洪泽湖河湖交汇区典型杨树人工林碳通量月尺度变化特征

崔皓, 韩建刚, 郭俨辉, 季淮, 朱咏莉, 李萍萍

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 19-26.

PDF(3559 KB)
PDF(3559 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 19-26. DOI: 10.12302/j.issn.1000-2006.202012047
专题报道Ⅰ:"双碳"视域下的生态系统固碳增汇(执行主编 阮宏华 李萍萍)

洪泽湖河湖交汇区典型杨树人工林碳通量月尺度变化特征

作者信息 +

Monthly scale variation characteristics of net ecosystem exchange (NEE) in poplar plantations at the confluence of Hongze Lake and Huai River

Author information +
文章历史 +

摘要

【目的】揭示洪泽湖水位夏低冬高的独特水文特点对河湖交汇区杨树人工林净生态系统碳交换(NEE,简称碳通量)产生的影响。【方法】采用涡度相关及土壤水热监测系统,对洪泽湖湿地河湖交汇区典型杨树人工林碳通量及其环境因子进行了连续3 a(2016—2018年)的观测,分析月尺度上碳通量变化及其与环境因子的关系。【结果】①洪泽湖河湖交汇区杨树人工林的NEE值具有明显“V”形变化曲线,白天表现为碳吸收,夜间表现为碳释放,日均碳汇时间为10 h;②研究期间各旬NEE值在2018年的2月上旬最高(7.117 g/m2),最低值出现在2017年的7月中旬(-212.256 g/m2);3年间年均NEE值为-1 413.403 g/m2;③在洪泽湖开闸时期(5—8月)水位低,土壤含水率和风速是影响NEE的主要因素,关闸时期(9月至翌年4月)水位高,NEE主要受空气温度和饱和水汽压差影响。【结论】夏季对洪泽湖开闸放水,有利于河湖交汇区杨树生长及碳汇增加,冬季蓄水地下水位抬高,对杨树生长产生的不利影响可以通过开沟筑垄来消除,进而有利于区域杨树人工林全年碳汇功能的提升。

Abstract

【Objective】The aim of this study was to reveal the impact of the unique hydrological characteristics of Hongze Lake, which has a low water level in summer and a high water level in winter, on the net ecosystem exchange carbon flux (NEE) of poplar plantations at the confluence of Hongze Lake and Huai River. 【Method】In this study, eddy covariance and soil moisture monitoring systems were used to observe the NEE and environmental factors of typical poplar plantations in the river-lake intersection area for three consecutive years(2016-2018) to analyze the variations in NEE and its relationship with environmental factors on a monthly basis. 【Result】(1) The NEE values of the poplar plantations in this area displayed an obvious V-shaped curve, showing carbon absorption during the daytime and carbon release at night, with an average daily carbon sink time of 10 h. (2) The highest value of NEE during the annual 10 days study was 7.117 g/m2 in early February 2018, and the lowest NEE was -212.256 g/m2 in mid-July 2017. The average annual NEE value in the three years was -1 413.403 g/m2. (3) The water level of Hongze Lake was low during the sluice-opening period (from May to August), and soil moisture content and wind speed were the main factors affecting NEE, whereas the water level was high during the sluice-closing period (September to April of the next year), and NEE was mainly affected by air temperature and saturated vapor pressure differences. 【Conclusion】Opening the sluices and releasing water in summer were advantageous for the growth of poplar trees and increased the carbon sink. In winter, the groundwater level increased, and the adverse effects on the poplar growth could be eliminated by the ditching and ridge construction, which would be beneficial for improving the annual carbon sink function of poplar plantations in this region.

