南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2): 81-87.doi: 10.12302/j.issn.1000-2006.202010036
收稿日期:
2020-10-23
接受日期:
2020-12-14
出版日期:
2022-03-30
发布日期:
2022-04-08
通讯作者:
黄利斌
基金资助:
HE Xudong(), ZHENG Jiwei, JIAO Zhongyi, DOU Quanqin, HUANG Libin()
Received:
2020-10-23
Accepted:
2020-12-14
Online:
2022-03-30
Published:
2022-04-08
Contact:
HUANG Libin
摘要:
【目的】对美国引进的不同种源舒玛栎群体进行遗传多样性与遗传结构分析,揭示其遗传分化特点及单株间遗传关系,为舒玛栎种质资源的保护与品种选育提供理论依据。【方法】以舒玛栎6个种源30个单株以及外类群纳塔栎5个单株为材料,基于SLAF-seq技术进行简化基因组测序,开发一批SNP标记并选择其中多态性的SNP标记进行基因分型。利用GenAlex、Arlequin、MEGA、Admixture和Cluster等软件进行遗传多样性参数估算、F统计量及分子分差分析、进化树构建、遗传结构与PCA主成分分析。【结果】35个栎树个体SLAF测序平均深度11×,碱基质量(Q30)平均为93%,GC含量平均为38.9%。共获得4 256 436个SLAF标签,开发多态性SNP标记8 459 025个,SNP完整度平均为79.29%,杂合率平均为14.15%。舒玛栎6个种源平均有效等位基因数为1.31个,多态性位点比例平均为49.21%;观测杂合度(Ho)与期望杂合度(He)变化范围分别为0.13~0.16和0.17~0.21;多态信息含量(PIC)、香农指数(I)、Nei’s基因多样性指数(H)和群体内的近交系数(FIS)平均值分别为0.15、0.34、0.09和0.19。不同种源间Nei’s遗传距离和遗传分化系数(FST)变化范围为0.08~0.18和0.15~0.39。分子方差分析表明舒玛栎遗传变异主要来自个体间。遗传结构分析显示30个舒玛栎个体来源于3个原始的祖先。【结论】舒玛栎群体遗传多样性水平较高,群体间遗传分化程度较大,在品种选育中应注重群体内个体优树的选择。
中图分类号:
何旭东,郑纪伟,教忠意,等. 基于SLAF-seq技术的舒玛栎群体遗传多样性与遗传结构分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 81-87.
HE Xudong, ZHENG Jiwei, JIAO Zhongyi, DOU Quanqin, HUANG Libin. Genetic diversity and structure analyses of Quercus shumardii populations based on SLAF-seq technology[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(2): 81-87.DOI: 10.12302/j.issn.1000-2006.202010036.
表2
不同种源栎树SLAF标签与SNP标记统计"
种源 provenance | Q30/% | GC含量/% GC content | SLAF数量 SLAFs number | 测序深度 sequencing depth | SNP数量 SNPs number | SNP完整度/% integrity of SNP | SNP杂合率/% heter ratio of SNP |
---|---|---|---|---|---|---|---|
LA | 91.87 | 38.74 | 126 821.4 | 12.38 | 259 700.2 | 85.20 | 16.01 |
PA | 95.12 | 38.49 | 130 307.0 | 11.11 | 256 893.0 | 84.28 | 16.00 |
TX | 95.11 | 38.67 | 134 816.4 | 11.66 | 236 358.0 | 77.54 | 15.45 |
MO | 93.65 | 38.62 | 123 436.0 | 10.62 | 24 7215.8 | 81.10 | 14.89 |
MS | 92.78 | 39.23 | 111 008.4 | 11.02 | 242 306.6 | 79.49 | 12.82 |
OH | 92.70 | 39.35 | 117 892.8 | 10.72 | 248 596.4 | 81.56 | 15.20 |
NT | 90.24 | 39.23 | 107 005.2 | 11.92 | 200 735.0 | 65.85 | 8.67 |
表3
不同种源舒玛栎群体遗传多样性"
种源 provenance | Ne | 多态性 位点 比例/% PPI | Ho | He | PIC | I | H | FIS |
---|---|---|---|---|---|---|---|---|
LA | 1.30 | 48.96 | 0.16 | 0.18 | 0.14 | 0.33 | 0.09 | 0.10 |
MO | 1.33 | 54.24 | 0.15 | 0.20 | 0.16 | 0.37 | 0.10 | 0.26 |
MS | 1.29 | 45.15 | 0.13 | 0.17 | 0.14 | 0.32 | 0.09 | 0.26 |
OH | 1.27 | 43.34 | 0.15 | 0.17 | 0.13 | 0.30 | 0.08 | 0.10 |
PA | 1.35 | 57.44 | 0.16 | 0.21 | 0.17 | 0.39 | 0.10 | 0.23 |
TX | 1.29 | 46.15 | 0.15 | 0.18 | 0.14 | 0.33 | 0.09 | 0.17 |
均值 mean | 1.31 | 49.21 | 0.15 | 0.19 | 0.15 | 0.34 | 0.09 | 0.19 |
[1] | JOHNSON P S, SHIFLEY S R, RIGERS R. The ecology and silviculture of Oaks[M]. New York: CABI Publishing, 2001,9-10. |
[2] | 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1998,215-263. |
[3] | 中国树木志编委会. 中国主要树种造林技术[M]. 北京: 中国农业出版社, 1978:500-515. |
[4] | 黄利斌, 窦全琴, 汤槿, 等. 栎树生物学特性与栽培研究综述[J]. 江苏林业科技, 2014, 41(6):43-50,54. |
HUANG L B, DOU Q Q, TANG J, et al. Review for biological characteristics and cultivation of oak[J]. J Jiangsu For Sci Technol, 2014, 41(6):43-50,54. DOI: 1001-7380(2014)06-0043-08.
