南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5): 125-132.doi: 10.12302/j.issn.1000-2006.202010005
程娟1,2(), 丁访军2,*(), 谭正洪1, 廖立国1, 周汀2,3, 崔迎春2
收稿日期:
2020-10-03
接受日期:
2021-04-19
出版日期:
2021-09-30
发布日期:
2021-09-30
通讯作者:
丁访军
基金资助:
CHENG Juan1,2(), DING Fangjun2,*(), TAN Zhenghong1, LIAO Liguo1, ZHOU Ting2,3, CUI Yingchun2
Received:
2020-10-03
Accepted:
2021-04-19
Online:
2021-09-30
Published:
2021-09-30
Contact:
DING Fangjun
摘要:
【目的】 石漠化是中国西南喀斯特地区严重的环境问题, 探讨在喀斯特生境下树种气孔对蒸腾需求的响应及环境因子的影响,了解类似气候条件下相似物种对外界环境条件的基本调节策略,为喀斯特地区森林的保护和石漠化治理提供参考。【方法】 在贵州茂兰喀斯特地区,以常绿树种胀果树参(Dendropanax inflatus)和落叶树种瓜木(Alangium platanifolium)为对象,利用热扩散探针(TDP)对树干液流进行了野外监测,同步记录小气候数据,采集两树种叶片样本带回实验室进行干燥处理,然后在电子显微镜下做气孔结构分析。【结果】 ①常绿和落叶树种树干的液流速率(FS)日变化规律相似,整体来看,观察期落叶树种瓜木的FS[(585.25±53.46) g/h]高于常绿树种胀果树参的[(384.83±39.12) g/h],说明落叶树种比常绿树种的蒸腾作用强。②落叶树种瓜木的气孔密度(SD)[(1 005.08±80.99) 个/mm2]显著大于常绿树种胀果树参的[(237.16±21.67) 个/mm2](P<0.05,df=48,F=7.08),但两树种的气孔开度(SO)、气孔长度(SC)以及气孔器大小(SAS)均无显著差异(P>0.05,df=48,F=2.65);同时SD与SO、SC之间均存在显著负相关(P<0.05,df=9,F=14.00;P<0.05,df=9,F=17.12),相比较低气孔密度的常绿树种胀果树参气孔较长,开度较大。③两树种的SD与Fs均呈极显著正相关(P<0.01,df=48,F=16.03;P<0.01,df=48,F=32.10),说明两树种蒸腾与气孔密度小有关;同时两树种气孔密度与太阳辐射强度(Rn)均呈显著正相关(P<0.05,df=48,F=7.66;P<0.01,df=48,F=47.18),落叶树种瓜木的SC与Rn呈显著正相关(P<0.05,df=48,F=13.06),常绿树种胀果树参的SD还与大气温度(Ta)呈显著正相关(P<0.05,df=48,F=5.02), SC与Ta呈显著正相关(P<0.05,df=48,F=6.32),SO与Ta、Rn呈极显著正相关(P<0.01,df=48,F=17.20;P<0.01,df=48,F=14.81),说明Rn是影响两树种气孔形态的主要环境因子。【结论】 环境因子和气孔形态变化均在调节树木蒸腾中起作用,以气孔密度较低的常绿树种胀果树参对环境条件的响应更强,从蒸腾调节的角度来看,气孔密度大小以及环境因子影响叶片气孔形态的差异是导致树木蒸腾强弱差异的关键所在,类似落叶树种瓜木有高气孔密度的物种更适合在复杂的喀斯特生境下生长。
中图分类号:
程娟,丁访军,谭正洪,等. 贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 125-132.
CHENG Juan, DING Fangjun, TAN Zhenghong, LIAO Liguo, ZHOU Ting, CUI Yingchun. Leaf stomatal morphological characteristics and their effects on transpiration for two tree species in Maolan Karst area,Guizhou Province[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(5): 125-132.DOI: 10.12302/j.issn.1000-2006.202010005.