关键词

杨树人工林 / 碳通量 / 涡度相关 / 环境因子 / 洪泽湖

Key words

poplar (Populus×euramericana‘Nanlin 95’) plantation / net ecosystem exchange (NEE) / eddy covariance / environmental factor / Hongze Lake

引用本文

导出引用
崔皓, 韩建刚, 郭俨辉, . 洪泽湖河湖交汇区典型杨树人工林碳通量月尺度变化特征[J]. 南京林业大学学报(自然科学版). 2022, 46(2): 19-26 https://doi.org/10.12302/j.issn.1000-2006.202012047
CUI Hao, HAN Jiangang, GUO Yanhui, et al. Monthly scale variation characteristics of net ecosystem exchange (NEE) in poplar plantations at the confluence of Hongze Lake and Huai River[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 19-26 https://doi.org/10.12302/j.issn.1000-2006.202012047
中图分类号: X826;S718   

参考文献

[1]
KAYRANLI B, SCHOLZ M, MUSTAFA A, et al. Carbon storage and fluxes within freshwater wetlands: a critical review[J]. Wetlands, 2010, 30(1):111-124. DOI: 10.1007/s13157-009-0003-4.
[2]
王莉莉. 鄱阳湖南矶湿地生态系统CO2通量变化特征及影响因素研究[D]. 南昌: 江西师范大学, 2018.
WANG L L. Characteristics and effect factors of CO2 fluxes variation of Nanji wetland ecosystem in Poyang Lake[D]. Nanchang: Jiangxi Normal University, 2018.
[3]
柴曦, 李英年, 段呈, 等. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1):6-19.
摘要
高寒灌丛草甸和草甸均是青藏高原广泛分布的植被类型, 在生态系统碳通量和区域碳循环中具有极其重要的作用。然而迄今为止, 对其碳通量动态的时空变异还缺乏比较分析, 对碳通量的季节和年际变异的主导影响因子认识还不够清晰, 不利于深入理解生态系统碳通量格局及其形成机制。该研究选取位于青藏高原东部海北站高寒灌丛草甸和高原腹地当雄站高寒草原化草甸年降水量相近的5年(2004-2008年)的涡度相关CO<sub>2</sub>通量连续观测数据, 对生态系统净初级生产力(NEP)及其组分, 包括总初级生产力(GPP)和生态系统呼吸的季节、年际动态及其影响因子进行了对比分析。结果表明: 灌丛草甸的CO<sub>2</sub>通量无论是季节还是年际累积量均高于草原化草甸, 并且连续5年表现为“碳汇”, 平均每年NEP为70 g C·m <sup>-2</sup>·a <sup>-1</sup>, 高寒草原化草甸平均每年NEP为-5 g C·m <sup>-2</sup>·a <sup>-1</sup>, 几乎处于碳平衡状态, 但其源/汇动态极不稳定, 在2006年-88 g C·m <sup>-2</sup>·a <sup>-1</sup>的“碳源”至2008年54 g C·m <sup>-2</sup>·a <sup>-1</sup>的“碳汇”之间转换, 具有较大的变异性。这两种高寒生态系统源/汇动态的差异主要源于归一化植被指数(NDVI)的差异, 因为NDVI无论在年际水平还是季节水平都是NEP最直接的影响因子; 其次, 灌丛草甸还具有较高的碳利用效率(CUE, CUE = NEP/GPP), 而年降水量和NDVI是决定两生态系统CUE大小的关键因子。两地区除了CO<sub>2</sub>通量大小的差异外, 其环境影响因子也有所不同。采用结构方程模型进行的通径分析表明, 灌丛草甸生长季节CO<sub>2</sub>通量的主要限制因子是温度, NEP和GPP主要受气温控制, 随着气温升高而增加; 而草原化草甸的CO<sub>2</sub>通量多以季节性干旱导致的水分限制为主, 其次才是气温的影响, 受二者的共同限制。此外, 两生态系统生长季节生态系统呼吸主要受GPP和5 cm土壤温度的直接影响, 其中GPP起主导作用, 非生长季节生态系统呼吸主要受5 cm土壤温度影响。该研究还表明, 水热因子的协调度是决定青藏高原高寒草地GPP和NEP的关键要素。
CHAI X, LI Y N, DUAN C, et al. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2018, 42(1):6-19. DOI: 10.17521/cjpe.2017.0266.
<p id="2"> <b><i>Aims</i></b> Alpine shrub-meadows and steppe-meadows are the two dominant vegetation types on the Qinghai-Xizang Plateau, and plays an important role in regional carbon cycling. However, little is known about the temporal-spatial patterns and drivers of CO<sub>2</sub> fluxes in these two ecosystem types.</p> <p id="3"> <b><i>Methods</i></b> Based on five years of consecutive eddy covariance measurements (2004-2008) in an eastern alpine shrub-meadow at Haibei and a hinterland alpine steppe-meadow at Damxung, we investigated the seasonal and annual variation of net ecosystem productivity (<i>NEP</i>) and its components, i.e. gross primary productivity (<i>GPP</i>) and ecosystem respiration (<i>R</i><sub>e</sub>).