‘凤丹’种子发育及其营养物质含量和相关酶活性的动态变化

邹雨婷, 朱铭玮, 李永荣, 翟金庭, 李淑娴

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5) : 62-70.

PDF(2741 KB)
PDF(2741 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (5) : 62-70. DOI: 10.12302/j.issn.1000-2006.202012039
研究论文

‘凤丹’种子发育及其营养物质含量和相关酶活性的动态变化

作者信息 +

Dynamic changes in nutrients content and related enzymes activity during Paeonia ostii ‘Feng Dan’ seeds development

Author information +
文章历史 +

摘要

【目的】 研究‘凤丹’蓇葖果及种子发育过程中形态变化规律的同时,探讨种子发育过程中营养物质间的转化规律,以充分了解‘凤丹’种子的发育特性,并为其科学栽培和管理提供理论依据。【方法】 以‘凤丹’蓇葖果及种子为材料,对其发育过程中6个阶段进行生物学观察,同时测定种子中的含水率、种子发育过程中营养物质(可溶性糖、可溶性蛋白、粗淀粉和粗脂肪含量)以及相关酶活性[总淀粉酶、总蛋白酶、乙酰辅酶 A 羧化酶(ACCase)和植物磷脂酸磷酸酯酶(PPase)]。【结果】 ‘凤丹’种子的发育大致可分为两个阶段:绿熟阶段(花后45~85 d)和褐熟阶段(花后95~115 d)。在测定的各阶段,种子含水率持续显著下降,种皮颜色由黄色变为乳白色,最终表皮坚固,呈黑褐色。果皮颜色也从绿色转变为黄褐色,最终呈现灰褐色并伴随着果荚开裂。对营养物质及相关酶活性而言,‘凤丹’种子发育过程中,油脂积累旺盛期主要集中于花后45~85 d,中后期时油脂增长较为缓慢,于成熟时达至此次测定的最高值(33.1%)。可溶性糖的消耗趋势与可溶性蛋白积累的趋势类似;且可溶性糖含量的变化与淀粉含量的变化呈显著正相关关系,均呈现下降—上升—下降的变化趋势,并均于花后85 d时达到了此次测定的最低值。在此过程中,总淀粉酶活性和总蛋白酶活性变化趋势分别与粗淀粉和可溶性蛋白变化趋势相反,且当粗淀粉含量随着总淀粉酶活性的升高而减少时,可溶性蛋白含量则随着总蛋白酶活性的降低而升高。此外,乙酰辅酶A羧化酶和磷脂酸磷酸酯酶活性则随着油脂积累速度的增加而升高。【结论】 各营养物质含量以及相关生物学特性等变化趋势表明,‘凤丹’种子于花后115 d左右采收较为合适。同时,在栽植过程中的不同阶段需采用不同的管理方案,于花后45~65 d时需保证水分及磷肥的充分供应;花后65~85 d时,则应以浅浇灌为主,增施适量的氮肥及钾肥;而种子发育中后期,应进一步适量减少水分供应,并追施少量磷肥。

