盐胁迫下AMF对榉树幼苗生长和光合特性的影响

马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 122-130.

PDF(2725 KB)
PDF(2725 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1) : 122-130. DOI: 10.12302/j.issn.1000-2006.202010026
研究论文

盐胁迫下AMF对榉树幼苗生长和光合特性的影响

作者信息 +

Effects of AMF on the growth and photosynthetic characteristics of Zelkova serrata under salt stress

Author information +
文章历史 +

摘要

【目的】探究盐胁迫下接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对榉树(Zelkova serrata)的生长和光合特性的影响以及光响应模型的适用性,为利用菌根真菌技术提高植物在盐碱地中的生产力提供理论依据。【方法】以榉树幼苗为试验材料,设置不接种AMF(N)、接种摩西球囊霉(Glomus mosseae)1号(GM1)、接种摩西球囊霉2号(GM2)、接种扭形球囊霉(G. tortuosum,GO)4个处理组,进行盐胁迫与非盐胁迫(CK)处理。通过对比分析不同处理间的差异,探索盐胁迫下AMF对榉树生长及光合特性的影响,并评定5种光响应模型的适用性。【结果】①盐胁迫下GM1、GO处理的菌根侵染率显著降低;②盐胁迫显著降低了榉树苗高、地径净增长量,而GM1、GM2处理显著提高了盐胁迫下榉树的地径净增长量;③盐胁迫下,榉树净光合速率明显下降,3种接菌处理均能提升榉树叶片净光合速率、气孔限制值、水分利用效率,并降低胞间CO2浓度,其中GM2和GO较未接菌处理变化最大;④盐胁迫条件下只有以叶子飘模型拟合的平均决定系数(R2)高于0.900,其余4种模型各处理的R2均低于0.900。【结论】盐胁迫对榉树幼苗生长及光合特性有抑制作用;接种AMF可以促进植物生长,提升植物净光合速率,缓解盐胁迫对植物生长及光合特性的抑制作用。综合AMF对榉树生长和光合特性的影响,GM2较为突出,为盐碱地林业生产推荐选用菌株;5种光响应模型中,叶子飘模型的拟合效果最好,为探究盐胁迫下AMF对榉树净光合速率影响的最优模型。

