南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5): 38-46.doi: 10.12302/j.issn.1000-2006.202010011
张群(), 及晓宇, 贺子航, 王智博, 田增智, 王超*()
收稿日期:
2020-10-06
接受日期:
2021-02-10
出版日期:
2021-09-30
发布日期:
2021-09-30
通讯作者:
王超
基金资助:
ZHANG Qun(), JI Xiaoyu, HE Zihang, WANG Zhibo, TIAN Zengzhi, WANG Chao*()
Received:
2020-10-06
Accepted:
2021-02-10
Online:
2021-09-30
Published:
2021-09-30
Contact:
WANG Chao
摘要:
【目的】 GRAS转录因子是植物特有的转录因子家族之一,在植物响应盐、干旱等非生物胁迫中发挥重要的调控作用。从白桦(Betula platyphylla )中克隆GRAS转录因子基因,研究其耐盐功能,为研究木本植物GRAS转录因子的抗逆机制奠定理论基础。【方法】 在白桦转录组数据库中获得一个GRAS转录因子基因,命名为BpGRAS1 (GenBank 登录号: MN117546.1)。利用生物信息学进行多序列比对、构建进化树。分别构建植物过表达(pROKⅡ-BpGRAS1) 及抑制表达(pFGC5941-BpGRAS1) 载体。利用农杆菌介导高效瞬时遗传转化体系获得BpGRAS1基因瞬时过表达(OE)、抑制表达(IE) 及对照 (WT) 白桦植株。通过实时荧光定量RT-PCR(qRT-PCR) 技术分析盐胁迫下OE、IE及WT植株中BpGRAS1基因的表达情况,鉴定转基因植株中BpGRAS1的表达效率是否响应盐胁迫。在盐胁迫下比较了BpGRAS1基因瞬时过表达、抑制表达及对照白桦植株的电解质渗透率、失水率、丙二醛(MDA) 含量、过氧化物酶 (POD) 和超氧化物歧化酶 (SOD) 活性。【结果】 BpGRAS1基因的开放阅读框为1 425 bp,编码 474个氨基酸。BpGRAS1具有GRAS家族的序列特征,在C端的氨基酸序列相似度较高,与AtSHR亲缘关系较近。盐胁迫处理下,BpGRAS1的表达量升高,过表达植株中表达量高于对照,抑制表达植株中表达量低于对照,说明BpGRAS1受盐胁迫诱导,成功获得过表达及抑制表达植株。过表达BpGRAS1基因能降低白桦在盐胁迫下的电解质渗透率、失水率及 MDA 的积累,并显著增强了 POD 和 SOD 酶的活性,从而提高转基因植株的耐盐性。【结论】 BpGRAS1基因响应盐胁迫,过表达BpGRAS1基因降低了盐胁迫下植株细胞受损程度,通过增强POD 和 SOD 活性提高白桦的耐盐能力。
中图分类号:
张群,及晓宇,贺子航,等. 白桦BpGRAS1基因的克隆及耐盐功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 38-46.
ZHANG Qun, JI Xiaoyu, HE Zihang, WANG Zhibo, TIAN Zengzhi, WANG Chao. Cloning and salt tolerance analysis of BpGRAS1 gene in Betula platyphylla[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(5): 38-46.DOI: 10.12302/j.issn.1000-2006.202010011.
