基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算

赵颖慧, 郭新龙, 甄贞

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 49-57.

PDF(1443 KB)
PDF(1443 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4) : 49-57. DOI: 10.12302/j.issn.1000-2006.202010004
专题报道I (执行主编李凤日)

基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算

作者信息 +

Estimation of aboveground biomass of natural secondary forests based on optical-ALS variable combination and non-parametric models

Author information +
文章历史 +

摘要

【目的】通过组合机载激光雷达(airborne laser scanning, ALS)数据和Sentinel-2A数据提取特征变量,探讨估算天然次生林地上生物量(aboveground biomass, AGB)最佳的变量组合方式和估算方法。【方法】以2015年ALS数据、2016年Sentinel-2A数据和黑龙江帽儿山林场森林资源连续清查固定样地数据为数据源,通过ALS数据提取高度特征变量(all the LiDAR variables, 记为AL),Sentinel-2A数据提取若干植被指数变量(all the optical variables, 记为AO),然后将光学-ALS结合变量(combined optical and LiDAR index, COLI,记为ICOL)结合成为新的变量 I CO L 1 I CO L 2 ,以6组特征变量组合方式(AO+AL I CO L 1 I CO L 2 I CO L 1 +AO+AL I CO L 2 +AO+AL I CO L 1 + I CO L 2 +AO+AL)作为输入变量,分别使用多元线性逐步回归(stepwise multiple linear regression,SMLR)、K-最近邻法(K-nearest neighbor,K-NN)、支持向量回归(support vector regression,SVR)、随机森林(random forest, RF)和堆叠稀疏自编码器(stack sparse auto-encoder,SSAE)共5种方法构建了天然次生林AGB估算模型,探讨ICOLs变量以及不同模型对生物量估测精度的影响。【结果】结合变量ICOLs对于森林AGB的估算十分有效,加入ICOLs变量能够很大提高森林AGB模型的估算精度;与其他4种模型相比,无论使用哪些变量作为输入数据,SSAE模型的精度最高;当使用SSAE模型,以光学和ALS变量组合 ( I CO L 1 + I CO L 2 +AO+AL)作为输入特征变量时,模型的准确性最高:R2=0.83,均方根误差为11.06 t/hm2,相对均方根误差为8.23%。【结论】结合变量COLIs能够有效地提高天然次生林AGB的估算精度,而且深度学习模型(SSAE)在估算天然次生林AGB方面优于其他预测模型。总体而言,利用ALS和Sentinel-2A数据组合变量的SSAE模型可以较准确地估算森林AGB,为天然次生林地上生物量的估算和碳储量评估提供技术支持。

Abstract

【Objective】 We explored feature variables extracted through a combination of airborne laser scanning (ALS) and Sentinel-2A data, and investigated with the aim of identifying the best variable combination mode and estimation method for estimating the forest aboveground biomass (AGB) of natural secondary forests. 【Method】 Based on ALS data from 2015, Sentinel-2A data, and the fixed sample plots of the continuous inventory of secondary forest resources from Maoershan Forest Farm in 2016, this study extracted height features from ALS data (all the LiDAR variables, AL), several vegetation indices from Sentinel-2A (all the optical variables, AO), and then combined the two kinds of variables into new variables (COLI1 and COLI2). Finally, five models were constructed, including the stepwise multiple linear regression (SMLR), K-nearest neighbor (K-NN), support vector regression (SVR), random forest (RF), and stack sparse auto-encoder (SSAE) of AGB for natural secondary forests using six feature combinations (AO+AL, COLI1, COLI2, COLI1+AO+AL, COLI2+AO+AL and COLI1+ COLI2+AO+AL). The influence of the COLIs variable, and that of different models, on the accuracy of the AGB was investigated. 【Result】The COLIs variable could efficiently improve the accuracy of AGB estimates and, compared to the other four models, SSAE had the highest accuracy regardless of the variables. The SSAE model with the combination of optical and ALS features (COLI1+ COLI2+AO+AL) had the best model performance of R2 which was 0.83, RMSE was 11.06 t/hm2, rRMSE was 8.23%. 【Conclusion】 The combined variable COLIs can effectively improve the estimation accuracy of natural secondary forest AGB, and one way of the deep learning model (SSAE) is superior to the other prediction models in estimating the AGB of a natural secondary forest. This conclusion will help to further apply the deep learning model to draw a large-area AGB spatial distribution map and estimate the other forest parameters. In general, the SSAE model with the combination of ALS and Sentinel-2A data could estimate AGB more accurately than the other models. This finding provides a technical support for AGB estimation and carbon evaluation of natural secondary forests.