Abstract

【Objective】 In recent years, the area of land salinization has been increasing with the impact of human activities and climate change. Excessive levels of soil salinity may lead to several ecological problems such as soil dispersion, soil salinization, desertification, destruction of vegetation communities, and reduction of biodiversity. As such, soil salinity is an important environmental factor limiting the continuing development of agriculture and forestry. As a crucial part of terrestrial ecosystems, arbuscular mycorrhizal fungi (AMF) play an important role in the management of saline-alkali land, while Zelkova serrata is a tree species with considerable economic and landscape value in China. Both species have wide application prospects in saline-alkali land forestry production. However, most existing research has focused on the physiological and biochemical characteristics and salt tolerance of Z. serrata, while few have investigated the effects of AMF on the photosynthetic characteristics of salt stressed Z. serrata. Moreover, there is a lack of research on the applicability of the light response model under this condition. Accurate characteristic parameters provided by a suitable light response model may directly or indirectly reflect the photosynthetic physiological process of plants, and offer considerable guidance for forestry production in saline-alkali land. As such, this study investigated the effects of arbuscular mycorrhizal fungi inoculation on the growth and photosynthetic characteristics of Z. serrata, and the applicability of light response model under salt stress. In summary, the objective was to provide a theoretical basis to use mycorrhizal combination technology to improve plant productivity in saline-alkali land.【Method】 Initially, Z. serrata seedlings that were not colonized with AMF were cultivated through seed and substrate sterilization. This was carried out concurrently while three AMF [i.e., Glomus mosseae separated from Bijie, Guizhou (GM1), G. mosseae separated from Chuxiong, Yunnan (GM2) and G. tortuosum separated from Ejin Horo Banner, Inner Mongolia (GO)], were multiplied in the artificial climate room for three months. Z. serrata seedlings with consistent growth were transplanted to the greenhouse of Nanjing Forestry University Xiashu Forestry Farm for the pot experiment and four inoculation treatments were established: (1) not inoculated with mycorrhizal fungi (N); (2) inoculated with GM1; (3) inoculated with GM2; and (4) inoculated with GO. After one year of AMF colonization and plant growth, potted Z. serrata seedlings of GM1, GM2, GO and N treatments were divided into two groups, and subjected to salt stress and non-salt stress treatments, respectively. In the salt stress treatment, 300 mL of 100 mmol/L NaCl solution was poured into each pot every week, and sterile distilled water was used to replace the NaCl solution in the non-salt stress treatment. The treatment was carried out for two months, during which the Hoagland (reduced phosphorus) nutrient solution was regularly replenished. Then, three pots were selected from each treatment to determine the photosynthetic characteristics and mycorrhizal colonization rate. The effect of AMF on the net height growth, net basal diameter growth, net photosynthetic rate, intercellular CO2 concentration, stomatal limit value, and water use efficiency of Z. serrata under salt stress was explored by comparing and analyzing differences between treatments. The applicability of five kinds of light response models was evaluated by plotting the light response curve and comparing the fitting accuracy of each model in each treatment. 【Result】 There were four key findings from the results. First, the mycorrhizal colonization rate of the GM1 and GO treatments decreased significantly under salt stress. Second, salt stress had a significant inhibitory impact on the net height growth and ground diameter growth of Z. serrata, while the GM1 and GM2 treatments significantly increased the net ground diameter growth under salt stress. Third, under salt stress, there was a clear decrease in the net photosynthetic rate of Z. serrata. All three treatments could increase the net photosynthetic rate, stomatal limit value, and water use efficiency, while reducing intercellular CO2 concentration. Among the treatments, the GM2 and GO treatments exhibited the largest changes compared with the N treatment. Fourth, only the average R2 fitted by the Ye Zi-Piao model was >0.900 under salt stress, and the R2 of the other four models were <0.900. 【Conclusion】 Salt stress was likely to inhibit plant growth and photosynthetic characteristics. Inoculation with AMF may promote plant growth, improve the net photosynthetic rate of plant leaves, and alleviate the inhibition of salt stress on plant growth and photosynthetic characteristics. Based on the influence of arbuscular mycorrhizal fungi inoculation on the growth and photosynthetic characteristics of Z. serrata, the GM2 was prominent; this was recommended as the strain for forestry production in saline-alkali land. Among the five light response models, the Ye Zi-Piao model exhibited the best fitting effect, representing the optimal model to explore the effect of AMF on the net photosynthetic rate of salt stressed Z. serrata.

关键词

盐胁迫 / 榉树 / 丛枝菌根真菌 / 光合特性 / 光响应模型

Key words

salt stress / Zelkova serrata / arbuscular mycorrhizal fungi(AMF) / photosynthetic characteristics / light response model

引用本文

导出引用
马仕林, 曹鹏翔, 张金池, . 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版). 2022, 46(1): 122-130 https://doi.org/10.12302/j.issn.1000-2006.202010026
MA Shilin, CAO Pengxiang, ZHANG Jinchi, et al. Effects of AMF on the growth and photosynthetic characteristics of Zelkova serrata under salt stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 122-130 https://doi.org/10.12302/j.issn.1000-2006.202010026
中图分类号: S718;S728.5   

