唐古特白刺NtCBL1NtCBL2基因克隆及表达分析

黎梦娟, 朱礼明, 霍俊男, 张景波, 施季森, 成铁龙

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 93-99.

PDF(3694 KB)
PDF(3694 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 93-99. DOI: 10.12302/j.issn.1000-2006.202009025
研究论文

唐古特白刺NtCBL1NtCBL2基因克隆及表达分析

作者信息 +

Cloning and expression analyses of NtCBL1,NtCBL2 gene of Nitraria tangutorum

Author information +
文章历史 +

摘要

【目的】唐古特白刺(Nitraria tangutorum)是土壤荒漠化和盐碱化防治的先锋植物,对高盐和干旱有极强的适应能力,植物CBL基因作为钙离子感受器,在植物逆境应答及发育过程中具有重要功能。以盐生植物唐古特白刺为材料,开展唐古特白刺CBL基因克隆及表达分析,以深入了解唐古特白刺的抗逆分子机制。【方法】根据唐古特白刺的转录组数据,设计特异性引物,克隆两个CBL基因,并对其进行生物信息学分析和亚细胞定位鉴定。使用实时荧光定量PCR技术分析盐胁迫条件下唐古特白刺CBL基在叶片中的表达模式。【结果】克隆鉴定了唐古特白刺的NtCBL1NtCBL2基因,NtCBL1基因cDNA编码区长度为642 bp,可编码213个氨基酸,蛋白质分子质量为52.77 ku,分子式为C1 971H3 302N642O836S106;NtCBL2基因cDNA编码区长度为681 bp,可编码226个氨基酸,蛋白质分子质量为26.10 ku,分子式为C1 179H1 832N298O356S7。亚细胞定位预测和鉴定结果显示NtCBL1、NtCBL2蛋白均定位于细胞膜上。在胁迫、干旱迫、冷胁迫处理下,NtCBL1NtCBL2基因均表现出不同程度的变化,而NtCBL1基因的变化更为明显,推测其在盐、干旱胁迫中发挥重要作用。【结论】从唐古特白刺中克隆出NtCBL1NtCBL2基因,发现NtCBL1基因在盐胁迫下表达量明显上升,而NtCBL2基因变化不大。结果表明NtCBL1基因可能参与唐古特白刺的盐、干旱胁迫响应,而NtCBL2基因在冷胁迫下起一定作用。

Abstract

【Objective】 Nitraria tangutorum is a pioneer plant for the soil desertification and salinization control. It is adaptable to high salt and drought conditions. The CBL gene plays an important role in plant stress responses and development as it encodes a calcium ion receptor. Here, we aimed to clone and express CBL in N. tangutorum, which laid a foundation for the study of CBL gene family responses stress and the molecular mechanism of stress resistance of N. tangutorum. 【Method】 We designed specific primers based on N. tangutorum transcriptome data to clone two CBL genes that were further characterized using bioinformatics tools, and their subcellular localization was determined. We investigated the expression of the gene in N. tangutorum under CBL-base salt stress by using real-time quantitative PCR. 【Result】 The NtCBL1 and NtCBL2 genes of N. tangutorum were cloned and identified. The cDNA of NtCBL1 was 642 bp long and encoded 213 amino acids. The relative molecular weight of the protein was 52.77 ku, and the molecular formula was C1 971H3 302N642O836S106. The cDNA of NtCBL2 was 681 bp long and encoded 213 amino acids. The relative molecular weight of the protein was 26.1 ku, and the molecular formula was C1 179H1 832N298O356S7. We predicted that the NtCBL1 and NtCBL2 proteins localized at the cell membrane. Under the salt stress, drought stress and cold stress, the expression of NtCBL1 and NtCBL2 changed by various degrees, but NtCBL1 gene was significantly up-regulated under salt and drought stress, and NtCBL2 gene was significantly up-regulated under cold stress. 【Conclusion】 The NtCBL1 and NtCBL2 genes contribute to the adaptation of N. tangutorum to the salt stress. The NtCBL1 gene may be involved in the response of N. tangutorum to the salt as well as drought stress, and the NtCBL2 gene plays a certain role under cold stress.

关键词

唐古特白刺 / CBL基因 / 盐胁迫 / 干旱胁迫 / 基因克隆 / 基因表达

Key words

Nitraria tangutorum / CBL gene / salt stress / drought stress / gene cloning / gene expression

引用本文

导出引用
黎梦娟, 朱礼明, 霍俊男, . 唐古特白刺NtCBL1NtCBL2基因克隆及表达分析[J]. 南京林业大学学报(自然科学版). 2021, 45(3): 93-99 https://doi.org/10.12302/j.issn.1000-2006.202009025
LI Mengjuan, ZHU Liming, HUO Junnan, et al. Cloning and expression analyses of NtCBL1,NtCBL2 gene of Nitraria tangutorum[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 93-99 https://doi.org/10.12302/j.issn.1000-2006.202009025
中图分类号: S795   