关键词

机载激光雷达 / Sentinel-2A / 光学-ALS结合变量 / 堆叠稀疏自编码器 / 天然次生林 / 地上生物量

Key words

airborne laser radar (ALS) / Sentinel-2A / combined optical and LiDNR index (COLIs) / stack sparse auto-encoder (SSAE) / natural secondary forest / aboveground biomass

引用本文

导出引用
赵颖慧, 郭新龙, 甄贞. 基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算[J]. 南京林业大学学报(自然科学版). 2021, 45(4): 49-57 https://doi.org/10.12302/j.issn.1000-2006.202010004
ZHAO Yinghui, GUO Xinlong, ZHEN Zhen. Estimation of aboveground biomass of natural secondary forests based on optical-ALS variable combination and non-parametric models[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 49-57 https://doi.org/10.12302/j.issn.1000-2006.202010004
中图分类号: S758   

参考文献

[1]
GOETZ S, DUBAYAH R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change[J]. Carbon Manag, 2011, 2(3):231-244. DOI: 10.4155/cmt.11.18.
[2]
ZOLKOS S G, GOETZ S J, DUBAYAH R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing[J]. Remote Sens Environ, 2013, 128:289-298. DOI: 10.1016/j.rse.2012.10.017.
[3]
娄雪婷, 曾源, 吴炳方. 森林地上生物量遥感估测研究进展[J]. 国土资源遥感, 2011, 23(1):1-8.
LOU X T, ZENG Y, WU B F. Advances in the estimation of above-ground biomass of forest using remote sensing[J]. Remote Sens Land Resour, 2011, 23(1):1-8. DOI: 10.1016/j.ejphar.2011.07.001.
[4]
TSUI O W, COOPS N C, WULDER M A, et al. Integrating airborne LiDAR and space-borne radar via multivariate Kriging to estimate above-ground biomass[J]. Remote Sens Environ, 2013, 139:340-352. DOI: 10.1016/j.rse.2013.08.012.
[5]
LI W, NIU Z, LIANG X L, et al. Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via strati-fied random sampling[J]. Int J Appl Earth Obs Geoinformation, 2015, 41:88-98. DOI: 10.1016/j.jag.2015.04.020.
[6]
CHEN X W, LI B L, LIN Z S. The acceleration of succession for the restoration of the mixed-broadleaved Korean pine forests in Northeast China[J]. For Ecol Manag, 2003, 117(1/2/3):503-514. DOI: 10.1016/S0378-1127(02)00455-3.
[7]
安利波, 毕会涛, 杨红震, 等. 河南不同立地条件下栓皮栎天然次生林群落生物量结构特征[J]. 河南农业大学学报, 2016, 50(5):624-628.
AN L B, BI H T, YANG H Z, et al. Structure characteristics of community biomass of Quercus variabilis natural secondary forest under different site conditions in Henan Province[J]. J Henan Agric Univ, 2016, 50(5):624-628. DOI: 10.16445/j.cnki.1000-2340.2016.05.008.
[8]
赵金龙, 王泺鑫, 韩海荣, 等. 辽河源不同龄组油松天然次生林生物量及空间分配特征[J]. 生态学报, 2014, 34(23):7026-7037.
ZHAO J L, WANG L X, HAN H R, et al. Biomass and spatial distribution characteristics of Pinus tabulaeformis natural secondary forest at different age groups in the Liaoheyuan Nature Reserve, Hebei Province[J]. Acta Ecol Sin, 2014, 34(23):7026-7037. DOI: 10.5846/stxb201303060357.
[9]
申鑫, 曹林, 佘光辉. 高光谱与高空间分辨率遥感数据的亚热带森林生物量反演[J]. 遥感学报, 2016, 20(6):1446-1460.
SHEN X, CAO L, SHE G H. Subtropical forest biomass estimation based on hyperspectral and high-resolution remotely sensed data[J]. J Remote Sens, 2016, 20(6):1446-1460. DOI: 10.11834/jrs.20165210.
[10]
LI Y C, LI M Y, LI C, et al. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms[J]. Sci Rep, 2020, 10:9952. DOI: 10.1038/s41598-020-67024-3.
[11]