参考文献

[1]
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681.DOI: 10.1146/annurev.arplant.59.032607.092911.
[2]
岩学斌, 袁金海. 盐胁迫对植物生长的影响[J]. 安徽农业科学, 2019, 47(4):30-33.
YAN X B YUAN J H. Effects of salt stress on plant growth[J]. J Anhui Agric Sci, 2019, 47(4):30-33.DOI: 10.3969/j.issn.0517-6611.2019.04.007.
[3]
尹蓉, 张倩茹, 江佰阳, 等. 盐碱地经济林栽培研究及展望[J]. 林业科技通讯, 2017(10):66-69.
YIN R, ZHANG Q R, JIANG B Y, et al. Research and prospect on cultivation of economic forest in saline-alkali land[J]. Pract For Technol, 2017(10):66-69.DOI: 10.13456/j.cnki.lykt.2017.10.022.
[4]
贾婷婷, 宋福强. 丛枝菌根提高植物耐盐性的研究进展[J]. 土壤通报, 2016, 47(6):1499-1505.
JIA T T, SONG F Q. Research progress on mechanism of plant salt tolerance enhanced by arbuscular mycorrhizal[J]. Chin J Soil Sci, 2016, 47(6):1499-1505.DOI: 10.19336/j.cnki.trtb.2016.06.32.
[5]
SMITH S E, READ D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3):273-281. DOI: 10. 1097/00010694-198403000-00011.
[6]
吴亚胜, 王其传, 祁红英, 等. 育苗基质中添加丛枝菌根真菌菌剂对辣椒幼苗生长和光合参数的影响[J]. 蔬菜, 2018(7):12-16.
WU Y S, WANG Q C, QI H Y, et al. Effects of arbuscular mycorrhizal fungi inoculum added in substrate on the growth and photosynthetic parameters of pepper seedlings[J]. Vegetables, 2018(7):12-16.DOI: 10.3969/j.issn.1001-8336.2018.07.003.
[7]
BORDE M, DUDHANE M, JITE P. Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition[J]. Crop Prot, 2011, 30(3):265-271.DOI: 10.1016/j.cropro.2010.12.010.
[8]
RUIZ-LOZANOJ M, PORCEL R, AZCÓN C, et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molecular studies[J]. J Exp Bot, 2012, 63(11):4033-4044.DOI: 10.1093/jxb/ers126.
[9]
HAMDIA M, SHADDAD M. Salt tolerance of crop plants[J]. J Stress Physiol Biochem, 2010, 6(3):64-90.
[10]
岳英男. 松嫩盐碱草地主要丛枝菌根真菌对植物耐盐性影响的研究[D]. 哈尔滨:东北林业大学, 2015.
YUE Y N. Effects of arbuscular mycorrhizal fungi on the salt tolerance of plants in saline-alkaline grassland of Songnen plain[D]. Harbin:Northeast Forestry University, 2015.
[11]
冯固, 李晓林, 张福锁, 等. 盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J]. 应用生态学报, 2000, 11(4):595-598.
FENG G, LI X L, ZHANG F S, et al. Effect of AM fungi on water and nutrition status of corn plants under salt stress[J]. Chin J Appl Ecol, 2000, 11(4):595-598.DOI: 10.13287/j.1001-9332.2000.0144.
[12]
国靖, 汪贵斌, 曹福亮. 施肥对银杏叶片光合作用及营养元素质量分数的影响[J]. 浙江农林大学学报, 2016, 33(6):969-975.
GUO J, WANG G B, CAO F L. Photosynjournal and nutrient content with fertilization for Ginkgo biloba leaves[J]. J Zhejiang A & F Univ, 2016, 33(6):969-975.DOI: 10.11833/j.issn.2095-0756.2016.06.007.
[13]
何海洋, 彭方仁, 张瑞, 等. 不同品种美国山核桃嫁接苗光合特性比较[J]. 南京林业大学学报(自然科学版), 2015(4):19-25.
HE H Y, PENG F R, ZHANG R, et al. Photosynthetic characteristics of grafting plants of different pecan varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2015(4):19-25.DOI: 10.3969/j.issn.1000-2006.2015.04.004.
[14]
LIU Q, ZHANG F M, CHEN J Q, et al. Water stress altered photosynjournal-vegetation index relationships for winter wheat[J]. Agronj, 2020, 112(4):2944-2955.DOI: 10.1002/agj2.20256.
