白桦BpGRAS1基因的克隆及耐盐功能分析

张群, 及晓宇, 贺子航, 王智博, 田增智, 王超

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5) : 38-46.

PDF(4677 KB)
PDF(4677 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5) : 38-46. DOI: 10.12302/j.issn.1000-2006.202010011
研究论文

白桦BpGRAS1基因的克隆及耐盐功能分析

作者信息 +

Cloning and salt tolerance analysis of BpGRAS1 gene in Betula platyphylla

Author information +
文章历史 +

摘要

【目的】 GRAS转录因子是植物特有的转录因子家族之一,在植物响应盐、干旱等非生物胁迫中发挥重要的调控作用。从白桦(Betula platyphylla )中克隆GRAS转录因子基因,研究其耐盐功能,为研究木本植物GRAS转录因子的抗逆机制奠定理论基础。【方法】 在白桦转录组数据库中获得一个GRAS转录因子基因,命名为BpGRAS1 (GenBank 登录号: MN117546.1)。利用生物信息学进行多序列比对、构建进化树。分别构建植物过表达(pROKⅡ-BpGRAS1) 及抑制表达(pFGC5941-BpGRAS1) 载体。利用农杆菌介导高效瞬时遗传转化体系获得BpGRAS1基因瞬时过表达(OE)、抑制表达(IE) 及对照 (WT) 白桦植株。通过实时荧光定量RT-PCR(qRT-PCR) 技术分析盐胁迫下OE、IE及WT植株中BpGRAS1基因的表达情况,鉴定转基因植株中BpGRAS1的表达效率是否响应盐胁迫。在盐胁迫下比较了BpGRAS1基因瞬时过表达、抑制表达及对照白桦植株的电解质渗透率、失水率、丙二醛(MDA) 含量、过氧化物酶 (POD) 和超氧化物歧化酶 (SOD) 活性。【结果】 BpGRAS1基因的开放阅读框为1 425 bp,编码 474个氨基酸。BpGRAS1具有GRAS家族的序列特征,在C端的氨基酸序列相似度较高,与AtSHR亲缘关系较近。盐胁迫处理下,BpGRAS1的表达量升高,过表达植株中表达量高于对照,抑制表达植株中表达量低于对照,说明BpGRAS1受盐胁迫诱导,成功获得过表达及抑制表达植株。过表达BpGRAS1基因能降低白桦在盐胁迫下的电解质渗透率、失水率及 MDA 的积累,并显著增强了 POD 和 SOD 酶的活性,从而提高转基因植株的耐盐性。【结论】 BpGRAS1基因响应盐胁迫,过表达BpGRAS1基因降低了盐胁迫下植株细胞受损程度,通过增强POD 和 SOD 活性提高白桦的耐盐能力。

