刚毛柽柳ThPCS1基因克隆与镉胁迫应答分析

王培龙, 杨妮, 张傲然, 唐努尔·塞力克, 李爽, 高彩球

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 71-78.

PDF(4436 KB)
PDF(4436 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3) : 71-78. DOI: 10.12302/j.issn.1000-2006.202011014
研究论文

刚毛柽柳ThPCS1基因克隆与镉胁迫应答分析

作者信息 +

Cloning ThPCS1 gene of Tamarix hispida to improve cadmium tolerance

Author information +
文章历史 +

摘要

【目的】探究刚毛柽柳(Tamarix hispida)植物络合素合酶(phytochelatin synthase,PCS)基因ThPCS1的镉胁迫应答功能。【方法】通过逆转录聚合酶链式反应(RT-PCR)对刚毛柽柳ThPCS1基因进行克隆;通过BioEdit、MEGA 5.0等软件对ThPCS1蛋白进行生物信息学分析;通过实时荧光定量PCR(RT-qPCR)技术分析镉(Cd)胁迫条件下ThPCS1基因在柽柳根和叶中的表达水平;构建pROKII-ThPCS1过表达载体,通过瞬时侵染技术获得转ThPCS1基因柽柳,分析比较转基因和对照柽柳Cd胁迫应答相关生理指标和生理染色情况。【结果】从刚毛柽柳转录组数据中分离出ThPCS1基因的全长转录组序列,预测该基因的开放阅读框为1 581 bp,编码526个氨基酸,编码蛋白质的分子质量为130.75 ku,理论等电点pI为5.0。保守结构域的多重比对分析结果均显示ThPCS1蛋白在N端具有PCS结构域。RT-qPCR结果显示在镉胁迫条件下,ThPCS1基因在柽柳根中被诱导表达,且呈现出组织特异性的表达模式。对镉胁迫处理后的刚毛柽柳ThPCS1转基因植株和对照植株相关生理指标进行测定,结果显示,同对照植株相比,转基因植株的活性氧和镉离子含量降低,细胞膜损伤减小。【结论】刚毛柽柳ThPCS1基因在根中的表达明显受到镉胁迫诱导,可能参与了刚毛柽柳对镉胁迫的应答。本研究初步证明刚毛柽柳ThPCS1基因可能提高了转基因植物的耐镉能力,是一个耐镉分子育种的候选基因。

Abstract

【Objective】 This study aimed to improve the cadmium tolerance of Tamarix hispida. 【Method】The cadmium stress response of the phytochelatin synthase gene (ThPCS1) in T. hispida was explored. We cloned the ThPCS1 gene of T. hispida by using reverse transcription-polymerase chain reaction (RT-PCR). The bioinformatics information of the ThPCS1 protein was analyzed using BioEdit, MEGA 5.0 and other software. The expression of ThPCS1 in the roots and leaves of T. hispida under cadmium stress was analyzed by real-time quantitative (RT-q) PCR. We constructed a pROKII-ThPCS1 overexpression vector and used it to obtain ThPCS1 transgenic T. hispida by transient infection. Physiological indicators and staining of transgenic and control T. hispida under the Cd stress response were compared. 【Result】We sequenced the full length of the ThPCS1 gene from T. hispida transcriptome data. The open reading frame (ORF) of ThPCS1 gene was 1 581 bp, encoding 526 amino acids with a relative molecular mass of 130.75 ku, and the theoretical isoelectric point pI was 5.0. Conserved domains and multiple sequence alignment analyses showed that the ThPCS1 protein has a phytochelatin synthase (PCS) domain at the N-terminus. The RT-qPCR results revealed that ThPCS1 expression was induced in the roots of T. hispida under cadmium stress, and the expression was obviously tissue-specific. Furthermore, ThPCS1 was overexpressed in T. hispida and under Cd stress. The results of relevant physiological determination showed less reactive oxygen species and cadmium ions in plants overexpressing ThPCS1 than in the control. Accordingly, the cell membrane was less damaged in transgenic as compared to the control plants. 【Conclusion】The response of the T. hispida ThPCS1 gene to cadmium stress was significant, confirming its role in the response of T. hispida to cadmium stress. The ThPCS1 gene might improve the cadmium tolerance of T. hispida and serve as a candidate gene for the molecular breeding of T. hispida with excellent cadmium tolerance.