[15]
赵旺兔. 榉树生物学特性及园林应用研究[D]. 南京:南京林业大学, 2003.
ZHAO W T. Studies on biological characters of Zelkova schneideriana and its practice for landscape design[D]. Nanjing:Nanjing Forestry University, 2003.
[16]
曹容. 苏北沿海树种耐盐特性研究[D]. 南京:南京林业大学, 2015.
CAO R. Study on salt tolerance characteristics of coastal tree species in northern Jiangsu[D]. Nanjing:Nanjing Forestry University, 2015.
[17]
焦秀洁. NaCl胁迫下榉树生理生化特性的研究[D]. 南京:南京林业大学, 2009.
JIAO X J. Study on the physiological and biochemical characteristics of Zelkova schneideriana under the NaCl stress[D]. Nanjing:Nanjing Forestry University, 2009.
[18]
窦全琴, 焦秀洁, 张敏, 等. 土壤NaCl含量对榉树幼苗生理特性的影响[J]. 西北植物学报, 2009, 29(10):2063-2069.
DOU Q Q, JIAO X J, ZHANG M, et al. Physiological response of Zelkova schneideriana seedlings in the soil under NaCl stress[J]. Acta Bot Boreali Occidentalia Sin, 2009, 29(10):2063-2069.
[19]
夏尚光. NaCl胁迫对5个树种幼苗光合作用特性的影响[J]. 安徽林业科技, 2011, 37(1):23-28.
XIA S G. Influence of salt stress on photosynthetic characteristics of five tree species seedlings[J]. Anhui For Sci Technol, 2011, 37(1):23-28.
[20]
WANG J P, FU Z Y, REN Q, et al. Effects of arbuscular mycorrhizal fungi on growth,photosynjournal,and nutrient uptake of Zelkova serrata (Thumb.) Makino seedlings under salt stress[J]. Forests, 2019, 10(2):186.DOI: 10.3390/f10020186.
[21]
REDDY A R, CHAITANYA K V, VIVEKANANDAN M. Drought-induced responses of photosynjournal and antioxidant metabolism in higher plants[J]. J Plant Physiol, 2004, 161(11):1189-1202.DOI: 10.1016/j.jplph.2004.01.013.
[22]
刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000.
LIU R J, LI X L. Arbuscular mycorrhiza and its application [M]. Beijing: Science Press, 2000.
[23]
李英浩, 刘景辉, 赵宝平, 等. 干旱胁迫下腐殖酸肥料对燕麦光响应曲线的影响[J]. 中国农业大学学报, 2020, 25(11):34-44.
LI Y H, LIU J H, ZHAO B P, et al. Effect of humic acid fertilizer on the light response curve of oat under drought stress[J]. J China Agric Univ, 2020, 25(11):34-44.DOI: 10.11841/j.issn.1007-4333.2020.11.04.
[24]
许中秋, 隋德宗, 谢寅峰, 等. 两个乌桕新品种苗木光合特性比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1):93-100.
XU Z Q, SUI D Z, XIE Y F, et al. Comparison of photosynthetic characteristics of two new Triadica sebifera varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):93-100.DOI: 10.12302/j.issn.1000-2006.202003080.
[25]
BALY E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society ofLondon, 1935, 117(804):218-239. DOI: 10. 1038/134933a0
[26]
BASSMAN J H, ZWIER J C. Gas exchange characteristics of Populus trichocarpa,Populus deltoides and Populus trichocarpa×P. deltoides clones[J]. Tree Physiol, 1991, 8(2):145-159.DOI: 10.1093/treephys/8.2.145.
[27]
PRADO C H B A, DE MORAES J A P V. Photosynthetic capacity and specific leaf mass in twenty woody species of cerrado vegetation under field conditions[J]. Photosynthetica, 1997, 33(1):103-112.DOI: 10.1023/A:1022183423630.
[28]
BROADLEY M R, ESCOBAR-GUTIÉRREZ A J, BURNS A, et al. Nitrogen-limited growth of lettuce is associated with lower stomatal conductance[J]. New Phytol, 2001, 152(1):97-106.DOI: 10.1046/j.0028-646x.2001.00240.x.