doi: 1001-7380(2014)06-0043-08 |
|
[5] | 郝向春, 周帅, 韩丽君, 等. 不同种源辽东栎种子和幼树指标变异及相关分析[J]. 植物资源与环境学报, 2021, 30(4):1-11. |
HAO X C, ZHOU S, HAN L J, et al. Variation of seed and sapling indexes of Quercus liaotungensis from different provenances and related analyses[J]. J Plant Resour Environ, 2021, 30(4):1-11. DOI: 10.3969/j.issn.1674-7895.2021.04.01.
doi: 10.3969/j.issn.1674-7895.2021.04.01 |
|
[6] | 纪雪, 姜卫兵, 魏家星, 等. 栎树的综合价值及其在城乡园林绿化中的应用开发[J]. 黑龙江农业科学, 2015(12):96-101. |
JI X, JIANG W B, WEI J X, et al. Establishment of the evalutation system of landscape tree species in Heilongjiang Province[J]. Heilongjiang Agri Sci, 2015(12):96-101. DOI: 10.11942/j.issn1002-2767.2015.12.0096.
doi: 10.11942/j.issn1002-2767.2015.12.0096 |
|
[7] | 董晓昀, 黄利斌, 吕运舟, 等. 栎树栽培品种概述[J]. 江苏林业科技, 2018, 45(6):47-51. |
DONG X Y, HUANG L B, LV Y Z, et al. Overview of cultivar in oak[J]. J Jiangsu For Sci Technol, 2018, 45(6):47-51. DOI: 1001-73-7380(2018)06-0047-05.
doi: 1001-73-7380(2018)06-0047-05 |
|
[8] | 陈益泰, 孙海菁, 王树凤, 等. 5种北美栎树在我国长三角地区的引种生长表现[J]. 林业科学研究, 2013, 26(3):344-351. |
CHEN Y T, SUN H J, WANG S F, et al. Growth performances of five north American oak species in Yangzi River Delta of China[J]. For Res, 2013, 26(3):344-351. DOI: 10.3969/j.issn.1001-1498.2013.03.013.
doi: 10.3969/j.issn.1001-1498.2013.03.013 |
|
[9] | 黄利斌, 李晓储, 朱惜晨, 等. 北美栎树引种研究[J]. 林业科技开发, 2005, 19(1):30-34. |
HUANG L B, LI X C, ZHU X C, et al. Studies on introduction of north American oaks[J]. For Technol Dev, 2005, 19(1):30-34. DOI: 10.3969/j.issn.1000-8101.2005.01.009.
doi: 10.3969/j.issn.1000-8101.2005.01.009 |
|
[10] | 汪企明, 李晓储, 黄利斌, 等. 美国栎属种源引种、变异研究:种子及苗期生长变异[J]. 江苏林业科技, 1999, 26(1):1-6. |
WANG Q M, LI X C, HUANG L B, et al. Studies on the variation of provenances and families in the genus Quercus of American:seed and seedling variation[J]. J Jiangsu For Sci Technol, 1999, 26(1):1-6. | |
[11] | 汪企明, 李晓储, 黄利斌, 等. 美国栎属种源引种、变异研究:幼树年高生长节律和物候期的变异[J]. 江苏林业科技, 2000, 27(4):1-6. |
WANG Q M, LI X C, HUANG L B, et al. Studies on the variation of provenances and families in the genus Quercus of American:variations in the annual height growth rhythm and phenological phase in two-year-old saplings[J]. J Jiangsu For Sci Technol, 2000, 27(4):1-6. | |
[12] | 黄利斌, 杨静, 何开跃, 等. 纳塔栎和南方红栎2年生苗耐水湿性试验[J]. 东北林业大学学报, 2009, 37(5):7-9,35. |
HUANG L B, YANG J, HE K Y, et al. Response of Quercus nuttallii and Quercus falcata saplings to flooding stress[J]. J Nor For Univ, 2009, 37(5):7-9,35. DOI: 10.3969/j.issn.1000-5382.2009.05.003.