表1
试验所用引物"
用途 application | 引物名称 primer name | 序列 sequence(5'-3') |
---|---|---|
基因克隆 gene cloning | BpGRAS1-F BpGRAS1-R | ATGAAATTGACGCTTTGCAAAG TCATGGTTTCCATGCTGAAGC |
载体构建 vector construction | pROKII-BpGRAS1-F | GCTCTAGAATGAAATTGACGCTTTGCAAAG |
pROKII-BpGRAS1-R | CGGGGTACCTCATGGTTTCCATGCTGAAGC | |
pFGC5941-BpGRAS1-cisF | CCCATGGCACACACATGGACATAACTC | |
pFGC5941-BpGRAS1-cisR | AGGCGCGCCTCTTGCACACTCGTTTAG | |
pFGC5941-BpGRAS1-antiF | CTCTAGACACACACATGGACATAACTC | |
pFGC5941-BpGRAS1-antiR | CGCGGATCCTCTTGCACACTCGTTTAG | |
实时荧光 定量PCR quantitative real-time PCR | q-OE-BpGRAS1-F | GTAATAGCCAGCACATCC |
q-OE-BpGRAS1-R | TTCCTGCACTTCAACTCT | |
q-IE-BpGRAS1-F | CACTACTCCACAAGAAGCACC | |
q-IE-BpGRAS1-R | ACTCGTTTAGAAGACTCGAGG | |
Actin-F | AAACAATGGCTGATGCTG | |
Actin-R | ACAATACCGTGCTCAATAGC | |
β-Tublin-F | GGAAGCCATAGAAAGACC | |
β-Tublin-R | CAACAAATGTGGGATGCT |
图1
不同物种GRAS蛋白多序列比对 JrGRAS.胡桃Juglans regia(XP_018813105.1);PaGRAS.欧洲甜樱桃Prunus avium(XP_021825482.1);CfGRAS.川黔千金榆Carpinus fangiana(KAE8076562.1); ZjGRAS.枣Ziziphus jujuba(XP_015886865.1);QsGRAS.欧洲栓皮栎Quercus suber (XP_023909161.1);MdGRAS.苹果Malus domestica(XP_008369183.2); HuGRAS.哥伦比亚锦葵Herrania umbratica (XP_021290978.1);EgGRAS.大叶桉Eucalyptus grandis (XP_010047409.1)。"
图3
植物表达载体pROKⅡ-BpGRAS1及pFGC5941- BpGRAS1的构建 A: M. DL5000 Marker; 1. pROKⅡ载体引物单菌落PCR产物PCR product of pROKⅡ vector primer single colony; 2. 基因引物巢式PCR产物PCR product of gene primer nested. B: M. DL2000 Marker; 1. pFGC5941cis端载体引物单菌落PCR产物PCR product of pFGC5941 cis end vector primer single colony; 2. cis端基因引物巢式PCR产物Nested PCR products of cis end gene primer。"
[1] |
MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2010, 61(14):4011-4019.DOI: 10.1093/jxb/erq217.
doi: 10.1093/jxb/erq217 |
[2] |
ZHANG S, LI X, FAN S, et al. Overexpression of HcSCL13,a Halostachys caspica GRAS transcription factor,enhances plant growth and salt stress tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2020, 151:243-254.DOI: 10.1016/j.plaphy.2020.03.020.
doi: 10.1016/j.plaphy.2020.03.020 |
[3] |
BOLLE C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5):683-692.DOI: 10.1007/s00425-004-1203-z.
doi: 10.1007/s00425-004-1203-z |
[4] | 牛义岭. 番茄GRAS基因家族生物信息学分析及部分抗性相关基因鉴定分析[D]. 哈尔滨:东北农业大学, 2017. |
NIU Y L. Bioinformatic analysis and identification of some resistance-associated genes of GRAS gene family in tomato[D]. Harbin:Northeast Agricultural University, 2017. | |
[5] |
HECK C, KUHN H, HEIDT S, et al. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1[J]. Curr Biol, 2016, 26(20):2770-2778.DOI: 10.1016/j.cub.2016.07.059.
doi: 10.1016/j.cub.2016.07.059 |
[6] |
ZHANG B, LIU J, YANG Z E, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L[J]. BMC Genomics, 2018, 19(1):348.DOI: 10.1186/s12864-018-4722-x.
doi: 10.1186/s12864-018-4722-x |
[7] |
HUANG W, PENG S Y, XIAN Z Q, et al. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis[J]. Plant Biotechnol J, 2017, 15(4):472-488.DOI: 10.1111/pbi.12646.
doi: 10.1111/pbi.12646 |
[8] |
ZHOU S, HU Z, LI F, et al. Manipulation of plant architecture and flowering time by down-regulation of the GRAS transcription factor SlGRAS26 in Solanum lycopersicum[J]. Plant Sci, 2018, 271:81-93.DOI: 10.1016/j.plantsci.2018.03.017.