表2
胀果树参和瓜木叶片的气孔形态和树干液流速率与环境因子的相关性分析"
树种 tree species | 变量 variable | 水汽压亏缺 VPD | 大气温度 Ta | 太阳辐射强度 Rn | 液流速率 FS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | R2 | F | R2 | F | R2 | F | R2 | |||||||||||
胀果树参 D. inflatus | 气孔密度(SD) | 2.55 | 0.25 | 5.02 | 0.62* | 3.18 | 0.34 | 16.03 | 0.86** | |||||||||
气孔开度(SO) | 1.06 | 0.02 | 17.20 | 0.55** | 14.81 | 0.61** | 29.41 | 0.92** | ||||||||||
气孔长度(SC) | 3.71 | 0.46 | 6.32 | 0.36* | 2.15 | 0.82** | 11.06 | 0.70* | ||||||||||
气孔器大小(SAS) | 0.53 | 0.28 | 0.78 | 0.43 | 0.02 | 0.07 | 0.06 | 0.41 | ||||||||||
液流速率(FS) | 16.73 | 0.77* | 2.19 | 0.55 | 42.03 | 0.78** | ||||||||||||
瓜木 A. platanifolium | 气孔密度(SD) | 1.49 | 0.53 | 5.50 | 0.74* | 7.66 | 0.84* | 32.10 | 0.84** | |||||||||
气孔开度(SO) | 6.75 | 0.45 | 6.10 | 0.79** | 2.04 | 0.17 | 9.25 | 0.71* | ||||||||||
气孔长度(SC) | 8.97 | 0.34 | 4.59 | 0.70* | 13.06 | 0.89* | 6.12 | 0.81* | ||||||||||
气孔器大小(SAS) | 0.43 | 0.58 | 0.54 | 1.41 | 1.27 | 0.26 | 3.08 | 0.31 | ||||||||||
液流速率(FS) | 21.30 | 0.80** | 1.85 | 0.51 | 4.56 | 0.74* |
[1] | 文林琴, 栗忠飞. 2004—2016年贵州省石漠化状况及动态演变特征[J]. 生态学报, 2020, 40(17):5928-5939. |
WEN L Q, LI Z F. Evolution characteristics of rocky desertification during 2004-2016 in Guizhou Province,China[J]. Acta Ecologica Sinica, 2020, 40(17):5928-5939.DOI: 10.5846/stxb201906251343.
doi: 10.5846/stxb201906251343 |
|
[2] | 张俊佩. 贵州石漠化地区主要造林树种耐旱特性及适应性评价[D]. 北京:中国林业科学研究院 2009. |
ZHANG J P. The evaluation on characteristics of drought resistance and adaptability of main trees in rocky desertification district of Guizhou Province[D]. Beijing:Chinese Academy of Forestry, 2009,DOI: 10.7666/d.D602844.
doi: 10.7666/d.D602844 |
|
[3] | 容丽, 王世杰, 俞国松, 等. 荔波喀斯特森林4种木本植物水分来源的稳定同位素分析[J]. 林业科学, 2012, 48(7):14-22. |
RONG L, WANG S J, YU G S, et al. Stable isotope analysis of water sources of four woody species in the Libo Karst forest[J]. Scientia Silvae Sinicae, 2012, 48(7):14-22.DOI: 10.11707/j.1001-7488.20120703.
doi: 10.11707/j.1001-7488.20120703 |
|
[4] |
刘长成, 刘玉国, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报, 2011, 35(10):1070-1082.
doi: 10.3724/SP.J.1258.2011.01070 |
LIU C C, LIU Y G, GUO K. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in Karst habitats[J]. Journal of Plant Ecology, 2011, 35(10):1070-1082.DOI: 10.3724/SP.J.1258.2011.01070.
doi: 10.3724/SP.J.1258.2011.01070 |
|
[5] |
TANG Y K, WEN X F, SUN X M, et al. The limiting effect of deep soilwater on evapotranspiration of a subtropical coniferous plantation subjected to seasonal drought[J]. Advances in Atmospheric Sciences, 2014, 31(2):385-395.DOI: 10.1007/s00376-013-2321-y.
