薄壳山核桃原花青素合成关键酶基因的克隆与表达分析

贾展慧, 贾晓东, 许梦洋, 莫正海, 翟敏, 宣继萍, 张计育, 王刚, 王涛, 郭忠仁

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 49-57.

PDF(6006 KB)
PDF(6006 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 49-57. DOI: 10.12302/j.issn.1000-2006.202009065
研究论文

薄壳山核桃原花青素合成关键酶基因的克隆与表达分析

作者信息 +

Cloning and expression analyses of the key enzyme gene of procyanidins biosynthesis in pecan (Carya illinoinensis)

Author information +
文章历史 +

摘要

【目的】原花青素是广泛存在于植物中一种重要的次级代谢产物,其强抗氧化性增强了植物自身的抗逆能力,同时赋予植物清除人体自由基的保健作用。研究薄壳山核桃种仁中原花青素生物合成途径,对改良薄壳山核桃的种质与品质均具有重要意义。【方法】以薄壳山核桃‘波尼’115 和135 d种仁混合样品为材料,通过RT-PCR扩增、克隆和测序后,获得了薄壳山核桃原花青素合成关键酶相关基因CiDFRCiLARCiANR的基因序列,并进行了生物信息学分析和表达水平分析。【结果】CiDFR基因长1 148 bp,包含1 020 bp的开放阅读框(ORF),编码339个氨基酸;CiLAR基因长1 390 bp,包含1 050 bp的ORF,编码349个氨基酸;CiANR基因长度为1 104 bp,包含1 014 bp ORF,编码337个氨基酸。荧光定量PCR检测结果显示,CiDFRCiANR基因在种仁发育中期(95~105 d)表达量较高,之后快速下降至较低值;CiLAR基因在95 d表达量较高,之后快速降低,在155 d样品中表达量又升至最高点。【结论】CiDFRCiANR基因表达量与酚类代谢物含量变化相关性较强,而CiLAR基因与之相关性较弱。

Abstract

【Objective】Procyanidins are a kind of important secondary metabolites widely existing in plants. They have higher antioxidant activity increasing plant stress resistance, and endow plants with the health care function of scavenging free radicals at the same time. The study of procyanidins biosynthesis pathway in the pecan kernel is of great significance for improving the germplasm and quality of pecan. 【Method】The sequences of CiDFR, CiLAR and CiANR gene, which are extracted from mixed samples of ‘Pawnee’ 115 and 135 d pecan kernel. These key genes related to the phenolic metabolic pathway, were obtained by RT-PCR amplification, cloning and sequencing.【Result】 CiDFR gene is 1 148 bp long and contains 1 020 bp open reading frame (ORF), encoding 339 amino acids. The CiLAR gene is 1 390 bp long and contains 1 050 bp of ORF, encoding 349 amino acids. CiANR gene is 1 104 bp long, contains 1 014 bp ORF, and encodes 337 amino acids. Fluorescence quantitative PCR showed that CiDFR and CiANR were expressed at high levels in the middle of seed kernel development (95-105 d) and then decreased rapidly to a lower level, while CiLAR was expressed at a higher level at 95 d and then decreased rapidly, and then increased to the highest level at 155 d again. 【Conclusion】CiDFR and CiANR gene expression had a strong correlation with phenolic metabolites, while CiLAR gene had a weak correlation.

关键词

薄壳山核桃 / 酚类代谢 / 基因克隆 / 生物信息学分析 / 荧光定量PCR

Key words

pecan(Carya illinoinensis) / metabolism of phenols / gene cloning / bioinformatics analysis / fluorescence quantitative PCR

引用本文

导出引用
贾展慧, 贾晓东, 许梦洋, . 薄壳山核桃原花青素合成关键酶基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版). 2022, 46(5): 49-57 https://doi.org/10.12302/j.issn.1000-2006.202009065
JIA Zhanhui, JIA Xiaodong, XU Mengyang, et al. Cloning and expression analyses of the key enzyme gene of procyanidins biosynthesis in pecan (Carya illinoinensis)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 49-57 https://doi.org/10.12302/j.issn.1000-2006.202009065
中图分类号: Q943.2;S722   