关键词

刚毛柽柳 / 植物络合素合酶 / 镉胁迫 / 基因表达 / 实时荧光定量PCR

Key words

Tamarix hispida / phytochelatin synthase / cadmium stress / gene expression / RT-qPCR

引用本文

导出引用
王培龙, 杨妮, 张傲然, . 刚毛柽柳ThPCS1基因克隆与镉胁迫应答分析[J]. 南京林业大学学报(自然科学版). 2021, 45(3): 71-78 https://doi.org/10.12302/j.issn.1000-2006.202011014
WANG Peilong, YANG Ni, ZHANG Aoran, et al. Cloning ThPCS1 gene of Tamarix hispida to improve cadmium tolerance[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 71-78 https://doi.org/10.12302/j.issn.1000-2006.202011014
中图分类号: Q943.2;S718   

参考文献

[1]
BUCHET J P, LAUWERYS R, ROELS H, et al. Renal effects of cadmium body burden of the general population[J]. Lancet, 1990,336(8717):699-702.DOI: 10.1016/0140-6736(90)92201-r.
[2]
SCHÜTZENDÜBEL A, POLLE A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization[J]. J Exp Bot, 2002,53(372):1351-1365.DOI: 10.1093/jxb/53.372.1351.
[3]
SANITÀ DI TOPPI L, GABBRIELLI R. Response to cadmium in higher plants[J]. Environ Exp Bot, 1999,41(2):105-130.DOI: 10.1016/S0098-8472(98)00058-6.
[4]
GHELIS T, DELLIS O, JEANNETTE E, et al. Abscisic acid plasmalemma perception triggers a calcium influx essential for RAB18 gene expression in Arabidopsis thaliana suspension cells[J]. FEBS Lett, 2000,483(1):67-70.DOI: 10.1016/s0014-5793(00)02088-3.
[5]
CLEMENS S. Evolution and function of phytochelatin synthases[J]. J Plant Physiol, 2006,163(3):319-332.DOI: 10.1016/j.jplph.2005.11.010.
[6]
GRILL E, WINNACKER E L, ZENK M H. Phytochelatins:the principal heavy-metal complexing peptides of higher plants[J]. Science, 1985,230(4726):674-676.DOI: 10.1126/science.230.4726.674.
[7]
WANG F, WANG Z, ZHU C. Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity[J]. Acta Biochim Biophys Sin (Shanghai), 2012,44(10):886-893.DOI: 10.1093/abbs/gms073.
[8]
LI J C, GUO J B, XU W Z, et al. RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds[J]. J Integr Plant Biol, 2007,49(7):1032-1037.DOI: 10.1111/j.1672-9072.2007.00473.x.
[9]
VATAMANIUK O K, MARI S, LU Y P, et al. AtPCS1,a phytochelatin synthase from Arabidopsis:isolation and in vitro reconstitution[J]. PNAS, 1999,96(12):7110-7115.DOI: 10.1073/pnas.96.12.7110.
[10]
HEISS S, WACHTER A, BOGS J, et al. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure[J]. J Exp Bot, 2003,54(389):1833-1839.DOI: 10.1093/jxb/erg205.
[11]
MEYER C L, PEISKER D, COURBOT M, et al. Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases[J]. Planta, 2011,234(1):83-95.DOI: 10.1007/s00425-011-1378-z.
[12]
VATAMANIUK O K, MARI S, LANG A, et al. Phytochelatin synthase,a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis[J]. J Biol Chem, 2004,279(21):22449-22460.DOI: 10.1074/jbc.m313142200.
[13]
CLEMENS S, KIM E J, NEUMANN D, et al. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast[J]. EMBO J, 1999,18(12):3325-3333.DOI: 10.1093/emboj/18.12.3325.
[14]