doi: 10.3969/j.issn.1000-5382.2009.05.003 |
|
[13] | 黄利斌, 朱惜晨, 李晓储. 北美栎树无性繁殖试验[J]. 江苏林业科技, 2007, 34(4):1-4. |
HUANG L B, ZHU X C, LI X C. Study on the cutting and grafting of north American oaks[J]. J Jiangsu For Sci Technol, 2007, 34(4):1-4 DOI: 1001-7380(2007)04-0001-04.
doi: 1001-7380(2007)04-0001-04 |
|
[14] | 欧阳磊, 陈金慧, 郑仁华, 等. 杉木育种群体SSR分子标记遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2014, 38(1):21-26. |
OUYANG L, CHEN J H, ZHENG R H, et al. Genetic diversity among the germplasm collection of the Chinese fir in 1st breeding population upon SSR markers[J]. J Nanjing For Univ(Nat Sci Ed), 2014, 38(1):21-26. DOI: 10.3969/j.issn.1000-2006.2014.01.004.
doi: 10.3969/j.issn.1000-2006.2014.01.004 |
|
[15] | 冯源恒, 杨章旗, 李火根, 等. 不同时期广西马尾松优良种源的遗传多样性变化趋势势[J]. 南京林业大学学报(自然科学版), 2016, 40(5):41-46. |
FENG Y H, YANG Z Q, LI H G, et al. A study on changes of genetic diversity for nearly 50 years in superior provenances of Pinus massoniana in Guangxi[J]. J Nanjing For Univ(Nat Sci Ed), 2016, 40(5):41-46. DOI: 10.3969/j.issn.1000-2006.2016.05.007.
doi: 10.3969/j.issn.1000-2006.2016.05.007 |
|
[16] | 乔东亚, 王鹏, 王淑安, 等. 基于SNP 标记的紫薇遗传多样性分析析[J]. 南京林业大学学报(自然科学版), 2020, 44(4):21-28. |
QIAO D Y, WANG P, WANG S A, et al. Genetic diversity analysis of Lagerstroemia germplasm resources based on SNP markers[J]. J Nanjing For Univ(Nat Sci Ed), 2020, 44(4):21-28. DOI: 10.3969/j.issn.1000-2006.202003075.
doi: 10.3969/j.issn.1000-2006.202003075 |
|
[17] |
LAAKILI A, BELKADI B, MDERAOUI L, et al. Diversity and spatial genetic structure of natural Moroccan Quercus susber L. assessed by ISSR markers for conservation[J]. Physiol Mol Biol Plants, 2018, 24:643-654. DOI: 10.1007/s12298-018-0538-z.
doi: 10.1007/s12298-018-0538-z |
[18] |
PAKKAD G, UENO S, YOSHIMARU H. Genetic diversity and differentiation of Quercus semiserrata Roxb.in northern Thailand revealed by nuclear and chloroplast microsatellite markers[J]. Forest Ecol Manag, 2008, 255(3/4):1067-1077. DOI: 10.1016/j.foreco.2007.10.021.
doi: 10.1016/j.foreco.2007.10.021 |
[19] |
MOHAMMAD-PANAH N, SHABANIAN N, KHADIVI A, et al. Genetic structure of gall oak(Quercus infectoria) characterized by nuclear and chloroplast SSR markers[J]. Tree Genet Genomes, 2017, 13:70. DOI: 10.1007/s11295-017-1146-8.
doi: 10.1007/s11295-017-1146-8 |
[20] |
LIND J F, GAILING O. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers[J]. Tree Genet Genomes, 2013, 9:707-722. DOI: 10.1007/s11295-012-0586-4.
doi: 10.1007/s11295-012-0586-4 |
[21] |
KHADIVI-KHUB A, SHABANIAN N, ALIKHANI L, et al. Genotypic analysis and population structure of Lebanon oak (Quercus libani G. Olivier) with molecular markers[J]. Tree Genet Genomes, 2015, 11:102. DOI: 10.1007/s11295-015-0935-1.