doi: 10.1016/j.plantsci.2018.03.017 |
[9] |
FAMBRINI M, MARIOTTI L, PARLANTI S, et al. A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants[J]. Plant Biol, 2015, 17(6):1123-1134.DOI: 10.1111/plb.12358.
doi: 10.1111/plb.12358 |
[10] | 高健. 玉米抗纹枯病全基因组差异表达基因分析及分子调控机制研究[D]. 雅安:四川农业大学, 2015. |
GAO J. Genome-wide analysis of differential expression genes responsive to R.solani and molecular mechanism of R.solani-resistance in maize[D]. Ya’an:Sichuan Agricultural University, 2015. | |
[11] |
GRIMPLET J, AGUDELO-ROMERO P, TEIXEIRA R T, et al. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses[J]. Front Plant Sci, 2016, 7:353.DOI: 10.3389/fpls.2016.00353.
doi: 10.3389/fpls.2016.00353 |
[12] |
LU J, WANG T, XU Z, et al. Genome-wide analysis of the GRAS gene family in Prunus mume[J]. Mol Genet Genomics, 2015, 290(1):303-317.DOI: 10.1007/s00438-014-0918-1.
doi: 10.1007/s00438-014-0918-1 |
[13] |
SONG X M, LIU T K, DUAN W K, et al. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Genomics, 2014, 103(1):135-146.DOI: 10.1016/j.ygeno.2013.12.004.
doi: 10.1016/j.ygeno.2013.12.004 |
[14] |
LIU X, WIDMER A. Genome-wide comparative analysis of the GRAS gene family in Populus,Arabidopsis and rice[J]. Plant Mol Biol Report, 2014, 32(6):1129-1145.DOI: 10.1007/s11105-014-0721-5.
doi: 10.1007/s11105-014-0721-5 |
[15] |
GUO P, WEN J, YANG J, et al. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response[J]. Planta, 2019, 250(4):1051-1072.DOI: 10.1007/s00425-019-03199-y.
doi: 10.1007/s00425-019-03199-y |
[16] |
HUANG W, XIAN Z, KANG X, et al. Genome-wide identification,phylogeny and expression analysis of GRAS gene family in tomato[J]. BMC Plant Biol, 2015, 15:209.DOI: 10.1186/s12870-015-0590-6.
doi: 10.1186/s12870-015-0590-6 |
[17] |
XU K, CHEN S, LI T, et al. OsGRAS23,a rice GRAS transcription factor gene,is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biol, 2015, 15:141.DOI: 10.1186/s12870-015-0532-3.
doi: 10.1186/s12870-015-0532-3 |
[18] |
MIGUEL A, MILHINHOS A, NOVÁK O, et al. The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity[J]. J Exp Bot, 2016, 67(5):1545-1555.DOI: 10.1093/jxb/erv547.
doi: 10.1093/jxb/erv547 |
[19] |
WANG Y X, LIU Z W, WU Z J, et al. Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)[J]. Sci Rep, 2018, 8(1):3949.DOI: 10.1038/s41598-018-22275-z.
doi: 10.1038/s41598-018-22275-z |
[20] |
LI P, ZHANG B, SU T, et al. BrLAS,a GRAS transcription factor from Brassica rapa,is involved in drought stress tolerance in transgenic Arabidopsis[J]. Front Plant Sci, 2018, 9:1792.DOI: 10.3389/fpls.2018.01792.
doi: 10.3389/fpls.2018.01792 |
[21] |
YUAN Y Y, FANG L C, KARUNGO S K, et al. Overexpression of VaPAT1,a GRAS transcription factor from Vitis amurensis,confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Rep, 2016, 35(3):655-666.DOI: 10.1007/s00299-015-1910-x.
doi: 10.1007/s00299-015-1910-x |
[22] |
LIU Y D, HUANG W, XIAN Z Q, et al. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling[J]. Front Plant Sci, 2017, 8:1659.DOI: 10.3389/fpls.2017.01659.