参考文献

[1]
LOMBARDINI L, VILLARREAL-LOZOYA J E, CISNEROS-ZEVALLOS L. Antioxidant properties of pecan kernels[J]. Acta Hortic, 2009(841):91-96.DOI:10.17660/actahortic.2009.841.8.
[2]
VILLARREAL-LOZOYA J E, LOMBARDINI L, CISNEROS-ZEVALLOS L. Phytochemical constituents and antioxidant capacity of different pecan[Carya illinoinensis (Wangenh.) K.Koch]cultivars[J]. Food Chem, 2007, 102(4):1241-1249.DOI:10.1016/j.foodchem.2006.07.024.
[3]
JIA X D, LUO H T, XU M Y, et al. Dynamic changes in phenolics and antioxidant capacity during pecan (Carya illinoinensis) kernel ripening and its phenolics profiles[J]. Molecules, 2018, 23(2):435.DOI:10.3390/molecules23020435.
[4]
O'REILLY C, SHEPHERD N S, PEREIRA A, et al. Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1[J]. Embo J, 1985, 4(4):877-882.
[5]
BELD M, MARTIN C, HUITS H, et al. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes[J]. Plant Mol Biol, 1989, 13(5):491-502.DOI:10.1007/BF00027309.
[6]
STAFFORD H A. Pathway to proanthocyanidins (condensed tannins), flavan-3-ols, and unsubstituted flavones[M]// Boca Raton, Florida: CRC Press, 1990: 63-100.
[7]
JOSEPH R, TANNER G, LARKIN P. Proanthocyanidin synthesis in the forage legume Onobrychis vic A study of Chalcone synthase,dihydroflavonol 4-reductase and leucoanthocyanidin 4-reductase in developing leaves[J]. Funct Plant Biol, 1998, 25(3):271.DOI:10.1071/pp97068.
[8]
SPRINGOB K, NAKAJIMA J, YAMAZAKI M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Nat Prod Rep, 2003, 20(3):288-303.DOI:10.1039/b109542k.
[9]
XIE D Y, SHARMA S B, PAIVA N L, et al. Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605):396-399.DOI:10.1126/science.1078540.
[10]
DEVIC M, GUILLEMINOT J, DEBEAUJON I, et al. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development[J]. Plant J, 1999, 19(4):387-398.DOI:10.1046/j.1365-313x.1999.00529.x.
[11]
LEPINIEC L, DEBEAUJON I, ROUTABOUL J M, et al. Genetics and biochemistry of seed flavonoids[J]. Annu Rev Plant Biol, 2006, 57:405-430.DOI:10.1146/annurev.arplant.57.032905.105252.
[12]
ROBBINS K S, MA Y, WELLS M L, et al. Separation and characterization of phenolic compounds from U.S. pecans by liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem, 2014, 62(19): 4332-4341. DOI: 10.1021/jf500909h.
[13]
JIA X, LI M, LUO H, et al. Transcriptome survey reveals candidate genes involved in lipid metabolism of Carya illinoinensis[J]. Int J Agric Biol, 2018, 20(5):991-1004.DOI:10.17957/IJAB/15.0591.
[14]
JOHNSON E T, YI H, SHIN B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins[J]. Plant J, 1999, 19(1):81-85.DOI:10.1046/j.1365-313x.1999.00502.x.
[15]
POLASHOCK J J, GRIESBACH R J, SULLIVAN R F, et al. Cloning of a cDNA encoding the cranberry dihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco[J]. Plant Sci, 2002, 163(2):241-251.DOI:10.1016/S0168-9452(02)00087-0.
[16]
JOHNSON E T, RYU S, YI H, et al. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase[J]. Plant J, 2001, 25(3):325-333.DOI:10.1046/j.1365-313x.2001.00962.x.
[17]
JOHNSON E T, YI H, SHIN B, et al. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins[J]. Plant J. 1999, 19(1):81-5. DOI: 10.1046/j.1365-313x.1999.00502.x.
[18]
PETIT P, GRANIER T, D'ESTAINTOT B L, et al. Crystal structure of grape dihydroflavonol 4-reductase,a key enzyme in flavonoid biosynthesis[J]. J Mol Biol, 2007, 368(5):1345-1357.DOI:10.1016/j.jmb.2007.02.088.
[19]
FURUKAWA T, MAEKAWA M, OKI T, et al. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. Plant J, 2007, 49(1):91-102.DOI:10.1111/j.1365-313x.2006.02958.x.
[20]
KIM S, PARK J Y, YANG T J. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in Onion (Allium cepa L.)[J]. Mol Genet Genomics, 2015, 290(3):1027-1037.DOI:10.1007/s00438-014-0973-7.