doi: 10.1007/s11295-015-0935-1 |
[22] |
SHI X M, WEN Q, CAO M, et al. Genetic diversity and structure of natural Quercus variabilis population in China as revealed by microsatellites markers[J]. Forests, 2017, 8:495. DOI: 10.3390/f8120495.
doi: 10.3390/f8120495 |
[23] | 李文英, 顾万春, 周世良. 蒙古栎天然群体遗传多样性的AFLP分析[J]. 林业科学, 2003, 39(5):29-36. |
LI W Y, GU W C, ZHOU S L. AFLP analysis on genetic diversity Quercus mongolica populations[J]. Sci Silvae Sin, 2003, 39(5):29-36. DOI: 10.3321/j.issn:1001-7488.2003.05.005.
doi: 10.3321/j.issn:1001-7488.2003.05.005 |
|
[24] | 秦英英, 韩海荣, 康峰峰, 等. 基于SSR标记的山西省辽东栎自然居群遗传多样性分析[J]. 北京林业大学学报, 2012, 34(2):61-65. |
QIN Y Y, HAN H R, KANG F F, et al. Genetic diversity in natural populations of Quercus liaotungensis in Shanxi Province based on nuclear SSR markers[J]. J Beijing For Univ, 2012, 34(2):61-65. DOI: 10.13332/j.1000-1522.2012.02.022.
doi: 10.13332/j.1000-1522.2012.02.022 |
|
[25] | 程小毛, 王振章, 姜永雷, 等. 滇西北玉龙雪山不同海拔川滇高山栎遗传多样性分析[J]. 分子植物育种, 2016, 14(5):1329-1335. |
CHENG X M, WANG Z Z, JIANG Y L, et al. Analysis on the genetic diversity of Quercus aquifolioides at diffe-rent altitudes[J]. Mol Plant Breed, 2016, 14(5):1329-1335. DOI: 10.13271/j.mpb.014.001329.
doi: 10.13271/j.mpb.014.001329 |
|
[26] |
CAVENDER-BARES J, KOTHARI S, MEIRELES J E, et al. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S[J]. Am J Bot, 2018, 105(3):565-586. DOI: 10.1002/ajb2.1049.
doi: 10.1002/ajb2.1049 |
[27] |
HIPP A L, MANOS P S, GONZALEZ-RODRIGUEZ A, et al. Sympatric parallel diversification of major oak clades in the Ame-ricas and the origins of Mexican species diversity[J]. New Phytol, 2018, 217(1):439-452. DOI: 10.1111/nph.14773.
doi: 10.1111/nph.14773 |
[28] |
SUN X W, LIU D Y, ZHANG X F, et al. SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PloS one, 2013, 8(3):e58700. DOI: 10.1371/journal.pone.0058700.
doi: 10.1371/journal.pone.0058700 |
[29] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 25(14):1754-1760. DOI: 10.1093/bioinformatics/btp324.
doi: 10.1093/bioinformatics/btp324 |
[30] |
MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20:1297-1303. DOI: 10.1101/gr.107524.110.
doi: 10.1101/gr.107524.110 |
[31] |
LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079. DOI: 10.1093/bioinformatics/btp352.
doi: 10.1093/bioinformatics/btp352 |
[32] |
PEAKALL R, SMOUSE P E. Genalex 6: genetic analysis in Excel: population genetic software for teaching and research[J]. Mol Ecol, 2012, 6(1):288-295. DOI: 10.1111/j.1471-8286.2005.01155.x.
doi: 10.1111/j.1471-8286.2005.01155.x. |
[33] |
EXCOFFIER L, LAVAL G, SCHNEIDER S. Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evol Bioinform, 2005, 1:47-50. DOI: 10.1177/117693430500100003.
doi: 10.1177/117693430500100003 |
[34] |
ALEXANDER D H, LANGE K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation[J]. BMC Bioinformatics, 2011, 12:246. DOI: 10.1186/1471-2105-12-246.
doi: 10 |
[35] | 宋志姣, 杨合宇, 翁启杰, 等. 细叶桉群体的遗传多样性和受选择位点[J]. 林业科学, 2016, 52(9):39-47. |
SONG Z J, YANG H Y, WENG Q J, et al. Genetic diversity and selective loci in Eucalyptus tereticornis populations[J]. Sci Silvae Sin, 2016, 52(9):39-47. DOI: 10.11707/j.1001-7488.20160905.