参考文献

[1]
THODAY-KENNEDY E L, JACOBS A K, ROY S J. The role of the CBL-CIPK calcium signalling network in regulating ion transport in response to abiotic stress[J]. Plant Growth Regul, 2015,76(1):3-12.DOI: 10.1007/s10725-015-0034-1.
[2]
BATISTI O, KUDLA J R. Analysis of calcium signaling pathways in plants[J]. Biochim Biophys Acta, 2012,1820(8). DOI: 10.1016/j.bbagen.2011.10.012.
[3]
HEPLER P K. Calcium:a central regulator of plant growth and development[J]. Plant Cell, 2005,17(8):2142-2155.DOI: 10.1105/tpc.105.032508.
[4]
XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold,drought,and salt stress[J]. Plant Cell, 2002,14(S):165-183.DOI: 10.1105/tpc.000596.
[5]
SANDERS D, PELLOUX J, BROWNLEE C, et al. Calcium at the crossroads of signaling[J]. Plant Cell, 2002,14(S):S401-S417.DOI: 10.1105/tpc.002899.
[6]
郑仲仲, 沈金秋, 潘伟槐, 等. 植物钙感受器及其介导的逆境信号途径[J]. 遗传, 2013,35(7):875-884.
ZHENG Z Z, SHEN J Q, PAN W H, et al. Calcium sensors and their stress signaling pathways in plants[J]. Hereditas, 2013,35(7):875-884.DOI: 10.3724/SP.J.1005.2013.00875.
[7]
唐仁杰, 杨阳, 郁萌萌, 等. 植物CBL-CIPK信号系统研究进展[J]. 东北农业大学学报, 2013,44(4):149-155.
TANG R J, YANG Y, YU M M, et al. Research progress on CBL-CIPK signaling system in plants[J]. J Northeast Agric Univ, 2013,44(4):149-155.DOI: 10.19720/j.cnki.issn.1005-9369.2013.04.027.
[8]
SAHI C, SINGHS A, BLUMWALD E, et al. Beyond osmolytes and transporters:novel plant salt-stress tolerance-related genes from transcriptional profiling data[J]. Physiol Plant, 2006,127(1):1-9.DOI: 10.1111/j.1399-3054.2005.00610.x.
[9]
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008,59:651-681.DOI: 10.1146/annurev.arplant.59.032607.092911.
[10]
TEAKLE N L, TYERMAN S D. Mechanisms of Cl(-) transport contributing to salt tolerance[J]. Plant Cell Environ, 2010,33(4):566-589.DOI: 10.1111/j.1365-3040.2009.02060.x.
[11]
张恒, 刘晓婷, 陈嵩, 等. 盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析[J]. 南京林业大学学报(自然科学版), 2020,44(2):59-66.
ZHANG H, LIU X T, CHEN S, et al. Analysis of differentially expressed proteins in leaves of triploid Populus simonii × P. nigra hybrid clones under salt stress[J]. Journal of Nanjing Forestry University(Natural Sciences), 2020,44(2):59-66. DOI: 10.3969/j.issn.1000-2006.201904027
[12]
LIU J, ZHU J K. A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998,280(5371):1943-1945.DOI: 10.1126/science.280.5371.1943.
[13]
KUDLA J, XU Q, HARTER K, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. PNAS, 1999,96(8):4718-4723.DOI: 10.1073/pnas.96.8.4718.
[14]
KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiol, 2004,134(1):43-58.DOI: 10.1104/pp.103.033068.
[15]
LIU H, WANG Y X, LI H, et al. Genome-wide identification and expression analysis of calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase family genes in tea plant[J]. DNA Cell Biol, 2019,38(8):824-839.DOI: 10.1089/dna.2019.4697.
[16]
董连红, 史素娟, NURUZZAMAN M, 等. 植物CBL基因家族的研究进展[J]. 核农学报, 2015,29(5):892-898.
DONG L H, SHI S J, NURUZZAMAN M, et al. Advances in research of CBL family in plant[J]. J Nucl Agric Sci, 2015,29(5):892-898.DOI: 10.11869/j.issn.100-8551.2015.05.0892.
[17]
王尚德, 康向阳. 唐古特白刺研究现状与建议[J]. 植物遗传资源学报, 2005,6(2):231-235.
WANG S D, KANG X Y. Current research situation and suggestion on Nitraria tangutorum Bobr[J]. J Plant Genet Resour, 2005,6(2):231-235.DOI: 10.13430/j.cnki.jpgr.2005.02.022.
[18]
杨秀艳, 张华新, 唐欣, 等. 我国白刺植物资源及其开发利用[J]. 世界林业研究, 2013,26(5):64-68.
YANG X Y, ZHANG H X, TANG X, et al. Nitraria resources in China and their utilization[J]. World For Res, 2013,26(5):64-68.DOI: 10.13348/j.cnki.sjlyyj.2013.05.017.
[19]
成铁龙, 张景波, 贾玉奎, 等. 唐古特白刺硬枝扦插繁殖技术[J]. 林业科技开发, 2015,29(5):45-48.