HUANG W L, SUN G Q, DUBAYAH R, et al. Mapping biomass change after forest disturbance: applying LiDAR footprint-derived models at key map scales[J]. Remote Sens Environ, 2013, 134:319-332. DOI: 10.1016/j.rse.2013.03.017.
[12]
MONTESANO P M, NELSON R F, DUBAYAH R O, et al. The uncertainty of biomass estimates from LiDAR and SAR across a boreal forest structure gradient[J]. Remote Sens Environ, 2014, 154:398-407. DOI: 10.1016/j.rse.2014.01.027.
[13]
NAESSET E, GOBAKKEN T, SOLBERG S, et al. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area[J]. Remote Sens Environ, 2011, 115(12):3599-3614. DOI: 10.1016/j.rse.2011.08.021.
[14]
HUDAK A T, STRAND E K, VIERLING L A, et al. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys[J]. Remote Sens Environ, 2012, 123:25-40. DOI: 10.1016/j.rse.2012.02.023.
[15]
PFLUGMACHER D, COHEN W B, KENNEDY R E. Using Landsat-derived disturbance history (1972-2010) to predict current forest structure[J]. Remote Sens Environ, 2012, 122:146-165. DOI: 10.1016/j.rse.2011.09.025.
[16]
ZHAO K G, POPESCU S, NELSON R. Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers[J]. Remote Sens Environ, 2009, 113(1):182-196. DOI: 10.1016/j.rse.2008.09.009.
[17]
ASNER G P, POWELL G V, MASCARO J, et al. High-resolution forest carbon stocks and emissions in the Amazon[J]. PNAS, 2010, 107(38):16738-16742. DOI: 10.1073/pnas.1004875107.
[18]
CAO L, COOPS N C, INNES J L, et al. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data[J]. Remote Sens Environ, 2016, 178:158-171. DOI: 10.1016/j.rse.2016.03.012.
[19]
FERRAZ A, SAATCHI S, MALLET C, et al. Airborne lidar estimation of aboveground forest biomass in the absence of field inventory[J]. Remote Sens, 2016, 8(8):653. DOI: 10.3390/rs8080653.
[20]
BROVKINA O, NOVOTNY J, CIENCIALA E, et al. Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe[J]. Ecol Eng, 2017, 100:219-230. DOI: 10.1016/j.ecoleng.2016.12.004.
[21]
EDIRIWEERA S, PATHIRANA S, DANAHER T, et al. Estimating above-ground biomass by fusion of LiDAR and multispectral data in subtropical woody plant communities in topographically complex terrain in north-eastern Australia[J]. J For Res, 2014, 25(4):761-771. DOI: 10.1007/s11676-014-0485-7.
[22]
郭艺歌, 王新云, 何杰, 等. 基于多源遥感数据的森林生物量估算模型研究[J]. 人民长江, 2016, 47(3):17-22.
GUO Y G, WANG X Y, HE J, et al. Study on forest biomass estimation model based on multisource remote sensing data[J]. Yangtze River, 2016, 47(3):17-22. DOI: 10.16232/j.cnki.1001-4179.2016.03.005.
[23]
李明阳, 吴军, 余超, 等. 福建武夷山自然保护区森林碳储量遥感估测方法与空间分析[J]. 南京林业大学学报(自然科学版), 2014, 38(6):6-10.
LI M Y, WU J, YU C, et al. Estimation and spatial analysis of forest carbon stocks based on remote sensing technology in Wuyi Mountain National Reserve of Fujian Province[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(6):6-10. DOI: 10.3969/j.issn.1000-2006.2014.06.002.
[24]
潘磊, 孙玉军, 王轶夫, 等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156.
PAN L, SUN Y J, WANG Y F, et al. Estimation of aboveground biomass in a Chinese fir(Cunninghamia lanceolata)forest combining data of Sentinel-1 and Sentinel-2[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):149-156. DOI: 10.3969/j.issn.1000-2006.201811012.
[25]
