HYYPPÄ J, JAAKKOLA A. Mini-UAV-borne LIDAR for fine-scale mapping[J]. IEEE Geosci Remote Sens Lett, 2011, 8(3):426-430. DOI: 10.1109/LGRS.2010.2079913.
[7]
WALLACE L, LUCIEER A, WATSON C, et al. Development of a UAV-LiDAR system with application to forest inventory[J]. Remote Sens, 2012, 4(6):1519-1543. DOI: 10.3390/rs4061519.
[8]
HOPKINSON C, CHASMER L, YOUNG-POW C, et al. Assessing forest metrics with a ground-based scanning lidar[J]. Can J For Res, 2004, 34(3):573-583. DOI: 10.1139/x03-225.
[9]
PFEIFER N, WNTERHALDER D. Modelling of tree cross sections from terrestrial laser scanning data with free-form curves[J]. Pro of Isp Wor Las Sca for For and Lan Ass, 2004, 36(8):76-81. DOI: 10.1109/TEST.2004.1387399.
[10]
熊妮娜, 王佳. 基于地基激光雷达的活立木材积提取算法[J]. 林业工程学报, 2020, 5(6):143-148.
XIONG N N, WANG J. Extratction algorithm for stand volume using ground-based laser scanner[J]. J For Eng, 2020, 5(6):143-148. DOI: 10.13360/j.issn.2096-1359.202001035.
[11]
BREDE B, LAU A, BARTHOLOMEUS H, et al. Comparing Riegl Ricopter UAV LiDAR derived canopy height and DBH with terrestrial LiDAR[J]. Sensors, 2017, 17(10):2371. DOI: 10.3390/s17102371.
[12]
李丹, 庞勇, 岳彩荣, 等. 基于TLS数据的单木胸径和树高提取研究[J]. 北京林业大学学报, 2012, 34:79-86.
LI D, PANG Y, YUE C R, et al. Extraction of DBH and height of single tree based on TLS data[J]. Journal of Beijing Forestry University, 2012, 34:79-86. DOI: 10.13332/j.1000-1522.2012.04.027.
[13]
BEYENE S M, HUSSIN Y A, KLOOSTERMAN H E, et al. Fo-rest inventory and aboveground biomass estimation with terrestrial LiDAR in the tropical forest of Malaysia[J]. Can J Remote Sens, 2020, 46(2):130-145. DOI: 10.1080/07038992.2020.1759036.
[14]
GOODWIN N R, COOPS N C, CULVENOR D S. Assessment of forest structure with airborne LiDAR and the effects of platform altitude[J]. Remote Sens Environ, 2006, 103(2):140-152. DOI: 10.1016/j.rse.2006.03.003.
[15]
ANDERSEN H E, REUTEBUCH S E, MCGAUGHEY R J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods[J]. Can J Remote Sens, 2006, 32(5):355-366. DOI: 10.5589/m06-030.
[16]
SIBONA E, VITALI A, MELONI F, et al. Direct measurement of tree height provides different results on the assessment of LiDAR accuracy[J]. Forests, 2016, 8(1):7. DOI: 10.3390/f8010007.
[17]
WANG Y S, PYÖRÄLÄ J, LIANG X L, et al. In situ biomass estimation at tree and plot levels: what did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest[J]. Remote Sens Environ, 2019, 232:111309. DOI: 10.1016/j.rse.2019.111309.
[18]
WALLACE L, MUSK R, LUCIEER A. An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data[J]. IEEE Trans Geosci Remote Sens, 2014, 52(11):7160-7169. DOI: 10.1109/TGRS.2014.2308208.
[19]
WANG Y S, LEHTOMÄKI M, LIANG L, et al. Is field-measured tree height as reliable as believed: a comparison study of tree height estimates from field measurement,airborne laser scanning and terrestrial laser scanning in a boreal forest[J]. ISPRS J Photogramm Remote Sens, 2019, 147:132-145. DOI: 10.1016/j.isprsjprs.2018.11.008.
[20]
VAGLIO LAURIN G, DING J Q, DISNEY M, et al. Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates[J]. Int J Appl Earth Obs Geoinformation, 2019, 82:101899. DOI: 10.1016/j.jag.2019.101899.
[21]
TANABE S I, TODA M J, VINOKUROVA A V. Tree shape, fo-rest structure and diversity of drosophilid community: comparison between boreal and temperate birch forests[J]. Ecol Res, 2001, 16(3):369-385. DOI: 10.1046/j.1440-1703.2001.00402.x.
[22]
MIURA N, JONES S D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning[J]. Remote Sens Environ, 2010, 114(5):1069-1076. DOI: 10.1016/j.rse.2009.12.017.
[23]