[21]
陈静, 俞滢, 张丹丹, 等. 白茶萎凋过程中儿茶素合成关键酶基因表达分析[J]. 南方农业学报, 2016, 47(8), 47:1364-1369.
CHEN J, YU Y, ZHANG D D, et al. Expression of genes encoding key enzymes in biosynthesis pathways of catechins in the withering process of white tea[J]. J South Agric, 2016, 47(8), 47:1364-1369.
[22]
焦淑珍, 刘雅莉, 娄倩, 等. 葡萄风信子二氢黄酮醇4-还原酶基因(DFR)的克隆与表达分析[J]. 农业生物技术学报, 2014, 22(5):529-540.
JIAO S Z, LIU Y L, LOU Q, et al. Cloning and expression analysis of dihydroflavonol 4-reductase gene (DFR) from grape hyacinth(Muscari armeniacum)[J]. J Agric Biotechnol, 2014, 22(5):529-540.DOI:10.3969/j.issn.1674-7968.2014.05.001.
[23]
韩科厅, 赵莉, 唐杏姣, 等. 菊花花青素苷合成关键基因表达与花色表型的关系[J]. 园艺学报, 2012, 39(3), 39:516-524.
HAN K T, ZHAO L, TANG X J, et al. The relationship between the expression of key genes in anthocyanin biosynthesis and the color of Chrysanthemum[J]. Acta Hortic Sin, 2012, 39(3), 39:516-524.DOI:10.16420/j.issn.0513-353x.2012.03.015.
[24]
徐秀荣. 桂花CHSDFR基因全长克隆、表达分析及表达载体构建[D]. 泰安: 山东农业大学, 2016.
XU X R. Cloning, expression analysis and expression vector construction of CHS DFR gene in Osmanthus fragrans[D]. Tai'an: Shandong Agricultural University, 2016.
[25]
MAUGÉ C, GRANIER T, D'ESTAINTOT B L, et al. Crystal structure and catalytic mechanism of leucoanthocyanidin reductase from Vitis vinifera[J]. J Mol Biol, 2010, 397(4):1079-1091.DOI:10.1016/j.jmb.2010.02.002.
[26]
LI H, FLACHOWSKY H, FISCHER T C, et al. Maize Lc transcription factor enhances biosynthesis of anthocyanins,distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.)[J]. Planta, 2007, 226(5):1243-1254.DOI:10.1007/s00425-007-0573-4.
[27]
XIE D Y, SHARMA S B, PAIVA N L, et al. Role of anthocyanidin reductase,encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299(5605):396-399.DOI:10.1126/science.1078540.
[28]
POURCEL L, ROUTABOUL J M, KERHOAS L, et al. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat[J]. Plant Cell, 2005, 17(11):2966-2980.DOI:10.1105/tpc.105.035154.
[29]
LIANG M, DAVIS E, GARDNER D, et al. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis[J]. Planta, 2006, 224(5):1185-1196.DOI:10.1007/s00425-006-0300-6.
[30]
马婧. 金荞麦[Fagopyrum dibotrys (D.don) Hara]类黄酮生物合成途径重要功能基因的克隆、功能验证及表达特性分析[D]. 重庆: 西南大学, 2012.
MA J. Cloning,function identification and expression analysis of the important functional genes invloved in the flavonoids biosynthesis pathway of golden-buckwheat[Fagopyrum dibotrys (D.don) Hara[D]. Chongqing: Southwest University, 2012.
[31]
JORDAO A M, LAUREANO O, Ricardo-Da-SILVA J M. Evolution of proanthocyanidins in bunch stems during berry development (Vitis vinifera)[J]. Vitis: J Grap Res, 2001, 40(1): 17-22. DOI:10.1007/s001220051692.
[32]
XIE D Y, SHARMA S B, WRIGHT E, et al. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor[J]. Plant J, 2006, 45(6):895-907.DOI:10.1111/j.1365-313x.2006.02655.x.
[33]
KUMAR V, YADAV S K. Overexpression of CsANR increased flavan-3-ols and decreased anthocyanins in transgenic tobacco[J]. Mol Biotechnol, 2013, 54(2):426-435.DOI:10.1007/s12033-012-9580-1.
[34]
BOGS J, DOWNEY M O, HARVEY J S, et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiol, 2005, 139(2):652-663.DOI:10.1104/pp.105.064238.
[35]
钟春水, 赖瑞联, 刘生财, 等. 光源或培养基成分对金花茶愈伤组织中DFRLARPPO基因表达及总儿茶素含量的影响[J]. 广西植物, 2016, 36(12):1410-1415.
ZHONG C S, LAI R L, LIU S C, et al. Effects of light or medium components on gene expression of DFR,LAR and PPO and content of catechins in calli of Camellia nitidissima[J]. Guihaia, 2016, 36(12):1410-1415.DOI:10.11931/guihaia.gxzw201601015.

基金

国家自然科学基金项目(31901347)
江苏省科技厅苏北科技专项项目(SZ-YC2019038)
江苏省中国科学院植物研究所自主科研项目(JSPKLB202055)
江苏省林业科技创新与推广项目(LYKJ-句容[2020]01)
江苏省科技厅重点研发计划项目(BE2021349)

编辑: 吴祝华
PDF(6006 KB)

Accesses

Citation

Detail

段落导航
相关文章

/