Abstract

【Objective】 To understand the developmental characteristics of Paeonia ostii ‘Feng Dan’ seed and to provide theoretical basis for their scientific cultivation and management, we studied the morphological changes during P. ostii ‘Feng Dan’ follicle as well as seed development and discussed the transformation of nutrients during P. ostii ‘Feng Dan’ seed development. 【Method】 The P. ostii ‘Feng Dan’ follicles and seeds were stratified at six stages and used as materials for biological observation. Additionally, indexes such as water, soluble sugar, soluble protein, crude starch, crude lipid content, total amylase, total protease, acetyl-CoA carboxylase (ACCase), and phosphatidate phosphatase (PPase) activities in seeds were studied. Changes in nutrients and their related enzyme activities during seed development were analyzed. 【Result】 P. ostii ‘Feng Dan’ seed development was divided into two stages: green ripe stage (45-85 days after flowering) and brown ripe stage (95-115 days after flowering). During this process, the water content of P. ostii ‘Feng Dan’ seed decreased significantly, and the seed coat changed from yellow to white. Finally, the coat was hard and black brown. The pericarp also changed from green to yellowish brown and finally showed as grayish brown with dehiscent pods. Results of nutrient and related enzyme activity determination showed that during P. ostii ‘Feng Dan’ seed development, the oil accumulation flourished mainly at 45-85 days after flowering, increasing slowly at the middle and later stages, and reached the highest value of 33.1% at maturity. In addition to the consumption trend of soluble sugar corresponding to the accumulation trend of soluble protein, the change in soluble sugar content also showed a significant positive correlation with the change in crude starch content, showing downward-rising decreasing trends, and all reached the lowest value at 85 days after flowering. During the process, the trend of total amylase activity was opposite to that of crude starch, and the trends of total protease and soluble protein were the same. When the content of crude starch decreased with an increase in total amylase activity, the content of soluble protein increased with a decrease in total protease activity. ACCase and PPase activities also increased with an increase in lipid accumulation rate. 【Conclusion】 The changing trend of nutrient contents and related biological characteristics indicated that it is more appropriate to harvest P. ostii ‘Feng Dan’ seed at approximately 115 days after flowering. Additionally, distinct management schemes must be adopted at different stages of the planting process. A sufficient supply of water and phosphorus fertilizer should be ensured at 45-65 days after flowering. At 65-85 days after flowering, shallow irrigation should be used, and an appropriate amount of nitrogen and potassium fertilizer should be applied. However, in the middle and later stages of seed development, the water supply should be further reduced and a small amount of topdressing phosphorus should be reapplied.

关键词

‘凤丹’ / 种子发育 / 营养物质 / 油脂 / 酶活性

Key words

Paeonia ostia ‘Feng Dan’ / seeds development / nutrient / oil / enzymes activity

引用本文

导出引用
邹雨婷, 朱铭玮, 李永荣, . ‘凤丹’种子发育及其营养物质含量和相关酶活性的动态变化[J]. 南京林业大学学报(自然科学版). 2021, 45(5): 62-70 https://doi.org/10.12302/j.issn.1000-2006.202012039
ZOU Yuting, ZHU Mingwei, LI Yongrong, et al. Dynamic changes in nutrients content and related enzymes activity during Paeonia ostii ‘Feng Dan’ seeds development[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 62-70 https://doi.org/10.12302/j.issn.1000-2006.202012039
中图分类号: S727.3   

