[1] |
LOMBARDINI L, VILLARREAL-LOZOYA J E, CISNEROS-ZEVALLOS L. Antioxidant properties of pecan kernels[J]. Acta Hortic, 2009(841):91-96.DOI:10.17660/actahortic.2009.841.8.
|
[2] |
VILLARREAL-LOZOYA J E, LOMBARDINI L, CISNEROS-ZEVALLOS L. Phytochemical constituents and antioxidant capacity of different pecan[Carya illinoinensis (Wangenh.) K.Koch]cultivars[J]. Food Chem, 2007, 102(4):1241-1249.DOI:10.1016/j.foodchem.2006.07.024.
|
[3] |
JIA X D, LUO H T, XU M Y, et al. Dynamic changes in phenolics and antioxidant capacity during pecan (Carya illinoinensis) kernel ripening and its phenolics profiles[J]. Molecules, 2018, 23(2):435.DOI:10.3390/molecules23020435.
|
[4] |
O'REILLY C, SHEPHERD N S, PEREIRA A, et al. Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1[J]. Embo J, 1985, 4(4):877-882.
|
[5] |
BELD M, MARTIN C, HUITS H, et al. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes[J]. Plant Mol Biol, 1989, 13(5):491-502.DOI:10.1007/BF00027309.
|
[6] |
STAFFORD H A. Pathway to proanthocyanidins (condensed tannins), flavan-3-ols, and unsubstituted flavones[M]// Boca Raton, Florida: CRC Press, 1990: 63-100.
|
[7] |
JOSEPH R, TANNER G, LARKIN P. Proanthocyanidin synthesis in the forage legume Onobrychis vic A study of Chalcone synthase,dihydroflavonol 4-reductase and leucoanthocyanidin 4-reductase in developing leaves[J]. Funct Plant Biol, 1998, 25(3):271.DOI:10.1071/pp97068.
|
[8] |
SPRINGOB K, NAKAJIMA J, YAMAZAKI M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Nat Prod Rep, 2003, 20(3):288-303.DOI:10.1039/b109542k.
|
[9] |
XIE D Y, SHARMA S B, PAIVA N L, et al. Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605):396-399.DOI:10.1126/science.1078540.
|
[10] |
DEVIC M, GUILLEMINOT J, DEBEAUJON I, et al. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development[J]. Plant J, 1999, 19(4):387-398.DOI:10.1046/j.1365-313x.1999.00529.x.
|
[11] |
LEPINIEC L, DEBEAUJON I, ROUTABOUL J M, et al. Genetics and biochemistry of seed flavonoids[J]. Annu Rev Plant Biol, 2006, 57:405-430.DOI:10.1146/annurev.arplant.57.032905.105252.
|
[12] |
ROBBINS K S, MA Y, WELLS M L, et al. Separation and characterization of phenolic compounds from U.S. pecans by liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem, 2014, 62(19): 4332-4341. DOI: 10.1021/jf500909h.
|
[13] |
JIA X, LI M, LUO H, et al. Transcriptome survey reveals candidate genes involved in lipid metabolism of Carya illinoinensis[J]. Int J Agric Biol, 2018, 20(5):991-1004.DOI:10.17957/IJAB/15.0591.
|
[14] |
JOHNSON E T, YI H, SHIN B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins[J]. Plant J, 1999, 19(1):81-85.DOI:10.1046/j.1365-313x.1999.00502.x.
|
[15] |
POLASHOCK J J, GRIESBACH R J, SULLIVAN R F, et al. Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco[J]. Plant Sci, 2002, 163(2):241-251.DOI:10.1016/S0168-9452(02)00087-0.
|
[16] |
JOHNSON E T, RYU S, YI H, et al. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase[J]. Plant J, 2001, 25(3):325-333.DOI:10.1046/j.1365-313x.2001.00962.x.
|
[17] |
JOHNSON E T, YI H, SHIN B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins[J]. Plant J. 1999, 19(1):81-5. DOI: 10.1046/j.1365-313x.1999.00502.x.
|
[18] |
PETIT P, GRANIER T, D'ESTAINTOT B L, et al. Crystal structure of grape dihydroflavonol 4-reductase,a key enzyme in flavonoid biosynthesis[J]. J Mol Biol, 2007, 368(5):1345-1357.DOI:10.1016/j.jmb.2007.02.088.
|
[19] |
FURUKAWA T, MAEKAWA M, OKI T, et al. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. Plant J, 2007, 49(1):91-102.DOI:10.1111/j.1365-313x.2006.02958.x.
|
[20] |
KIM S, PARK J Y, YANG T J. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in Onion (Allium cepa L.)[J]. Mol Genet Genomics, 2015, 290(3):1027-1037.DOI:10.1007/s00438-014-0973-7.
|
[21] |
陈静, 俞滢, 张丹丹, 等. 白茶萎凋过程中儿茶素合成关键酶基因表达分析[J]. 南方农业学报, 2016, 47(8), 47:1364-1369.