郎春博, 贾鹤鸣, 邢致恺, 等. 基于改进粒子群算法的植物冠层图像分割[J]. 森林工程, 2019, 35(1):47-52.
LANG C B, JIA H M, XING Z K, et al. Multi threshold segmentation of plant canopy image based on improved particle swarm optimization[J]. Forest Engineering, 2019, 35(1):47-52.
[24]
胡文杰, 崔鸿侠, 王晓荣, 等. 三峡库区马尾松次生林林分结构特征分析[J]. 南京林业大学学报(自然科学版), 2019, 43(3):67-76.
HU W J, CUI H X, WANG X R, et al. Structure characteristics of Pinus massoniana secondary forest in the Three Reservoir Area[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):67-76. DOI: 10.3969/j.issn.1000-2006.201805075.
[25]
胡传伟, 孙冰, 庄梅梅, 等. 深圳羊台山近自然风景林树种组成与垂直结构[J]. 南京林业大学学报(自然科学版), 2010, 34(4):112-116.
HU C W, SUN B, ZHUANG M M, et al. Study on species composition and vertical structure of near-nature scenic forest in Mt.Yangtai, Shenzhen[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):112-116. DOI: 10.3969/j.issn.1000-2006.2010.04.025.
[26]
ZIMBLE D A, EVANS D L, CARLSON G C, et al. Characterizing vertical forest structure using small-footprint airborne LiDAR[J]. Remote Sens Environ, 2003, 87(2/3):171-182. DOI: 10.1016/S0034-4257(03)00139-1.
[27]
赵静, 李静, 柳钦火. 森林垂直结构参数遥感反演综述[J]. 遥感学报, 2013, 17(4):697-716.
ZHAO J, LI J, LIU Q H. Review of forest vertical structure parameter inversion based on remote sensing technology[J]. J Remote Sens, 2013, 17(4):697-716. DOI: 10.11834/jrs.20132183.
[28]
ZHAO K G, POPESCU S, NELSON R. Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers[J]. Remote Sens Environ, 2009, 113(1):182-196. DOI: 10.1016/j.rse.2008.09.009.
[29]
QIN H M, WANG C, XI X H, et al. Simulating the effects of the airborne lidar scanning angle, flying altitude, and pulse density for forest foliage profile retrieval[J]. Appl Sci, 2017, 7(7):712. DOI: 10.3390/app7070712.
[30]
LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests[J]. Remote Sens Environ, 1999, 70(3):339-361. DOI: 10.1016/S0034-4257(99)00052-8.
[31]
MALTAMO M, PACKALÉN P, YU X, et al. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data[J]. For Ecol Manag, 2005, 216(1/2/3):41-50. DOI: 10.1016/j.foreco.2005.05.034.
[32]
ZHAO X Q, GUO Q H, SU Y J, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS J Photogramm Remote Sens, 2016, 117:79-91. DOI: 10.1016/j.isprsjprs.2016.03.016.
[33]
SCHNABEL R, KLEIN R. Octree-based point-cloud compression[C]// Eur Sym Point-Based Gra, 2006: 111-120. DOI: 10.2312/SPBG/SPBG06/111-120.
[34]
刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018, 22(5):872-888.
LIU H, ZHANG Z N, CAO L. Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data[J]. J Remote Sens, 2018, 22(5):872-888. DOI: 10.11834/jrs.20187465.
[35]
LLOYD S. Least squares quantization in PCM[J]. IEEE Trans Inf Theory, 1982, 28(2):129-137. DOI: 10.1109/TIT.1982.1056489.
[36]
BAZEZEW M N, HUSSIN Y A, KLOOSTERMAN E H. Integrating airborne LiDAR and terrestrial laser scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia[J]. Int J Appl Earth Obs Geoinformation, 2018, 73:638-652. DOI: 10.1016/j.jag.2018.07.026.
[37]
LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of forest canopy structure and related biophysical parameters at H. J. Andrews Experimental Forest, Oregon, USA[C]// IGARSS ‘98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No. 98CH36174). July 6-10, 1998, Seattle, WA, USA. IEEE, 1998: 1252-1254. DOI: 10.1109/IGARSS.1998.691367.
[38]
李凤日. 测树学[M]. 4版. 北京: 中国林业出版社, 2019: 64.
LI F R. Forest mensuration[M].4th ed. Beijing: China Forestry Publishing House, 2019: 64.

基金

国家自然科学基金项目(31870530)
中央高校基本科研业务费专项资金项目(2572019CP15)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1823 KB)

Accesses

Citation

Detail

段落导航
相关文章

/