CLEMENS S, SCHROEDER J I, DEGENKOLB T. Caenorhabditis elegans expresses a functional phytochelatin synthase[J]. Eur J Biochem, 2001,268(13):3640-3643.DOI: 10.1046/j.1432-1327.2001.02293.x.
[15]
LEE S, KORBAN S S. Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development[J]. Planta, 2002,215(4):689-693.DOI: 10.1007/s00425-002-0821-6.
[16]
SEMANE B, CUYPERS A, SMEETS K, et al. Cadmium responses in Arabidopsis thaliana:glutathione metabolism and antioxidative defence system[J]. Physiol Plant, 2007,129(3):519-528.DOI: 10.1111/j.1399-3054.2006.00822.x.
[17]
GASIC K, KORBAN S S. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn[J]. Planta, 2007,225(5):1277-1285.DOI: 10.1007/s00425-006-0421-y.
[18]
RAMOS J, CLEMENTE M R, NAYA L, et al. Phytochelatin synthases of the model legume Lotus japonicus: a small multigene family with differential response to cadmium and alternatively spliced variants[J]. Plant Physiol, 2007,143(3):1110-1118.DOI: 10.1104/pp.106.090894.
[19]
LEE B D, HWANG S. Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco[J]. Plant Biotechnol Rep, 2015,9(3):107-114.DOI: 10.1007/s11816-015-0348-5.
[20]
张道远, 尹林克, 潘伯荣. 柽柳属植物抗旱性能研究及其应用潜力评价[J]. 中国沙漠, 2003,23(3):252-256.
ZHANG D Y, YIN L K, PAN B R. Study on drought-resisting mechanism of Tamrix L.and assessing of its potential application[J]. J Desert Res, 2003,23(3):252-256.DOI: 10.3321/j.issn:1000-694X.2003.03.008.
[21]
姜廷波, 陈虹, 唐鑫华, 等. 转金属硫蛋白基因(MT1)烟草抗Cd2+胁迫的生理特性分析 [J]. 作物学报, 2007,33(11):1902-1905.
JIANG T B, CHEN H, TANG X H, et al. Analysis of physiologic characteristics for Cd2+ tolerance on transgenic tobacco expressing metallothionein gene (MT1) [J]. Acta Agron Sin, 2007,33(11):1902-1905.DOI: 10.3321/j.issn:0496-3490.2007.11.027.
[22]
姚启超, 高彩球, 姜静, 等. 柽柳eIF1A基因耐重金属CdCl2胁迫能力分析[J]. 东北林业大学学报, 2010,38(2):4-5,8.
YAO Q C, GAO C Q, JIANG J, et al. Tolerance of eIF1A gene from Tamarix androssowii under CdCl2 stress[J]. J Northeast For Univ, 2010,38(2):4-5,8.DOI: 10.3969/j.issn.1000-5382.2010.02.002.
[23]
贺琳, 蒋丽丽, 王玉成. 柽柳eIF1A基因耐重金属CdCl2胁迫能力分析[J]. 东北林业大学学报, 2011, 39(4):101-104.
HE L, JIANG L L, WANG Y C. Stress tolerance of thioredoxin peroxidase gene from Tamarix hispida(ThPrx1) inserted into yeast[J]. J Northeast For Univ, 2011,39(4):101-104.DOI: 10.13759/j.cnki.dlxb.2011.04.023.
[24]
GAO C, JIANG B, WANG Y, et al. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast[J]. Mol Biol Rep, 2012,39(4):4889-4897.DOI: 10.1007/s11033-011-1284-2.
[25]
GAO C, WANG Y, JIANG B, et al. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae [J]. Mol Biol Rep, 2011,38(2):957-963.DOI: 10.1007/s11033-010-0189-9.
[26]
YANG G, WANG C, WANG Y, et al. Overexpression of ThVHAc1 and its potential upstream regulator,ThWRKY7,improved plant tolerance of Cadmium stress[J]. Sci Rep, 2016,6:18752.DOI: 10.1038/srep18752.
[27]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001,25(4):402-408.DOI: 10.1006/meth.2001.1262.