doi: 10.1007/s00376-013-2321-y |
[6] | 高春娟, 夏晓剑, 师恺, 等. 植物气孔对全球环境变化的响应及其调控防御机制[J]. 植物生理学报, 2012, 48(1):19-28. |
GAO C J, XIA X J, SHI K, et al. Response of stomata to global climate changes and the underlying regulation mechanism of stress responses[J]. Plant Physiology Journal, 2012, 48(1):19-28.DOI: 10.13592/j.cnki.ppj.2012.01.013.
doi: 10.13592/j.cnki.ppj.2012.01.013 |
|
[7] |
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908.DOI: 10.1038/nature01843.
doi: 10.1038/nature01843 |
[8] |
CHEN Z H, CHEN G, DAI F, et al. Molecular evolution of grass stomata[J]. Trends in Plant Science, 2017, 22(2):124-139.DOI: 10.1016/j.Tplants.2016.09.005.
doi: 10.1016/j.Tplants.2016.09.005 |
[9] |
MÜLLER H M, SCHÄFER N, BAUER H, et al. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel[J]. New Phytologist, 2017, 216(1):150-162.DOI: 10.1111/nph.14672.
doi: 10.1111/nph.14672 |
[10] |
CAINE R S, CHATER C C, KAMISUGI Y, et al. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens[J]. Development, 2016, 143(18):3306-3314.DOI: 10.1242/dev.135038.
doi: 10.1242/dev.135038 |
[11] |
RUDALL P J, CHEN E D, CULLEN E. Evolution and development of monocot stomata[J]. American Journal of Botany, 2017, 104(8):1122-1141.DOI: 10.3732/ajb.1700086.
doi: 10.3732/ajb.1700086 |
[12] | 解斌, 李俊豪, 景淑怡, 等. 2种梨砧木叶片光合与气孔形态特征研究[J]. 经济林研究, 2019, 37(2):126-133. |
XIE B, LI J H, JING S Y, et al. Characteristics of photosynjournal and stomatal morphology in leaves from two species of pear rootstocks[J]. Nonwood Forest Research, 2019, 37(2):126-133.DOI: 10.14067/j.cnki.1003-8981.2019.02.018.
doi: 10.14067/j.cnki.1003-8981.2019.02.018 |
|
[13] | 韦海建, 杨惠敏, 赵亮. 遮荫环境对白三叶草气孔和光合特性的影响[J]. 草业科学, 2007, 24(10):94-97. |
WEI H J, YANG H M, ZHAO L. The effects of shadowing on stomatal and photosynthetic characteristics of Trifolium repens[J]. Pratacultural Science, 2007, 24(10):94-97.DOI: 10.3969/j.issn.1001-0629.2007.10.019.
doi: 10.3969/j.issn.1001-0629.2007.10.019 |
|
[14] |
PRICE C A. LEAF GUI:analyzing the geometry of veins and areoles using image segmentation algorithms[J]. Methods in Molecular Biology, 2012, 918:41-49.DOI: 10.1007/978-1-61779-995-2_4.
doi: 10.1007/978-1-61779-995-2_4 |
[15] |
BERTOLINO L T, CAINE R S, GRAY J E. Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Frontiers in Plant Science, 2019, 10:225.DOI: 10.3389/fpls.2019.00225.
doi: 10.3389/fpls.2019.00225 |
[16] |
FORD C R, HUBBARD R M, KLOEPPEL B D, et al. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance[J]. Agricultural & Forest Meteorology, 2007, 145(3/4):176-185.DOI: 10.1016/j.agrformet.2007.04.010.
doi: 10.1016/j.agrformet.2007.04.010 |
[17] | 吴鹏, 杨文斌, 崔迎春, 等. 喀斯特区天峨槭(Acer wangchii)树干液流特征及其与环境因子的相关分析[J]. 生态学报, 2017, 37(22):7552-7567. |
WU P, YANG W B, CUI Y C, et al. Characteristics of sap flow and correlation analysis with environmental factors of Acer wangchii in the Karst area[J]. Acta Ecologica Sinica, 2017, 37(22):7552-7567.DOI: 10.5846/stxb201609251934.