Abstract

【Objective】 The GRAS transcription factor is a plant-specific transcription factor family that plays a vital regulatory role in response to abiotic stresses, such as salt and drought. In this study, a GRAS transcription factor gene was cloned from Betula platyphylla, and its salt tolerance function was identified, which laid a theoretical foundation for studying the molecular mechanism of tolerance to woody plant GRAS transcription factors. 【Method】 A GRAS transcription factor gene was screened from the B. platyphylla transcriptome database, named BpGRAS 1(GenBank Number: MN117546.1). Bioinformatics analysis was performed for multiple sequence alignment and phylogenetic tree construction. The primers BpGRAS1-F and BpGRAS1-R were designed according to the gene sequence, and the BpGRAS1 gene was cloned using B. platyphylla cDNA as a template. Plant overexpression (pROKⅡ-BpGRAS1) and RNA-silencing expression (pFGC5941-BpGRAS1) vectors were constructed to further identify gene function. An Agrobacterium-mediated high-efficiency transient transformation system was used to obtain BpGRAS1 transient overexpression (OE), inhibitory expression (IE) and wild type (WT) B. platyphylla plants. The expression levels of the BpGRAS1 gene in the OE, IE and WT plants treated with 150 mmol/L NaCl were analyzed by real-time fluorescent quantitative RT-PCR (qRT-PCR) to test the expression efficiency of BpGRAS 1 in transgenic plants and to determine whether it responds to salt stress. The electrolyte leakage, water loss rate within 0-4 h, MDA content, peroxidase (POD) and superoxide dismutase (SOD) activities in OE, IE and WT plants under salt stress were measured and compared to identify the salt tolerance of the BpGRAS1 gene.【Result】 The open reading frame of BpGRAS1 gene is 1 425 bp, encoding 474 amino acids. Multiple sequence alignments results showed that the amino acid sequence in the C-terminal of BpGRAS1 is conserved and has the sequence characteristics of the GRAS family. Phylogenetic tree analysis showed that BpGRAS1 was closely related to AtSHR. Under salt stress treatment, the expression level of BpGRAS1 plants was higher than that in non-treatment plants. The expression level of BpGRAS1 was higher in OE plants and lower in IE plants, than in WT plants, indicating that BpGRAS1 was induced by salt treatment and that the OE and IE plants were obtained. Overexpression of BpGRAS1 reduced electrolyte leakage (P < 0.05), water loss rate and MDA content (P < 0.05) of B. platyphylla under salt stress; significantly enhanced the activities of POD and SOD enzymes (P < 0.05); and lowered the number of dead cells, improving the salt tolerance of transgenic plants.【Conclusion】 BpGRAS1 can respond to salt stress. Overexpression of the BpGRAS1 gene reduces the damage to plant cells in transgenic plants under salt stress and improves the salt tolerance of B. platyphylla by enhancing the activities of POD and SOD enzymes. The results of this study lay the foundation for further understanding the salt tolerance mechanism of B. platyphylla.

关键词

白桦 / GRAS转录因子 / 耐盐性 / 基因功能 / 生理途径

Key words

Betula platyphylla / GRAS transcription factor / salt tolerance / gene function / physiological pathway

引用本文

导出引用
张群, 及晓宇, 贺子航, . 白桦BpGRAS1基因的克隆及耐盐功能分析[J]. 南京林业大学学报(自然科学版). 2021, 45(5): 38-46 https://doi.org/10.12302/j.issn.1000-2006.202010011
ZHANG Qun, JI Xiaoyu, HE Zihang, et al. Cloning and salt tolerance analysis of BpGRAS1 gene in Betula platyphylla[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 38-46 https://doi.org/10.12302/j.issn.1000-2006.202010011
中图分类号: Q786;S722   