TIAN X, LI Z Y, SU Z B, et al. Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data[J]. Int J Remote Sens, 2014, 35(21):7339-7362. DOI: 10.1080/01431161.2014.967888.
[26]
FASSNACHT F E, HARTIG F, LATIFI H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass[J]. Remote Sens Environ, 2014, 154:102-114. DOI: 10.1016/j.rse.2014.07.028.
[27]
蒙诗栎, 庞勇, 张钟军, 等. WorldView-2纹理的森林地上生物量反演[J]. 遥感学报, 2017, 21(5):812-824.
MENG S L, PANG Y, ZHANG Z J, et al. Estimation of aboveground biomass in a temperate forest using texture information from WorldView-2[J]. J Remote Sens, 2017, 21(5):812-824. DOI: 10.11834/jrs.20176083.
[28]
SHAO Z F, ZHANG L J, WANG L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2017, 10(12):5569-5582. DOI: 10.1109/JSTARS.2017.2748341.
[29]
ZHANG L J, SHAO Z F, LIU J C, et al. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data[J]. Remote Sens, 2019, 11(12):1459. DOI: 10.3390/rs11121459.
[30]
董利虎. 黑龙江省主要树种相容性生物量模型研究[D]. 哈尔滨: 东北林业大学, 2012.
DONG L H. Compatible biomass models of main tree species in Heilongjiang Province[D]. Harbin: Northeast Forestry University, 2012.
[31]
ANDERSEN H E, MCGAUGHEY R J, REUTEBUCH S E. Estimating forest canopy fuel parameters using LIDAR data[J]. Remote Sens Environ, 2005, 94(4):441-449. DOI: 10.1016/j.rse.2004.10.013.
[32]
LU D S, CHEN Q, WANG G X, et al. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates[J]. Int J For Res, 2012(2):1-16. DOI: 10.1155/2012/436537.
[33]
CHEN Q, LAURIN G V, BATTLES J J, et al. Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass[J]. Remote Sens Environ, 2012, 121:108-117. DOI: 10.1016/j.rse.2012.01.021.
[34]
LUO S Z, WANG C, XI X H, et al. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation[J]. Ecol Indic, 2017, 73:378-387. DOI: 10.1016/j.ecolind.2016.10.001.
[35]
徐婷, 曹林, 申鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4):309-321.
摘要
快速、定量、精确地估算区域森林生物量一直是森林生态功能评价以及碳储量研究的重要问题。该研究基于机载激光雷达(LiDAR)点云与Landsat 8 OLI多光谱数据, 借助江苏省常熟市虞山地区55块调查样地数据, 首先提取并分析了87个特征变量(53个OLI特征变量, 34个LiDAR特征变量)与森林地上、地下生物量的Pearson&#x02019;s相关系数以进行变量优选, 然后利用多元逐步回归法建立森林生物量估算模型(OLI生物量估算模型和LiDAR生物量估算模型), 并与基于两种数据建立的综合生物量估算模型的结果进行比较, 讨论预测结果及其精确性。结果表明: 3种模型(OLI模型、LiDAR模型和综合模型)在所有样地无区分分析时, 地上和地下生物量的估算精度均达到0.4以上, 基于不同森林类型(针叶林、阔叶林、混交林)分析时地上和地下生物量的估算精度均有明显提高, 达到0.67及以上。利用分森林类型模型估算生物量, 综合生物量估算模型精度(地上生物量: R<sup>2</sup>为0.88; 地下生物量: R<sup>2</sup>为0.92)优于OLI生物量估算模型(地上生物量: R<sup>2</sup>为0.73; 地下生物量: R<sup>2</sup>为0.81)和LiDAR生物量估算模型(地上生物量: R<sup>2</sup>为0.86; 地下生物量: R<sup>2</sup>为0.83)。
XU T, CAO L, SHEN X, et al. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data[J]. Chin J Plant Ecol, 2015, 39(4):309-321. DOI: 10.17521/cjpe.2015.0030.
[36]
曹霖, 彭道黎, 王雪军, 等. 应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算[J]. 东北林业大学学报, 2018, 46(9):54-58.
CAO L, PENG D L, WANG X J, et al. Estimation of forest stock volume with spectral and textural information from the Sentinel-2A[J]. J Northeast For Univ, 2018, 46(9):54-58. DOI: 10.13759/j.cnki.dlxb.2018.09.012.
[37]
ROUSE J W J, HAAS R H, SCHELL J A, et al. Monitoring ve-getation systems in the great plains with ERTS[EB/OL]. https://ntrs.nasa.gov/api/citations/19740022614/downloads/19740022614.pdf 1974.