doi: 10.5846/stxb201609251934 |
|
[18] | 赵文君, 舒德远, 李成龙, 等. 喀斯特森林宜昌润楠蒸腾耗水规律及其与环境因子的关系[J]. 中南林业科技大学学报, 2019, 39(1):108-115. |
ZHAO W J, SHU D Y, LI C L, et al. Relationships among transpiration,water consumption and environmental factors of Machilus ichangensis in Karst forest[J]. Journal of Central South University of Forestry & Technology, 2019, 39(1):108-115.DOI: 10.14067/j.cnki.1673-923x.2019.01.017.
doi: 10.14067/j.cnki.1673-923x.2019.01.017 |
|
[19] | 李成龙, 刘延惠, 丁访军, 等. 茂兰喀斯特森林小果润楠蒸腾特征及影响因素[J]. 南京林业大学学报(自然科学版), 2019, 43(3):51-58. |
LI C L, LIU Y H, DING F J, et al. Transpiration characteristics and influencing factors of the dominant species of Machilus microcarpa in Maolan Karst forest[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(3):51-58.DOI: 10.3969/j.issn.1000-2006.201808018.
doi: 10.3969/j.issn.1000-2006.201808018 |
|
[20] |
KATUL G G, OREN R, MANZONI S, et al. Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics, 2012, 50(3).DOI: 10.1029/2011RG000366.
doi: 10.1029/2011RG000366 |
[21] |
GRANIER A. A new method of sap flow measurement in tree stems[J]. Annales Desences Forestieres, 1985, 42(2):193-200.DOI: 10.1051/forest:19850204.
doi: 10.1051/forest:19850204 |
[22] |
陈立欣, 张志强, 李湛东, 等. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5):535-546.
doi: 10.3773/j.issn.1005-264x.2010.05.007 |
CHEN L X, ZHANG Z Q, LI Z D, et al. Nocturnal sap flow of four urban greening tree species in Dalian,Liaoning Province,China[J]. Journal of Plant Ecology, 2010, 34(5):535-546.DOI: 10.3773/j.issn.1005-264x.2010.05.007.
doi: 10.3773/j.issn.1005-264x.2010.05.007 |
|
[23] |
NIINEMETS L O, CESCATTI A, RODEGHIERO M, et al. Leaf internal diffusion conductance limits photosynjournal more strongly in older leaves of mediterranean evergreen broad-leaved species[J]. Plant Cell & Environment, 2005, 28(12).DOI: 10.1111/j.1365-3040.2005.01392.X.
doi: 10.1111/j.1365-3040.2005.01392.X |
[24] | 李润唐, 张映南, 田大伦. 柑橘类植物叶片的气孔研究[J]. 果树学报, 2004, 21(5):419-424. |
LI R T, ZHANG Y N, TIAN D L. Studies on the stomata of citrus plant leaves[J]. Journal of Fruit Science, 2004, 21(5):419-424.DOI: 10.3969/j.issn.1009-9980.2004.05.007.
doi: 10.3969/j.issn.1009-9980.2004.05.007 |
|
[25] |
MAHERALI H, REID C D, POLLEY H W, et al. Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland[J]. Plant Cell & Environment, 2002, 25(4):557-566.DOI: 10.1046/j.1365-3040.2002.00832.X.
doi: 10.1046/j.1365-3040.2002.00832.X |
[26] | 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 40(S1):118-127. |
LI F L, BAO W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Acta botany Sinica, 2005, 40(S1):118-127. | |
[27] | 吴志勇, 侍恒, 何海, 等. 岔巴沟流域植被变化特征及其对水沙的影响[J]. 水资源保护, 2020, 36(1):31-37. |
WU Z Y, SHI H, HE H, et al. Characteristics of vegetation change and impact on runoff and sediment in Chabagou Watershed[J]. Water Resources Protection, 2020, 36(1):31-37.DOI: 10.3880/j.issn.1004-6933.2020.01.005.