[29]
YE Z P. A new model for relationship between irradiance and the rate of photosynjournal in Oryza sativa[J]. Photosynthetica, 2007, 45(4):637-640.DOI: 10.1007/s11099-007-0110-5.
[30]
PALUDAN-MÜLLER G, SAXE H, PEDERSEN L B, et al. Differences in salt sensitivity of four deciduous tree species to soil or airborne salt[J]. Physiol Plant, 2002, 114(2):223-230.DOI: 10.1034/j.1399-3054.2002.1140208.x.
[31]
ZHANG Z F, ZHANG J C, HUANG Y Q. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions[J]. New For, 2014, 45(4):545-556.DOI: 10.1007/s11056-014-9417-9.
[32]
CHEN J, ZHANG H, ZHANG X, et al. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynjournal,water status,and K+/Na+ homeostasis[J]. Front Plant Sci, 2017, 8:1739.DOI: 10.3389/fpls.2017.01739.
[33]
COLLA G, ROUPHAEL Y, CARDARELLI M, et al. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration[J]. Biol Fertil Soils, 2008, 44(3):501-509.DOI: 10.1007/s00374-007-0232-8.
[34]
AMIRI R, NIKBAKHT A, ETEMADI N, et al. Nutritional status,essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress[J]. Symbiosis, 2017, 73(1):15-25.DOI: 10.1007/s13199-016-0466-z.
[35]
杨康, 孙建茹, 王妍, 等. 入侵植物与本地植物互作对丛枝菌根真菌AMF侵染率的影响[J]. 菌物学报, 2019, 38(11):1938-1947.
YANG K, SUN J R, WANG Y, et al. Effects of invasive plants interacting with native plants on colonization of arbuscular mycorrhizal fungi[J]. Mycosystema, 2019, 38(11):1938-1947.DOI: 10.13346/j.mycosystema.190191.
[36]
GARG N, PANDEY R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.(Mills.) genotypes[J]. Mycorrhiza, 2015, 25(3):165-180.DOI: 10.1007/s00572-014-0600-9.
[37]
ESTRADA B, AROCA R, MAATHUIS F J, et al. Arbuscular mycorrhizal fungi native from a mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis[J]. Plant Cell Environ, 2013, 36(10):1771-1782.DOI: 10.1111/pce.12082.
[38]
TARAFDAR J C, PANDE M. Effect of phosphorus,salinity and moisture on VAM fungal association in neem (Azadirachta indica Linn.)[J]. Symbiosis, 2002, 32(3):195-209.
[39]
JUNIPER S, ABBOTT L K. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi[J]. Mycorrhiza, 2006, 16(5):371-379.DOI: 10.1007/s00572-006-0046-9.
[40]
UPRETI K K, BHATT R M, PANNEERSELVAM P, et al. Morpho-physiological responses of grape rootstock ‘Dogridge’ to arbuscular mycorrhizal fungi inoculation under salinity stress[J]. Int J Fruit Sci, 2016, 16(2):191-209.DOI: 10.1080/15538362.2015.1111185.
[41]
ZENG Y, GUO L P, CHEN B D, et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants:current research status and prospectives[J]. Mycorrhiza, 2013, 23(4):253-265.DOI: 10.1007/s00572-013-0484-0.
[42]
AKRAM M S, ASHRAF M. Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower[J]. J Plant Nutr, 2011, 34(7):1041-1057.DOI: 10.1080/01904167.2011.555585.
[43]
张美月, 陶秀娟, 樊建民, 等. 磷和丛枝菌根真菌对盐胁迫草莓光合作用的影响[J]. 河北农业大学学报, 2009, 32(4):71-75.