[38]
RICHARDSON A J, WIEGAND C L. Distinguishing vegetation from soil background information[J]. Photogramm Eng Remote Sens, 1977, 43(12):1541-1552. DOI: 10.1109/TGE.1977.294499.
[39]
HUETE A, DIDAN K, MIURA T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sens Environ, 2002, 83(1/2):195-213. DOI: 10.1016/S0034-4257(02)00096-2.
[40]
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666. DOI: 10.2307/1936256.
[41]
GITELSON A A, VIÑA A, CIGANDA V, et al. Remote estimation of canopy chlorophyll content in crops[J]. Geophys Res Lett, 2005, 32(8):L08403. DOI: 10.1029/2005GL022688.
[42]
RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sens Environ, 1996, 55(2):95-107. DOI: 10.1016/0034-4257(95)00186-7.
[43]
GITELSON A A, MERZLYAK M N. Remote estimation of chlorophyll content in higher plant leaves[J]. Int J Remote Sens, 1997, 18(12):2691-2697. DOI: 10.1080/014311697217558.
[44]
GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. J Plant Physiol, 2003, 160(3):271-282. DOI: 10.1078/0176-1617-00887.
[45]
谢福明, 舒清态, 字李, 等. 基于K-NN非参数模型的高山松生物量遥感估测研究[J]. 江西农业大学学报, 2018, 40(4):743-750.
XIE F M, SHU Q T, ZI L, et al. Remote sensing estimation of Pinus densata aboveground biomass based on K-NN nonparametric model[J]. Acta Agric Univ Jiangxiensis, 2018, 40(4):743-750. DOI: 10.13836/j.jjau.2018094.
[46]
GLEASON C J, IM J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sens Environ, 2012, 125:80-91. DOI: 10.1016/j.rse.2012.07.006.
[47]
PANDIT S, TSUYUKI S, DUBE T. Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel-2 data[J]. Remote Sens, 2018, 10(4):601. DOI: 10.3390/rs10040601.
[48]
STEPHEN A B, PHILIP H Y. The trouble with R2[J]. Journal of Parametrics, 2006, 25(1):87-114. DOI: 10.1080/10157891.2006.10462273.
[49]
ASTOLA H, HÄME T, SIRRO L, et al. Comparison of Sentinel-2 and Landsat-8 imagery for forest variable prediction in boreal region[J]. Remote Sens Environ. 2019, 223:257-273. DOI: 10.1016/j.rse.2019.01.019.
[50]
郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报, 2017, 21(2):318-328.
ZHENG Y, WU B F, ZHANG M. Estimating the above ground biomass of winter wheat using the Sentinel-2 data[J]. J Remote Sens, 2017, 21(2):318-328. DOI: 10.11834/jrs.20176269.
[51]
雷相东. 机器学习算法在森林生长收获预估中的应用[J]. 北京林业大学学报, 2019, 41(12):23-36.
LEI X D. Applications of machine learning algorithms in forest growth and yield prediction[J]. J Beijing For Univ, 2019, 41(12):23-36. DOI: 10.12171/j.1000-1522.20190356.
[52]
孙雪莲. 基于Landsat 8-OLI的香格里拉高山松林生物量遥感估测模型研究[D]. 昆明: 西南林业大学, 2016.
SUN X L. Biomass estimation model of Pinus densata forests in Shangri-La City based on Landsat 8-OLI by remote sensing[D]. Kunming: Southwest Forestry University, 2016.
[53]
HAME T, RAUSTE Y, ANTROPOV O, et al. Improved mapping of tropical forests with optical and SAR imagery, part II: above ground biomass estimation[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2013, 6(1):92-101. DOI: 10.1109/JSTARS.2013.2241020.

基金

国家自然科学基金项目(31870530)
中央高校基本科研业务费专项资金项目(2572019CP15)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1443 KB)

Accesses

Citation

Detail

段落导航
相关文章

/