doi: 10.3880/j.issn.1004-6933.2020.01.005 |
|
[28] |
ALARCÓN J J, ORTUÑO M F, NICOLÁS E, et al. Improving water-use efficiency of young lemon trees by shading with aluminised-plastic nets[J]. Agricultural Water Management, 2006, 82(3):387-398.DOI: 10.1016/j.agwat.2005.08.003.
doi: 10.1016/j.agwat.2005.08.003 |
[29] |
JEŽÍK M, BLAŽENEC M, LETTS M G, et al. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow[J]. Ecohydrology, 2015, 8(3):378-386.DOI: 10.1002/eco.1536.
doi: 10.1002/eco.1536 |
[30] | 张治安, 杨福, 陈展宇, 等. 菰叶片净光合速率日变化及其与环境因子的相互关系[J]. 中国农业科学, 2006, 39(3):502-509. |
ZHANG Z A, YANG F, CHEN Z Y, et al. Relationship between diurnal changes of net photosynthetic rate and environmental factors in leaves of Zizania latifolia[J]. Scientia Agricultura Sinica, 2006, 39(3):502-509.DOI: 10.3321/j.issn:0578-1752.2006.03.010.
doi: 10.3321/j.issn:0578-1752.2006.03.010 |
|
[31] | 朱燕华, 康宏樟, 刘春江. 植物叶片气孔性状变异的影响因素及研究方法[J]. 应用生态学报, 2011, 22(1):250-256. |
ZHU Y H, KANG H Z, LIU C J. Affecting factors of plant stomatal traits variability and relevant investigation methods[J]. Chinese Journal of Applied Ecology, 2011, 22(1):250-256. | |
[32] |
CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1).DOI: 10.1111/j.1469-8137.2007.02351.x.
doi: 10.1111/j.1469-8137.2007.02351.x |
[33] |
BERTOLINO L T, CAINE R S, GRAY J E. Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Frontiers in Plant Science, 2019, 10.DOI: 10.3389/fpls.2019.00225.
doi: 10.3389/fpls.2019.00225 |
[34] |
BRODRIBB T J, FEILD T S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecology Letters, 2010, 13(2):175-183.DOI: 10.1111/j.1461-0248.2009.01410.X.
doi: 10.1111/j.1461-0248.2009.01410.X |
[35] |
BRODRIBB T J, HOLBROOK N M. Stomatal closure during leaf dehydration,correlation with other leaf physiological traits[J]. Plant Physiology, 2003, 132(4):2166-2173.DOI: 10.1104/pp.103.023879.
doi: 10.1104/pp.103.023879 |
[36] | 罗春梅. 几种无机元素及植物生长调节剂对小麦叶片气孔分化及密度的影响[J]. 植物生理学通讯, 1982(6):24-27. |
LUO C M. Effects of several inorganic elements and plant growth regulators on wheat of leaf stomatal differentiation and density[J]. Plant Physiology Communications, 1982(6):24-27. | |
[37] | 万福绪, 张金池. 黔中喀斯特山区的生态环境特点及植被恢复技术[J]. 南京林业大学学报(自然科学版), 2003, 27(1):45-49. |
WAN F X, ZHANG J C. Ecological characteristics and vegetation rehabilitation techniques in the Karst mountain areas of Guizhou Province[J]. J of Nanjing For Univ(Nat Sci Ed), 2003, 27(1):45-49.DOI: 10.3969/j.issn.1000-2006.2003.01.011.
doi: 10.3969/j.issn.1000-2006.2003.01.011 |
|
[38] |
DRIESEN E, ENDE W, PROFT MD, et al. Influence of environmental factors light,CO2,temperature,and relative humidity on stomatal opening and development: a review[J]. Agronomy, 2020, 10(12).DOI: 10.3390/agronomy10121975.