ZHANG M Y, TAO X J, FAN J M, et al. Effect of phosphorus stress and AMF on photosynjournal in strawberry under salt stress[J]. J Agric Univ Hebei, 2009, 32(4):71-75.DOI: 10.3969/j.issn.1000-1573.2009.04.015.
[44]
崔令军, 刘瑜霞, 林健, 等. 丛枝菌根真菌对盐胁迫下桢楠光合生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1):101-106.
CUI L J, LIU Y X, LIN J, et al. Effects of AMF on photosynthetic characteristics of Phoebe zhennan under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):101-106.DOI: 10.12302 /j.issn.1000-2006.202005007.
[45]
赵澍, 廖里平, 张宏武, 等. 盐胁迫对酸枣幼苗光合生理特性的影响[J]. 干旱区资源与环境, 2018, 32(5):149-153.
ZHAO S, LIAO L P, ZHANG H W, et al. Impacts of salt stress on characteristics of photosynthetic of Zizyphus jujube seedlings[J]. J Arid Land Resour Environ, 2018, 32(5):149-153.DOI: 10.13448/j.cnki.jalre.2018.155.
[46]
ZUCCARINI P, OKUROWSKA P. Effects of mycorrhizal colonization and fertilization on growth and photosynjournal of sweet basil under salt stress[J]. J Plant Nutr, 2008, 31(3):497-513.DOI: 10.1080/01904160801895027.
[47]
王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展[J]. 应用生态学报, 2010, 21(12):3255-3265.
WANG Q W, YU D P, DAI L M, et al. Research progress in water use efficiency of plants under global climate change[J]. Chin J Appl Ecol, 2010, 21(12):3255-3265.DOI: 10.13287/j.1001-9332.2010.0440.
[48]
冷寒冰, 秦俊, 叶康, 等. 不同光照环境下荷花叶片光合光响应模型比较[J]. 应用生态学报, 2014, 25(10):2855-2860.
LENG H B, QIN J, YE K, et al. Comparison of light response models of photosynjournal in Nelumbo nucifera leaves under different light conditions[J]. Chin J Appl Ecol, 2014, 25(10):2855-2860.DOI: 10.13287/j.1001-9332.20140801.010.
[49]
CHIU C H, CHOI J, PASZKOWSKI U. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice[J]. New Phytol, 2018, 217(2):552-557.DOI: 10.1111/nph.14936.
[50]
WU Q S, ZOU Y N, HE X H. Contributions of arbuscular mycorrhizal fungi to growth,photosynjournal,root morphology and ionic balance of citrus seedlings under salt stress[J]. Acta Physiol Plant, 2010, 32(2):297-304.DOI: 10.1007/s11738-009-0407-z.
[51]
王秀伟, 毛子军. 7个光响应曲线模型对不同植物种的实用性[J]. 植物研究, 2009, 29(1):43-48.
WANG X W, MAO Z J. Practicability of 7 light responsive curve models to different plant species[J]. Bull Bot Res, 2009, 29(1):43-48.
[52]
叶子飘, 于强. 一个光合作用光响应新模型与传统模型的比较[J]. 沈阳农业大学学报, 2007, 38(6):771-775.
YE Z P, YU Q. Comparison of a new model of light response of photosynjournal with traditional models[J]. J Shenyang Agric Univ, 2007, 38(6):771-775.DOI: 10.3969/j.issn.1000-1700.2007.06.001.
[53]
朱凌骏, 傅致远, 张金池, 等. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6):121-127.
ZHU L J, FU Z Y, ZHANG J C, et al. Effects of mycorrhizal fungi on photosynthetic characteristics of Zelkova serrata Thunb.[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):121-127.DOI: 10.3969/j.issn.1000-2006.201801031.

基金

江苏省农业科技自主创新基金项目[CX(17)1004]
国家林业公益性行业科研专项项目(201504406)
林业科学技术推广项目([2015]17号)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 袁佳秋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2725 KB)

Accesses

Citation

Detail

段落导航
相关文章

/