</p> <p> <b id="3-1"><i>Important findings</i></b> The CO<sub>2</sub> fluxes (<i>NEP, GPP</i> and <i>R</i><sub>e</sub>) were larger in the shrub-meadow than in the steppe-meadow during the study period. The shrub-meadow functioned as a carbon sink through the five years, with the mean annual <i>NEP</i> of 70 g C·m <sup>-2</sup>·a <sup>-1</sup>. However, the steppe-meadow acted as a carbon neutral, with mean annual <i>NEP</i> of -5 g C·m <sup>-2</sup>·a <sup>-1</sup>. The CO<sub>2</sub> fluxes of steppe-meadow exhibited large variability due to the inter-annual and seasonal variations in precipitation, ranging from a carbon sink (54 g C·m <sup>-2</sup>·a <sup>-1</sup>) in 2008 to a carbon source (-88 g C·m <sup>-2</sup>·a <sup>-1</sup>) in 2006. The differences in carbon budget between the two alpine ecosystems were firstly attributed to the discrepancy of normalized difference vegetation index (<i>NDVI</i>) because <i>NDVI</i> was the direct factor regulating the seasonal and inter-annual <i>NEP</i>. Secondly, the shrub-meadow had higher carbon use efficiency (<i>CUE</i>), which was substantially determined by annual precipitation (<i>PPT</i>) and <i>NDVI</i>. Our results also indicated that the environmental drivers of CO<sub>2</sub> fluxes were also different between these two alpine ecosystems. The structure equation model analyses showed that air temperature (<i>T</i><sub>a</sub>) determined the seasonal variations of CO<sub>2</sub> fluxes in the shrub-meadow, with <i>NEP</i> and <i>GPP</i> being positively correlated with <i>T</i><sub>a</sub>. By contrast, the seasonal CO<sub>2</sub> fluxes in the steppe-meadow were primarily co-regulated by soil water content (<i>SWC</i>) and <i>T</i><sub>a</sub>, and increased with the increase of <i>SWC</i> and <i>T</i><sub>a</sub>. In addition, the changes of <i>R</i><sub>e</sub> during the growing season in two ecosystems were directly affected by <i>GPP</i> and soil temperature at 5 cm depth (<i>T</i><sub>s</sub>), while<i> R</i><sub>e</sub> during non-growing season were determined by <i>T</i><sub>s</sub>. These results demonstrate that the synergy of soil water and temperature played crucial roles in determining <i>NEP</i> and <i>GPP</i> of the two alpine meadows on the Qinghai-Xizang Plateau. </p>
[4]
JAMMET M, DENGEL S, KETTNER E, et al. Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic[J]. Biogeosciences, 2017, 14(22):5189-5216. DOI: 10.5194/bg-14-5189-2017.
[5]
赵衡, 闫旭, 王富强, 等. 基于PSR模型的三门峡库区湿地生态系统健康评价[J]. 水资源保护, 2020, 36(4):21-25.
ZHAO H, YAN X, WANG F Q, et al. Assessment on ecosystem health of Sanmenxia Reservoir wetland based on PSR model[J]. Water Resources Protection, 2020, 36(4):21-25.