doi: 10.3389/fpls.2017.01659 |
[23] |
YANG G, GAO X, MA K, et al. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression[J]. BMC Plant Biol, 2018, 18(1):367.DOI: 10.1186/s12870-018-1568-y.
doi: 10.1186/s12870-018-1568-y |
[24] |
ZENG X, LING H, CHEN X M, et al. Genome-wide identification,phylogeny and function analysis of GRAS gene family in Dendrobium catenatum (Orchidaceae)[J]. Gene, 2019, 705:5-15.DOI: 10.1016/j.gene.2019.04.038.
doi: 10.1016/j.gene.2019.04.038 |
[25] |
CHEN K M, LI H W, CHEN Y F, et al. TaSCL14,a novel wheat (Triticum aestivum L.) GRAS gene,regulates plant growth,photosynjournal,tolerance to photooxidative stress,and senescence[J]. J Genet Genom, 2015, 42(1):21-32.DOI: 10.1016/j.jgg.2014.11.002.
doi: 10.1016/j.jgg.2014.11.002 |
[26] | 美合日古丽·米吉提, 王玉成. 东北白桦(Betula platyphylla Suk.)LEA基因的克隆及盐胁迫响应基因的鉴定[J]. 分子植物育种, 2017, 15(7):2570-2578. |
MIJITI M, WANG Y C. Cloning and identification of the LEA genes from Betula platyphylla Suk.in response to salt stress[J]. Mol Plant Breed, 2017, 15(7):2570-2578.DOI: 10.13271/j.mpb.015.002570.
doi: 10.13271/j.mpb.015.002570 |
|
[27] | 叶查龙, 颜斌, 申婷婷, 等. 转BpmiR156基因白桦株系的耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6):147-151. |
YE C L, YAN B, SHEN T T, et al. Analysis of salt tolerance in BpmiR156 overexpression Betula platyphylla[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):147-151.DOI: 10.3969/j.issn.1000-2006.201908006.
doi: 10.3969/j.issn.1000-2006.201908006 |
|
[28] | 李园园, 杨光, 韦睿, 等. 转TabZIP基因白桦的获得及耐盐性分析[J]. 南京林业大学学报(自然科学版), 2013, 37(5):6-12. |
LI Y Y, YANG G, WEI R, et al. TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(5):6-12. DOI: 10.3969/j.issn.1000-2006.2013.05.002.
doi: 10.3969/j.issn.1000-2006.2013.05.002 |
|
[29] | 张宇, 陈肃, 高源, 等. BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J]. 南京林业大学学报(自然科学版), 2019, 43(1):25-31. |
ZHANG Y, CHEN S, GAO Y, et al. Functional study of BpMYB4 in birch response to low temperature stress[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):25-31. DOI: 10.3969/j.issn.1000-2006.201808050.
doi: 10.3969/j.issn.1000-2006.201808050 |
|
[30] | 卢惠君, 李子义, 梁瀚予, 等. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3):54-63. |
LU H J, LI Z Y, LIANG H Y, et al. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Sci Silvae Sin, 2019, 55(3):54-63.DOI: 10.11707/j.1001-7488.20190306.
doi: 10.11707/j.1001-7488.20190306 |
|
[31] |
ZHENG L, LIU G, MENG X, et al. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees[J]. Biochem Genet, 2012, 50(9/10):761-769.DOI: 10.1007/s10528-012-9518-0.
doi: 10.1007/s10528-012-9518-0 |
[32] |
LI Z Y, LU H J, HE Z H, et al. Selection of appropriate reference genes for quantitative real-time reverse transcription PCR in Betula platyphylla under salt and osmotic stress conditions[J]. PLoS One, 2019, 14(12):e0225926.DOI: 10.1371/journal.pone.0225926.
doi: 10.1371/journal.pone.0225926 |
[33] | 袁继红. 实时荧光定量PCR技术的实验研究[J]. 现代农业科技, 2010(13):20-22. |
YUAN J H. Experimental research on real-time fluorescent quantitative PCR[J]. Mod Agric Sci Technol, 2010(13):20-22.DOI: 10.3969/j.issn.1007-5739.2010.13.007.