|
|
CHEN J, YU Y, ZHANG D D, et al. Expression of genes encoding key enzymes in biosynthesis pathways of catechins in the withering process of white tea[J]. J South Agric, 2016, 47(8), 47:1364-1369.
|
[22] |
焦淑珍, 刘雅莉, 娄倩, 等. 葡萄风信子二氢黄酮醇4-还原酶基因(DFR)的克隆与表达分析[J]. 农业生物技术学报, 2014, 22(5):529-540.
|
|
JIAO S Z, LIU Y L, LOU Q, et al. Cloning and expression analysis of dihydroflavonol 4-reductase gene (DFR) from grape hyacinth(Muscari armeniacum)[J]. J Agric Biotechnol, 2014, 22(5):529-540.DOI:10.3969/j.issn.1674-7968.2014.05.001.
|
[23] |
韩科厅, 赵莉, 唐杏姣, 等. 菊花花青素苷合成关键基因表达与花色表型的关系[J]. 园艺学报, 2012, 39(3), 39:516-524.
|
|
HAN K T, ZHAO L, TANG X J, et al. The relationship between the expression of key genes in anthocyanin biosynthesis and the color of Chrysanthemum[J]. Acta Hortic Sin, 2012, 39(3), 39:516-524.DOI:10.16420/j.issn.0513-353x.2012.03.015.
|
[24] |
徐秀荣. 桂花CHS、DFR基因全长克隆、表达分析及表达载体构建[D]. 泰安: 山东农业大学, 2016.
|
|
XU X R. Cloning, expression analysis and expression vector construction of CHS DFR gene in Osmanthus fragrans[D]. Tai'an: Shandong Agricultural University, 2016.
|
[25] |
MAUGÉ C, GRANIER T, D'ESTAINTOT B L, et al. Crystal structure and catalytic mechanism of leucoanthocyanidin reductase from Vitis vinifera[J]. J Mol Biol, 2010, 397(4):1079-1091.DOI:10.1016/j.jmb.2010.02.002.
|
[26] |
LI H, FLACHOWSKY H, FISCHER T C, et al. Maize Lc transcription factor enhances biosynthesis of anthocyanins,distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.)[J]. Planta, 2007, 226(5):1243-1254.DOI:10.1007/s00425-007-0573-4.
|
[27] |
XIE D Y, SHARMA S B, PAIVA N L, et al. Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605):396-399.DOI:10.1126/science.1078540.
|
[28] |
POURCEL L, ROUTABOUL J M, KERHOAS L, et al. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat[J]. Plant Cell, 2005, 17(11):2966-2980.DOI:10.1105/tpc.105.035154.
|
[29] |
LIANG M, DAVIS E, GARDNER D, et al. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis[J]. Planta, 2006, 224(5):1185-1196.DOI:10.1007/s00425-006-0300-6.
|
[30] |
马婧. 金荞麦[Fagopyrum dibotrys (D.don) Hara]类黄酮生物合成途径重要功能基因的克隆、功能验证及表达特性分析[D]. 重庆: 西南大学, 2012.
|
|
MA J. Cloning,function identification and expression analysis of the important functional genes invloved in the flavonoids biosynthesis pathway of golden-buckwheat[Fagopyrum dibotrys (D.don) Hara[D]. Chongqing: Southwest University, 2012.
|
[31] |
JORDAO A M, LAUREANO O, Ricardo-Da-SILVA J M. Evolution of proanthocyanidins in bunch stems during berry development (Vitis vinifera)[J]. Vitis: J Grap Res, 2001, 40(1): 17-22. DOI:10.1007/s001220051692.
|
[32] |
XIE D Y, SHARMA S B, WRIGHT E, et al. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor[J]. Plant J, 2006, 45(6):895-907.DOI:10.1111/j.1365-313x.2006.02655.x.
|
[33] |
KUMAR V, YADAV S K. Overexpression of CsANR increased flavan-3-ols and decreased anthocyanins in transgenic tobacco[J]. Mol Biotechnol, 2013, 54(2):426-435.DOI:10.1007/s12033-012-9580-1.
|
[34] |
BOGS J, DOWNEY M O, HARVEY J S, et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiol, 2005, 139(2):652-663.DOI:10.1104/pp.105.064238.
|
[35] |
钟春水, 赖瑞联, 刘生财, 等. 光源或培养基成分对金花茶愈伤组织中DFR、LAR与PPO基因表达及总儿茶素含量的影响[J]. 广西植物, 2016, 36(12):1410-1415.
|
|
ZHONG C S, LAI R L, LIU S C, et al. Effects of light or medium components on gene expression of DFR,LAR and PPO and content of catechins in calli of Camellia nitidissima[J]. Guihaia, 2016, 36(12):1410-1415.DOI:10.11931/guihaia.gxzw201601015.
|