参考文献

[1]
蓝保卿. 中国牡丹全书[M]. 北京: 中国科学技术出版社, 2002.
LAN B Q. The Chinese peony encyclopedia[M]. Beijing: China Science and Technology Press, 2002.
[2]
史国安, 焦封喜, 焦元鹏, 等. 中国油用牡丹的发展前景及对策[J]. 中国粮油学报, 2014, 29(9):124-128.
SHI G A, JIAO F X, JIAO Y P, et al. Development prospects and strategies of oil tree peony industry in China[J]. J Chin Cereals Oils Assoc, 2014, 29(9):124-128.
[3]
陈慧玲, 杨彦伶, 张新叶, 等. 油用牡丹研究进展[J]. 湖北林业科技, 2013, 42(5):41-44.
CHEN H L, YANG Y L, ZHANG X Y, et al. Research progress on Paeonia suffruticosa Andr.for oil[J]. Hubei For Sci Technol, 2013, 42(5):41-44.DOI: 10.3969/j.issn.1004-3020.2013.05.012.
[4]
王伟伟. 牡丹籽油中脂肪酸的构成及生理功能[J]. 中国卫生产业, 2011, 8(36):8-9.
WANG W W. Composition and physiological functions of fatty acids in peony seed oil[J]. China Heal Ind, 2011, 8(36):8-9.DOI: 10.16659/j.cnki.1672-5654.2011.36.016.
[5]
高婷婷, 王亚芸, 任建武. GC-MS法分析牡丹籽油的成分及其防晒效果的评定[J]. 食品科技, 2013, 38(6), 38:296-299.
GAO T T, WANG Y Y, REN J W. Analysis of the composition in peony seed oil by GC/MS and evaluation in the sunscreen effect[J]. Food Sci Technol, 2013, 38(6), 38:296-299.DOI: 10.13684/j.cnki.spkj.2013.06.021.
[6]
李金平. 油用凤丹牡丹播种育苗管理技术[J]. 江西农业, 2017(9):13.
LI J P. Management technology of sowing and raising seedlings of oil peony ‘FengDan’[J]. Jiangxi Agric, 2017(9):13.DOI: 10.19394/j.cnki.issn1674-4179.2017.09.013.
[7]
易军鹏. 牡丹籽化学成分分析与牡丹籽油提取工艺研究[D]. 镇江:江苏大学, 2009.
YI J P. Studies on chemical constituents analysis and oil extraction technology from Paeonia suffruticosa Andr. seeds[D]. Zhenjiang:Jiangsu University, 2009.
[8]
饶鸿雁. 牡丹籽油的提取及其抗氧化活性研究[D]. 济南:齐鲁工业大学, 2015.
RAO H Y. Study on the extraction and antioxidant activity of penoy seed oil[D]. Ji’nan:Qilu University of Technology, 2015.
[9]
刘阳阳. 基于在超临界CO2溶解度的牡丹籽油提取工艺优化与贮藏过程中的抗氧化指标动态[D]. 哈尔滨:东北林业大学, 2016.
LIU Y Y. Supercritical CO2 extraction process optimization of peony seed oil based its solubility and dynamic antioxidant indexes during storage[D]. Harbin:Northeast Forestry University, 2016.
[10]
高婷婷. 牡丹籽油成分分析及储藏条件研究[D]. 北京:北京林业大学, 2012.
GAO T T. Analysis of peony seed oil composition and storage conditions research[D]. Beijing:Beijing Forestry University, 2012.
[11]
吉朵. ‘凤丹’牡丹优选群体单株评价研究[D]. 杨凌:西北农林科技大学, 2018.
JI D. The study on individual evaluation of the optimized selective group of Paeonia ostii ‘Feng Dan’[D]. Yangling: Northwest A & F University, 2018.
[12]
钱仙云. 温度与GA3解除凤丹种子休眠的生理代谢变化及对其幼苗质量的影响[D]. 南京:南京农业大学, 2009.
QIAN X Y. Physiological mechanism of breaking seed dormancy and effect of seedling quality on Paeonia ostii by different tempreture and gibberellic acid[D]. Nanjing: Nanjing Agricultural University, 2009.
[13]
杨丹怡. 油用牡丹‘凤丹’修剪整形研究[D]. 杨凌:西北农林科技大学, 2019.
YANG D Y. Study on pruning of oil peony Paeonia ostii ‘Feng Dan’[D]. Yangling: Northwest A & F University, 2019.
[14]
孙海燕, 李强, 朱铭玮, 等. 油用牡丹‘凤丹’种子层积过程中营养物质的代谢变化研究[J]. 南京林业大学学报(自然科学版), 2021, 45(1):70-78.