参考文献

[1]
MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2010, 61(14):4011-4019.DOI: 10.1093/jxb/erq217.
[2]
ZHANG S, LI X, FAN S, et al. Overexpression of HcSCL13,a Halostachys caspica GRAS transcription factor,enhances plant growth and salt stress tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2020, 151:243-254.DOI: 10.1016/j.plaphy.2020.03.020.
[3]
BOLLE C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5):683-692.DOI: 10.1007/s00425-004-1203-z.
[4]
牛义岭. 番茄GRAS基因家族生物信息学分析及部分抗性相关基因鉴定分析[D]. 哈尔滨:东北农业大学, 2017.
NIU Y L. Bioinformatic analysis and identification of some resistance-associated genes of GRAS gene family in tomato[D]. Harbin:Northeast Agricultural University, 2017.
[5]
HECK C, KUHN H, HEIDT S, et al. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1[J]. Curr Biol, 2016, 26(20):2770-2778.DOI: 10.1016/j.cub.2016.07.059.
[6]
ZHANG B, LIU J, YANG Z E, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L[J]. BMC Genomics, 2018, 19(1):348.DOI: 10.1186/s12864-018-4722-x.
[7]
HUANG W, PENG S Y, XIAN Z Q, et al. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis[J]. Plant Biotechnol J, 2017, 15(4):472-488.DOI: 10.1111/pbi.12646.
[8]
ZHOU S, HU Z, LI F, et al. Manipulation of plant architecture and flowering time by down-regulation of the GRAS transcription factor SlGRAS26 in Solanum lycopersicum[J]. Plant Sci, 2018, 271:81-93.DOI: 10.1016/j.plantsci.2018.03.017.
[9]
FAMBRINI M, MARIOTTI L, PARLANTI S, et al. A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants[J]. Plant Biol, 2015, 17(6):1123-1134.DOI: 10.1111/plb.12358.
[10]
高健. 玉米抗纹枯病全基因组差异表达基因分析及分子调控机制研究[D]. 雅安:四川农业大学, 2015.
GAO J. Genome-wide analysis of differential expression genes responsive to R.solani and molecular mechanism of R.solani-resistance in maize[D]. Ya’an:Sichuan Agricultural University, 2015.
[11]
GRIMPLET J, AGUDELO-ROMERO P, TEIXEIRA R T, et al. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses[J]. Front Plant Sci, 2016, 7:353.DOI: 10.3389/fpls.2016.00353.
[12]
LU J, WANG T, XU Z, et al. Genome-wide analysis of the GRAS gene family in Prunus mume[J]. Mol Genet Genomics, 2015, 290(1):303-317.DOI: 10.1007/s00438-014-0918-1.
[13]
SONG X M, LIU T K, DUAN W K, et al. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Genomics, 2014, 103(1):135-146.DOI: 10.1016/j.ygeno.2013.12.004.
[14]
LIU X, WIDMER A. Genome-wide comparative analysis of the GRAS gene family in Populus,Arabidopsis and rice[J]. Plant Mol Biol Report, 2014, 32(6):1129-1145.DOI: 10.1007/s11105-014-0721-5.
[15]
GUO P, WEN J, YANG J, et al. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response[J]. Planta, 2019, 250(4):1051-1072.DOI: 10.1007/s00425-019-03199-y.
[16]
HUANG W, XIAN Z, KANG X, et al. Genome-wide identification,phylogeny and expression analysis of GRAS gene family in tomato[J]. BMC Plant Biol, 2015, 15:209.DOI: 10.1186/s12870-015-0590-6.
[17]
XU K, CHEN S, LI T, et al. OsGRAS23,a rice GRAS transcription factor gene,is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biol, 2015, 15:141.DOI: 10.1186/s12870-015-0532-3.
[18]
MIGUEL A, MILHINHOS A, NOVÁK O, et al. The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity[J]. J Exp Bot, 2016, 67(5):1545-1555.DOI: 10.1093/jxb/erv547.
[19]
WANG Y X, LIU Z W, WU Z J, et al. Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)[J]. Sci Rep, 2018, 8(1):3949.DOI: 10.1038/s41598-018-22275-z.
[20]
LI P, ZHANG B, SU T, et al. BrLAS,a GRAS transcription factor from Brassica rapa,is involved in drought stress tolerance in transgenic Arabidopsis[J]. Front Plant Sci, 2018, 9:1792.DOI: 10.3389/fpls.2018.01792.
[21]
YUAN Y Y, FANG L C, KARUNGO S K, et al. Overexpression of VaPAT1,a GRAS transcription factor from Vitis amurensis,confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Rep, 2016, 35(3):655-666.DOI: 10.1007/s00299-015-1910-x.
[22]
LIU Y D, HUANG W, XIAN Z Q, et al. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling[J]. Front Plant Sci, 2017, 8:1659.DOI: 10.3389/fpls.2017.01659.