doi: 10.3390/agronomy10121975 |
[39] |
SALVUCCI M E, CRAFTS-BRANDNER S J. Mechanism for deactivation of rubisco under moderate heat stress[J]. Physiologia Plantarum, 2004, 122(4).DOI: 10.1111/j.1399-3054.2004.00419.x.
doi: 10.1111/j.1399-3054.2004.00419.x |
[40] |
THOMAS P W, WOODWARD F I, QUICK W P. Systemic irradiance signalling in tobacco[J]. New Phytologist, 2003,DOI: 10.1046/j.1469-8137.2003.00954.x.
doi: 10.1046/j.1469-8137.2003.00954.x |
[41] |
ALINIAEIFARD S, MALCOLM MATAMOROS P, VAN MEETEREN U. Stomatal malfunctioning under low VPD conditions:Induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?[J]. Physiologia Plantarum, 2014, 152(4):688-699.DOI: 10.1111/ppl.12216.
doi: 10.1111/ppl.12216 |
[42] |
FANOURAKIS D, BOURANIS D, GIDAY H, et al. Improving stomatal functioning at elevated growth air humidity:a review[J]. Journal of Plant Physiology, 2016, 207:51-60.DOI: 10.1016/j.jplph.2016.10.003.
doi: 10.1016/j.jplph.2016.10.003 |
[1] | 王云霓, 曹恭祥, 徐丽宏, 陈胜楠. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156. |
[2] | 张庆源, 田野, 王淼, 翟政, 周诗朝. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
[3] | 李江荣, 郭其强, 郑维列. 西藏东南部急尖长苞冷杉蒸腾耗水及其驱动因子分析[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 151-158. |
[4] | 邓平, 赵英, 王霞, 陈秋佑, 吴敏. 水杨酸对NaHCO3胁迫下桂西北喀斯特地区青冈栎种子萌发的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 114-122. |
[5] | 于松平, 刘泽彬, 郭建斌, 王彦辉, 于澎涛, 王蕾. 六盘山华北落叶松林分蒸腾特征及其影响因素[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 131-140. |
[6] | 何斌, 李青, 冯图, 薛晓辉, 李望军, 刘勇. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 181-190. |
[7] | 徐清, 闭鸿雁, 崔光帅, 郭晓荣, 周睿, 苏文华, 欧阳志勤, 张光飞. 珍稀濒危植物毛果木莲幼苗光合特性及对遮阴处理的响应[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 46-52. |
[8] | 李成龙,刘延惠,丁访军,舒德远,崔迎春,赵文君,侯贻菊,吴鹏. 茂兰喀斯特森林小果润楠蒸腾特征及影响因素[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 51-58. |
[9] | 吕国屏,廖承锐,徐雁南,张婷,李海东. 基于CAMarkov模型的喀斯特地区县域生态系统服务价值动态模拟[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 49-56. |
[10] | 张磊,谢锦忠,张玮,冀琳珂,杜澜,陈胜. 模拟干旱环境下伐桩注水对毛竹光合蒸腾特性的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 47-54. |
[11] | 石磊,盛后财,满秀玲,蔡体久. 不同尺度林木蒸腾耗水测算方法述评[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 149-156. |
[12] | 吴平,薛建辉. 典型喀斯特地区3种人工林对土壤理化和 微生物特性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(05): 67-72. |
[13] | 卢晓强,杨万霞,奚月明,丁访军. 喀斯特地区不同植被恢复类型对土壤化学及 微生物生物量的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(05): 73-80. |
[14] | 吴雁雯,张金池,刘鑫,韩诚,顾哲衍. 凤阳山阔叶混交林主要树种光合蒸腾特性研究——基于灰色关联法[J]. 南京林业大学学报(自然科学版), 2015, 39(01): 55-61. |
[15] | 刘国华,王福升*,郭婷婷,林树燕,丁雨龙,赵传龙. 4种地被竹的蒸腾特性及蒸发速率的比较[J]. 南京林业大学学报(自然科学版), 2012, 36(06): 147-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||