SUN H Y, LI Q, ZHU M W, et al. Dynamic changes of nutrients of Paeonia ostii ‘Feng Dan’ seed during its dormancy breaking[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):70-78.DOI: 10.12302/j.issn.1000-2006.202003021.
[15]
刘曙光, 段佩玲, 张利霞, 等. 氮素形态对‘凤丹’表型性状、光合及产量的影响[J]. 南京林业大学学报(自然科学版), 2019, 62(4):161-168.
LIU S G, DUAN P L, ZHANG L X, et al. Effects of different nitrogen forms on phenotypic traits, photosynjournal and yield of Paeonia ostii ‘Feng Dan’[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 62(4):161-168.DOI: 10.3969/j.issn.1000-2006.201810010.
[16]
赵正, 石红梅, 盖树鹏, 等. 牡丹籽仁发育及后熟对其脂肪酸含量和成分的影响[J]. 北方园艺, 2019(4):106-111.
ZHAO Z, SHI H M, GAI S P, et al. Effects of post-ripening on the content and components of fatty acid in tree peony seed[J]. North Hortic, 2019(4):106-111.DOI: 10.11937/bfyy.20182607.
[17]
陈虹, 潘存德, 王蓓, 等. 核桃种子发育主要营养物质积累之间的关系及脂肪酸动态变化[J]. 河北农业大学学报, 2016, 39(1):57-62, 74.
CHEN H, PAN C D, WANG B, et al. The relationship among nutrients’ accumulation and dynamic changes of fatty acids in seed development of walnut[J]. J Agric Univ Hebei, 2016, 39(1):57-62, 74. DOI: 10.13320/j.cnki.jauh.2016.0009.
[18]
姜志娜, 谭晓风, 袁军, 等. 油茶果实和叶片中主要营养物质含量的变化规律[J]. 中南林业科技大学学报, 2012, 32(5):42-45.
JIANG Z N, TAN X F, YUAN J, et al. Content variation of main nutrients in leaves and fruits of Camellia oleifera[J]. J Central South Univ For Technol, 2012, 32(5):42-45. DOI: 10.14067/j.cnki.1673-923x.2012.05.030.
[19]
董兆磊. ‘凤丹’(Paeonia ostii‘Feng Dan’)生殖生物学的初步研究[D]. 北京:北京林业大学, 2010.
DONG Z L. Studies on the reproductive biology of Paeonia ostii ‘Feng Dan’[D]. Beijing:Beijing Forestry University, 2010.
[20]
DUTTA R, SARKAR U, MUKHERJEE A. Extraction of oil from Crotalaria Juncea seeds in a modified Soxhlet apparatus: physical and chemical characterization of a prospective bio-fuel[J]. Fuel, 2014, 116:794-802.DOI: 10.1016/j.fuel.2013.08.056.
[21]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[22]
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
GAO J F.. Experimental guidance for plant physiology[M]. Beijing:Higher Education Press, 2006.
[23]
刘志洋, 周心怡, 赵景荣, 等. 3,5-二硝基水杨酸法测定不同高度麦苗中淀粉酶的活性强度[J]. 泰山医学院学报, 2011, 32(12):925-927.
LIU Z Y, ZHOU X Y, ZHAO J R, et al. 3,5-two nitro salicylic acid method to determine the amylase activity intensity in different height of wheat seedling[J]. J Taishan Med Coll, 2011, 32(12):925-927.DOI: 10.3969/j.issn.1004-7115.2011.12.015.
[24]
王福荣, 庞玉珍. 福林—酚试剂法测定蛋白酶活力的条件试验[J]. 调味副食品科技, 1981, 6(12):21-24.
WANG F R, PANG Y Z. Condition test for the determination of protease activity by folin-phenol reagent method[J]. China Condiment, 1981, 6(12):21-24.
[25]
成仿云. 紫斑牡丹有性生殖过程的研究[D]. 北京:北京林业大学, 1996.
CHENG F Y. Studies on the sexual reproduction processes of Paeonia rockii cultivars[D]. Beijing:Beijing Forestry University, 1996.
[26]
刘心民, 程逸远, 张霁, 等. 牡丹种子萌发特性与播种繁殖技术研究进展[J]. 河南林业科技, 2005, 25(4):38-40.
[27]
王杨. 南京椴种实发育生理特性研究[D]. 南京:南京林业大学, 2010.