[28]
ZHANG T, ZHAO Y, WANG Y, et al. Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida[J]. Front Plant Sci, 2018,9:1303.DOI: 10.3389/fpls.2018.01303.
[29]
VIVARES D, ARNOUX P, PIGNOL D. A papain-like enzyme at work:native and acyl-enzyme intermediate structures in phytochelatin synjournal[J]. PNAS, 2005,102(52):18848-18853.DOI: 10.1073/pnas.0505833102.
[30]
梅磊, 李玲, DAUD M K, 等. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018,30(1):102-110.
MEI L, LI L, DAUD M K, et al. Advances on response and resistance to heavy metal stress in cotton[J]. Cotton Sci, 2018,30(1):102-110.DOI: 10.11963/1002-7807.mlzsj.20171107.
[31]
DALCORSO G, FARINATI S, MAISTRI S, et al. How plants cope with cadmium:staking all on metabolism and gene expression[J]. J Integr Plant Biol, 2008,50(10):1268-1280.DOI: 10.1111/j.1744-7909.2008.00737.x.
[32]
TSUJI N, NISHIKORI S, IWABE O, et al. Comparative analysis of the two-step reaction catalyzed by prokaryotic and eukaryotic phytochelatin synthase by an ion-pair liquid chromatography assay[J]. Planta, 2005,222(1):181-191.DOI: 10.1007/s00425-005-1513-9.
[33]
DAS U, RAHMAN M A, ELA E J, et al. Sulfur triggers glutathione and phytochelatin accumulation causing excess Cd bound to the cell wall of roots in alleviating Cd-toxicity in alfalfa[J]. Chemosphere, 2021,262:128361.DOI: 10.1016/j.chemosphere.2020.128361.
[34]
COBBETT C S. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiol, 2000,123(3):825-832.DOI: 10.1104/pp.123.3.825.
[35]
COBBETT C, GOLDSBROUGH P. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis[J]. Annu Rev Plant Biol, 2002,53:159-182.DOI: 10.1146/annurev.arplant.53.100301.135154.
[36]
SU H X, ZOU T, LIN R Y, et al. Characterization of a phytochelatin synthase gene from Ipomoea pes-caprae involved in cadmium tolerance and accumulation in yeast and plants[J]. Plant Physiol Biochem, 2020,155:743-755.DOI: 10.1016/j.plaphy.2020.08.012.
[37]
BAI J Y, WANG X, WANG R, et al. Overexpression of three duplicated BnPCS genes enhanced Cd accumulation and translocation in Arabidopsis thaliana mutant cad1-3[J]. Bull Environ Contam Toxicol, 2019,102(1):146-152.DOI: 10.1007/s00128-018-2487-1.
[38]
SASAKI A, YAMAJI N, MA J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. J Exp Bot, 2014,65(20):6013-6021.DOI: 10.1093/jxb/eru340.
[39]
ZHANG L X, GAO C, CHEN C, et al. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains[J]. Environ Sci Technol, 2020,54(16):10100-10108.DOI: 10.1021/acs.est.0c02877.
[40]
YAN J L, WANG P T, WANG P, et al. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonicarice cultivars[J]. Plant Cell Environ, 2016,39(9):1941-1954.DOI: 10.1111/pce.12747.

基金

国家自然科学基金面上项目(31670679)
黑龙江省大学生创新创业训练计划项目(201910225243)

编辑: 涂忠华

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(4436 KB)

Accesses

Citation

Detail

段落导航
相关文章

/