[23]
YANG G, GAO X, MA K, et al. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression[J]. BMC Plant Biol, 2018, 18(1):367.DOI: 10.1186/s12870-018-1568-y.
[24]
ZENG X, LING H, CHEN X M, et al. Genome-wide identification,phylogeny and function analysis of GRAS gene family in Dendrobium catenatum (Orchidaceae)[J]. Gene, 2019, 705:5-15.DOI: 10.1016/j.gene.2019.04.038.
[25]
CHEN K M, LI H W, CHEN Y F, et al. TaSCL14,a novel wheat (Triticum aestivum L.) GRAS gene,regulates plant growth,photosynjournal,tolerance to photooxidative stress,and senescence[J]. J Genet Genom, 2015, 42(1):21-32.DOI: 10.1016/j.jgg.2014.11.002.
[26]
美合日古丽·米吉提, 王玉成. 东北白桦(Betula platyphylla Suk.)LEA基因的克隆及盐胁迫响应基因的鉴定[J]. 分子植物育种, 2017, 15(7):2570-2578.
MIJITI M, WANG Y C. Cloning and identification of the LEA genes from Betula platyphylla Suk.in response to salt stress[J]. Mol Plant Breed, 2017, 15(7):2570-2578.DOI: 10.13271/j.mpb.015.002570.
[27]
叶查龙, 颜斌, 申婷婷, 等. 转BpmiR156基因白桦株系的耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6):147-151.
YE C L, YAN B, SHEN T T, et al. Analysis of salt tolerance in BpmiR156 overexpression Betula platyphylla[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):147-151.DOI: 10.3969/j.issn.1000-2006.201908006.
[28]
李园园, 杨光, 韦睿, 等. 转TabZIP基因白桦的获得及耐盐性分析[J]. 南京林业大学学报(自然科学版), 2013, 37(5):6-12.
LI Y Y, YANG G, WEI R, et al. TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(5):6-12. DOI: 10.3969/j.issn.1000-2006.2013.05.002.
[29]
张宇, 陈肃, 高源, 等. BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J]. 南京林业大学学报(自然科学版), 2019, 43(1):25-31.
ZHANG Y, CHEN S, GAO Y, et al. Functional study of BpMYB4 in birch response to low temperature stress[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):25-31. DOI: 10.3969/j.issn.1000-2006.201808050.
[30]
卢惠君, 李子义, 梁瀚予, 等. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3):54-63.
LU H J, LI Z Y, LIANG H Y, et al. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Sci Silvae Sin, 2019, 55(3):54-63.DOI: 10.11707/j.1001-7488.20190306.
[31]
ZHENG L, LIU G, MENG X, et al. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees[J]. Biochem Genet, 2012, 50(9/10):761-769.DOI: 10.1007/s10528-012-9518-0.
[32]
LI Z Y, LU H J, HE Z H, et al. Selection of appropriate reference genes for quantitative real-time reverse transcription PCR in Betula platyphylla under salt and osmotic stress conditions[J]. PLoS One, 2019, 14(12):e0225926.DOI: 10.1371/journal.pone.0225926.
[33]
袁继红. 实时荧光定量PCR技术的实验研究[J]. 现代农业科技, 2010(13):20-22.
YUAN J H. Experimental research on real-time fluorescent quantitative PCR[J]. Mod Agric Sci Technol, 2010(13):20-22.DOI: 10.3969/j.issn.1007-5739.2010.13.007.
[34]
刘羽佳. 拟南芥AtbHLH112基因调控植物抗逆机制的研究[D]. 哈尔滨:东北林业大学, 2013.
LIU Y J. Study on stress tolerance mechanism mediated by AtbHLH112 from Arabidopsis thaliana[D]. Harbin:Northeast Forestry University, 2013.
[35]
PYSH L D, WYSOCKA-DILLER J W, CAMILLERI C, et al. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J, 1999, 18(1):111-119.DOI: 10.1046/j.1365-313x.1999.00431.x.
[36]
YUAN K. Functional and genetic analysis of plant transcription factors involved in the plant growth under various environmental conditions[J]. Dissertations & Theses-Gradworks, 2008, 2:597-600. DOI: 10.1109/APMC.1992.672172.
[37]
张明意. 柽柳ThNAC7基因的抗逆功能解析[D].哈尔滨:东北林业大学,2015.ZHANG M Y.Stress tolerance function analysis of ThNAC7 gene from Tamarix hispida[D]. Harbin:Northeast Forestry University, 2015.
[38]
聂显光. 柽柳ThbHLH1基因调控抗逆响应的分子机理研究[D]. 哈尔滨:东北林业大学, 2014.
NIE X G. Functional characterization of the abiotic stress response mechanisms of ThbHLH1 transcript factor from Tamarix hispida[D]. Harbin:Northeast Forestry University, 2014.
[39]
SOFO A, DICHIO B, XILOYANNIS C, et al. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J]. Plant Sci, 2004, 166(2):293-302.DOI: 10.1016/j.plantsci.2003.09.018.

基金

中央高校基本科研业务费专项资金项目(2572016DA01)

编辑: 郑琰燚 袁佳秋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(4677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/