doi: 10.3969/j.issn.1007-5739.2010.13.007 |
|
[34] | 刘羽佳. 拟南芥AtbHLH112基因调控植物抗逆机制的研究[D]. 哈尔滨:东北林业大学, 2013. |
LIU Y J. Study on stress tolerance mechanism mediated by AtbHLH112 from Arabidopsis thaliana[D]. Harbin:Northeast Forestry University, 2013. | |
[35] |
PYSH L D, WYSOCKA-DILLER J W, CAMILLERI C, et al. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J, 1999, 18(1):111-119.DOI: 10.1046/j.1365-313x.1999.00431.x.
doi: 10.1046/j.1365-313x.1999.00431.x |
[36] |
YUAN K. Functional and genetic analysis of plant transcription factors involved in the plant growth under various environmental conditions[J]. Dissertations & Theses-Gradworks, 2008, 2:597-600. DOI: 10.1109/APMC.1992.672172.
doi: 10.1109/APMC.1992.672172 |
[37] | 张明意. 柽柳ThNAC7基因的抗逆功能解析[D].哈尔滨:东北林业大学,2015.ZHANG M Y.Stress tolerance function analysis of ThNAC7 gene from Tamarix hispida[D]. Harbin:Northeast Forestry University, 2015. |
[38] | 聂显光. 柽柳ThbHLH1基因调控抗逆响应的分子机理研究[D]. 哈尔滨:东北林业大学, 2014. |
NIE X G. Functional characterization of the abiotic stress response mechanisms of ThbHLH1 transcript factor from Tamarix hispida[D]. Harbin:Northeast Forestry University, 2014. | |
[39] |
SOFO A, DICHIO B, XILOYANNIS C, et al. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J]. Plant Sci, 2004, 166(2):293-302.DOI: 10.1016/j.plantsci.2003.09.018.
doi: 10.1016/j.plantsci.2003.09.018 |
[1] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[2] | 王质璞, 李卓蓉, 罗志斌, 邓澍荣. PagAPY1基因调控银腺杨耐旱性的作用机制研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 105-112. |
[3] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[4] | 纳晓莹, 刘刚, 刘桂丰, 王秀伟. 4种基因表达量和光合参数差异对白桦无性系幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 88-94. |
[5] | 陈佳, 缑晶毅, 赵祺, 韩庆庆, 李慧萍, 姚丹, 张金林. 梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 99-110. |
[6] | 叶查龙, 颜斌, 申婷婷, 宁坤, 李慧玉. 转BpmiR156基因白桦株系的耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 147-151. |
[7] | 缪李飞, 于晓晶, 张秋悦, 封超年. 4个杜梨半同胞家系苗期耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 157-166. |
[8] | 殷琪, 秦文其, 刘婷婷, 康璐, 吴蔼民, 邓小梅. 团花树NcIRX9基因在木聚糖生物合成中的功能保守性[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 129-136. |
[9] | 王楚, 顾宸瑞, 姜静, 刘桂丰. 赤霉素对盆栽白桦无性系早期生长及结实的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 16-22. |
[10] | 孟德恺, 徐志鹏, 刘宁宁, 王萌, 王楚, 刘桂丰. 白桦转BpGH3.5基因叶片早衰突变株的光合特性及生长分析[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 37-43. |
[11] | 安琳君, 栾嘉豫, 任丽, 李慧玉, 夏德安. 白桦BpTCP8基因生物信息学及表达特性分析[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 67-73. |
[12] | 张宇,陈肃,高源,黄海娇. BpMYB4基因在白桦中的遗传转化及低温胁迫应答反应[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 25-31. |
[13] | 任丽,董京祥,杨洋,黄海娇,李慧玉. 白桦BpTCP7基因启动子的克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 32-38. |
[14] | 杨杰,孙璐,王思瑶,李影,翟睿,林香雨,詹亚光,尹静. 3个白桦细胞色素P450基因生物信息学及表达分析[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 27-34. |
[15] | 陆蓝翔,江明明,王焱,张岳峰,张洪良,叶建仁. 两株樟树促生抗病内生细菌的分离、筛选及鉴定[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 128-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||