WANG Y. Study on seed developing physiological characteristics of Tilia miqueiana[D]. Nanjing:Nanjing Forestry University, 2010.
[28]
贾书果. 秤锤树种实发育的生理特性与种子休眠机理的研究[D]. 南京:南京林业大学, 2008.
JIA S G. Studys on seed developing physiological characteristics and seed dormancy mechanism of Sinojackia xylocarpa HU[D]. Nanjing:Nanjing Forestry University, 2008.
[29]
ZHANG Z H, WANG X J, LUO Y, et al. Carbon competition between fatty acids and starch during benzoin seeds maturation slows oil accumulation speed[J]. Trees, 2017, 31(3):1025-1039.DOI: 10.1007/s00468-017-1528-4.
[30]
刘泉. 引进油橄榄果肉油脂积累规律及相关合成酶活性的研究[D]. 雅安:四川农业大学, 2012.
LIU Q. Study on the rule of oil accumulation and the activities of related synthetic enzymes in olive pulps of introduced cultivars[D]. Ya’an:Sichuan Agricultural University, 2012.
[31]
汤佳. 油茶果实发育及成熟期间主要生理生化指标变化的研究[D]. 福州:福建农林大学, 2015.
TANG J. The research on the main physiological and biochemical changes of Camellia oleifera fruits during development and ripening[D]. Fuzhou:Fujian Agriculture and Forestry University, 2015.
[32]
WIBERG E, BANAS A, STYMNE S. Fatty acid distribution and lipid metabolism in developing seeds of laurate-producing rape (Brassica napus L.)[J]. Planta, 1997, 203(3):341-348.DOI: 10.1007/s004250050200.
[33]
高翔. 木本油料植物山桐子果实发育过程油脂积累规律及转录组学研究[D]. 武汉:中国科学院研究生院(武汉植物园),2016.
GAO X. Oil accumulation rule and transcriptomics analyses of an woody oil plant Idesia polycarpa during fruit development[D]. Wuhan:Chinese Academy of Sciences(Wuhan Botanical Gardon),2016.
[34]
赵翠格, 刘頔, 李凤兰, 等. 植物种子油脂的生物合成及代谢基础研究进展[J]. 种子, 2010, 29(4):56-62.
ZHAO C G, LIU D, LI F L, et al. Advances in research on seed oil biosynjournal and basal metabolism[J]. Seed, 2010, 29(4):56-62.DOI: 10.16590/j.cnki.1001-4705.2010.04.043.
[35]
KING S P, LUNN J E, FURBANK R T. Carbohydrate content and enzyme metabolism in developing canola siliques[J]. Plant Physiol, 1997, 114(1):153-160.DOI: 10.1104/pp.114.1.153.
[36]
KLAUS D, OHLROGGE J B, NEUHAUS H E, et al. Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase[J]. Planta, 2004, 219(3):389-396.DOI: 10.1007/s00425-004-1236-3.
[37]
LIN Y, CLUETTE-BROWN J E, GOODMAN H M. The peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synjournal[J]. Plant Physiol, 2004, 135(2):814-827.DOI: 10.1104/pp.103.036772.
[38]
LIN Y, ULANOV A V, LOZOVAYA V, et al. Genetic and transgenic perturbations of carbon reserve production in Arabidopsis seeds reveal metabolic interactions of biochemical pathways[J]. Planta, 2006, 225(1):153-164.DOI: 10.1007/s00425-006-0337-6.
[39]
赵翠格. 文冠果种子发育过程中油脂累积规律研究[D]. 北京:北京林业大学, 2010.
ZHAO C G. Oil accumulation in developing seed of Xanthoceras sorbifolia Bunge[D]. Beijing:Beijing Forestry University, 2010.

基金

南京农业科技产学研合作示范基地建设项目(2019RHJD204)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 李燕文 袁佳秋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(2741 KB)

Accesses

Citation

Detail

段落导航
相关文章

/