doi: 10.11707/j.1001-7488.20160905 |
|
[36] | 杨汉波, 张蕊, 王帮顺, 等. 木荷优树无性系种质SSR标记的遗传多样性分析[J]. 林业科学, 2017, 53(5):43-53. |
YANG H B, ZHANG R, WANG B S, et al. Analysis of genetic diversity in Schima superba plus tree germplasms by SSR markers[J]. Sci Silvae Sin, 2017, 53(5):43-53. DOI: 10.11707/j.1001-7488.20170506.
doi: 10.11707/j.1001-7488.20170506 |
|
[37] |
SINGH M, CHABANE K, VALKOUN J, et al. Optimum sample size for estimating gene diversity in wild wheat using AFLP mar-kers[J]. Genet Resour Crop Evol, 2006, 53 (1):23-33. DOI: 10.1007/s10722-004-0597-6.
doi: 10.1007/s10722-004-0597-6 |
[38] | 张杰, 吴迪, 汪春蕾, 等. 应用ISSR-PCR分析蒙古栎种群的遗传多样性[J]. 生物多样性, 2007, 15(3):292-299. |
ZHANG J, WU D, WANG C L, et al. Genetic diversity analysis of Quercus mongolica populations with Inter-Simple Sequence Repeats (ISSR) technique[J]. Biodivers Sci, 2007, 15(3):292-299. DOI: 10.1360/biodiv.060133.
doi: 10.1360/biodiv.060133 |
|
[39] |
XIA W, LUO T T, ZHANG W, et al. Development of high-density SNP markers and their application in evaluating genetic diversity and population structure in Elaeis guineensis[J]. Front Plant Sci, 2019, 10: 130. DOI: 10.3389/fpls.2019.00130.
doi: 10.3389/fpls.2019.00130 |
[40] |
LYU Y Z, DONG X Y, HUANG L B, et al. Uncovers the genetic diversity and adaptation of Chinese elm (Ulmus parvifolia) in eastern China[J]. Forests, 2020, 11:80. DOI: 10.3390/f11010080.
doi: 10.3390/f11010080 |
[41] |
WRIGHT S. The interpretation of population structure by F-statistics with special regard to system of mating[J]. Evolution, 1965, 19:395-420. DOI: 10.1111/j.1558-5646.1965.tb01731.x.
doi: 10.1111/j.1558-5646.1965.tb01731.x. |
[1] | 教忠意, 田雪瑶, 郑纪伟, 王保松, 何开跃, 何旭东. 灌木柳耐盐SNP位点的快速鉴定与标记开发[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 107-113. |
[2] | 王芝懿, 李振芳, 彭婵, 陈英, 张新叶. 基于荧光SSR标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 61-69. |
[3] | 王欢利, 严灵君, 黄犀, 王仲伟, 汤诗杰. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 145-153. |
[4] | 杨颖, 刘向东, 段豪, 芦治国. 基于SLAF-seq的天竺桂群体遗传变异分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 33-39. |
[5] | 冯一宁, 李因刚, 祁铭, 周鹏燕, 周琦, 董乐, 徐立安. 基于SSR标记的福建省闽楠代表性群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 102-108. |
[6] | 汪青桐, 丁晓磊, 叶建仁, 史秀峰. 基于SNP分子标记的华东地区松材线虫种群遗传分化研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 21-28. |
[7] | 吕锋, 解孝满, 韩彪, 鲁仪增, 王磊, 董昕, 王艳, 陆璐, 刘莉, 宗绍宁, 李文清. 基于SSR标记的麻栎天然群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 109-116. |
[8] | 葛大朋, 任媛, 赵俊, 王玉婷, 刘学庆, 苑兆和. 西藏石榴野生群体的SSR遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 127-133. |
[9] | 高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 109-118. |
[10] | 朱显亮, 周长品, 贾翠蓉, 翁启杰, 李发根. 尾细桉生长和木材密度关联SNP挖掘与候选基因定位[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 143-150. |
[11] | 陈兴彬, 徐海宁, 肖复明, 孙世武, 娄永峰, 邹元熹, 徐小强. 陈山红心杉1.5代种子园遗传多样性和子代父本分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 87-92. |
[12] | 臧明月, 李璇, 方炎明. 基于SSR标记的白栎天然居群遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 63-69. |
[13] | 乔东亚, 王鹏, 王淑安, 李林芳, 高露璐, 杨如同, 汪庆, 李亚. 基于SNP标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 18-25. |
[14] | 黄金思, 奚晓桐, 丁晓磊, 叶建仁. 基于SNP标记的广东省松材线虫种群分化研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 25-31. |
[15] | 陆叶,龙晓飞,王鹏凯,陈金慧,施季森. 基于RAD-seq技术的鹅掌楸基因组SNP标记开发[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||