CHENG T L, ZHANG J B, JIA Y K, et al. Techniques of hardwood cuttage propagation of Nitraria tangutorum[J]. China For Sci Technol, 2015,29(5):45-48.DOI: 10.13360/j.issn.1000-8101.2015.05.011.
[20]
赵杏花, 李旭红, 郭璐, 等. 唐古特白刺叶片形态结构的地域环境分异[J]. 干旱区资源与环境, 2020,34(9):143-150.
ZHAO X H, LI X H, GUO L, et al. Regional and environmental differentiation of leaf morphology and anatomical structure of Nitraria tangutorum[J]. J Arid Land Resour Environ, 2020,34(9):143-150.DOI: 10.13448/j.cnki.jalre.2020.252.
[21]
李海涛, 曹芳, 张东梅. 唐古特白刺叶化学成分的研究[J]. 中成药, 2018,40(7):1532-1535.
LI H T, CAO F, ZHANG D M. Chemical constituents from the leaves of Nitraria tangutorum[J]. Chin Tradit Pat Med, 2018,40(7):1532-1535.DOI: 10.3969/j.issn.1001-1528.2018.07.018.
[22]
柴文敏, 李毅, 苏世平, 等. 唐古特白刺(Nitraria tangutorum)抗旱优良家系的生理特性[J]. 中国沙漠, 2017,37(6):1158-1170.
CHAI W M, LI Y, SU S P, et al. Early selection of superior families with high drought-resistance in Nitraria tangutorum based on the physiological indices[J]. J Desert Res, 2017,37(6):1158-1170.DOI: 10.7522/j.issn.1000-694X.2016.00093.
[23]
YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007,2(7):1565-1572.DOI: 10.1038/nprot.2007.199.
[24]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001,25(4):402-408.DOI: 10.1006/meth.2001.1262.
[25]
TANG R J, WANG C, LI K, et al. The CBL-CIPK calcium signaling network:unified paradigm from 20 years of discoveries[J]. Trends Plant Sci, 2020,25(6):604-617.DOI: 10.1016/j.tplants.2020.01.009.
[26]
GONG D, GUO Y, SCHUMAKER K S, et al. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis[J]. Plant Physiol, 2004,134(3):919-926.DOI: 10.1104/pp.103.037440.
[27]
BATISTIC O, SOREK N, SCHÜLTKE S, et al. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca 2+ signaling complexes in Arabidopsis [J]. Plant Cell, 2008,20(5):1346-1362.DOI: 10.1105/tpc.108.058123.
[28]
王晓彤, 张海玲, 高慧纯, 等. 植物CBL-CIPK信号通路响应非生物胁迫作用机制的研究进展[J]. 分子植物育种, 2017,15(4):1295-1303.
WANG X T, ZHANG H L, GAO H C, et al. Research progress on the mechanism of CBL-CIPK signaling pathways in response to abiotic stress[J]. Mol Plant Breed, 2017,15(4):1295-1303.DOI: 10.13271/j.mpb.015.001295.
[29]
HUANG C, DING S, ZHANG H, et al. CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana[J]. Plant Sci, 2011,181(1):57-64.DOI: 10.1016/j.plantsci.2011.03.011.
[30]
CHEONG Y H, KIM K N, PANDEY G K, et al. CBL1,a calcium sensor that differentially regulates salt,drought,and cold responses in Arabidopsis[J]. Plant Cell, 2003,15(8):1833-1845.DOI: 10.1105/tpc.012393.
[31]
韩金龙, 李慧, 丛郁, 等. 杜梨CBL1CBL7基因对非生物逆境的响应[J]. 果树学报, 2014,31(4):529-535.
HAN J L, LI H, CONG Y, et al. Comparison of two CBL genes on stress tolerance functions from Pyrus betulaefolia[J]. J Fruit Sci, 2014,31(4):529-535.DOI: 10.13925/j.cnki.gsxb.20130515.
[32]
NURUZZAMAN M. 林烟草CBL基因家族成员NsylCBL2的功能分析[D]. 北京:中国农业科学院, 2016.
NURUZZAMAN M. Functional analysis of CBL family gene NsylCBL2 in Nicotiana sylvestris[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016.
[33]
ZHANG H C, YIN W L, XIA X L. Calcineurin B-like family in Populus: comparative genome analysis and expression pattern under cold,drought and salt stress treatment[J]. Plant Growth Regul, 2008,56(2):129-140.DOI: 10.1007/s10725-008-9293-4.
[34]
蔡琼, 丁贵杰, 丁波, 等. 马尾松PmCBL3基因的克隆及其表达分析[J]. 南京林业大学学报(自然科学版), 2017,41(4):30-36.
CAI Q, DING G J, DING B, Cloning and expression analysis of PmCBL3 from Pinus massoniana[J]. J Nanjing For Univ(Nat Sci Ed), 2017,41(4):30-36. DOI: 10.3969/j.issn.1000-2006.201609007.

基金

国家自然科学基金项目(31770715)

编辑: 吴祝华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(3694 KB)

Accesses

Citation

Detail

段落导航
相关文章

/