[6]
王德宣, 宋长春, 王毅勇, 等. 若尔盖高原沼泽湿地与草地二氧化碳通量的比较[J]. 应用生态学报, 2008, 19(2):285-289.
WANG D X, SONG C C, WANG Y Y, et al. CO2 fluxes in mire and grassland on Ruoergai plateau[J]. Chin J Appl Ecol, 2008, 19(2):285-289.
[7]
赵娜娜, 王贺年, 张贝贝, 等. 若尔盖湿地流域径流变化及其对气候变化的响应[J]. 水资源保护, 2019, 35(5):40-47.
ZHAO N N, WANG H N, ZHANG B B, et al. Runoff variation in Zoige Wetland Basin and its response to climate change[J]. Water Resources Protection, 2019, 35(5):40-47.
[8]
CHAMBERS L G, DAVIS S E, TROXLER T, et al. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil[J]. Hydrobiologia, 2014, 726(1):195-211. DOI: 10.1007/s10750-013-1764-6.
[9]
李敬, 黄佳芳, 罗敏, 等. 淹水增加对闽江河口淡水潮汐湿地孔隙水地球化学特征及CO2和CH4排放通量的影响[J]. 环境科学, 2019, 40(12):5493-5502.
LI J, HUANG J F, LUO M, et al. Effect of increasing tidewater inundation on porewater geochemistries and CO2 and CH4 effluxes in the tidal freshwater marshes of the Minjiang River estuary,southeast China[J]. Environ Sci, 2019, 40(12):5493-5502. DOI: 10.13227/j.hjkx.201905214.
[10]
王治良, 王国祥. 洪泽湖湿地生态系统健康评价指标体系探讨[J]. 中国生态农业学报, 2007, 15(6):152-155.
WANG Z L, WANG G X. Health assessment index system of Hongze Lake wetland ecosystem[J]. Chin J Eco Agric, 2007, 15(6):152-155.
[11]
翟水晶, 钱谊, 侯建兵. 洪泽湖湿地生态服务功能分区及其效益分析[J]. 农村生态环境, 2005, 21(3):71-73.
ZHAI S J, QIAN Y, HOU J B. Ecosystem function zoning and benefit analysis of wetlands of Hongze Lake[J]. Rural Eco Environ, 2005, 21(3):71-73. DOI: 10.3969/j.issn.1673-4831.2005.03.017.
[12]
吴翼, 戴蓉, 徐勇峰, 等. 洪泽湖河湖交汇区土地利用时空动态[J]. 南京林业大学学报(自然科学版), 2016, 40(4):22-28.
WU Y, DAI R, XU Y F, et al. Spatial and temporal changes in wetland use in the meeting place of Hung-tse Lake and Huaihe River[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(4):22-28. DOI: 10.3969/j.issn.1000-2006.2016.04.004.
[13]
季淮, 韩建刚, 李萍萍, 等. 洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1):141-150.
JI H, HAN J G, LI P P, et al. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongze Lake Wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):141-150.
[14]
靖磊, 吕偲, 周延, 等. 西洞庭湖湿地杨树人工林扩张的时空特征[J]. 应用生态学报, 2016, 27(7):2039-2047.
JING L, LYU C, ZHOU Y, et al. Spatio-temporal characteristics of the expansion of poplar plantation in West Dongting Lake wetland,China[J]. Chin J Appl Ecol, 2016, 27(7):2039-2047. DOI: 10.13287/j.1001-9332.201607.025.
[15]
谢亚军, 谢永宏, 陈心胜, 等. 湿地土壤水源涵养功能研究进展[J]. 湿地科学, 2012, 10(1):109-115.
XIE Y J, XIE Y H, CHEN X S, et al. Function of water conservation of wetland soil:a review[J]. Wetl Sci, 2012, 10(1):109-115. DOI: 10.13248/j.cnki.wetlandsci.2012.01.012.
[16]
魏远, 张旭东, 江泽平, 等. 湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究[J]. 林业科学研究, 2010, 23(5):656-665.
WEI Y, ZHANG X D, JIANG Z P, et al. Study on the seasonal dynamic of net ecosystem exchange over a poplar plantation of Yueyang City in Hu’nan Province[J]. For Res, 2010, 23(5):656-665. DOI: 10.13275/j.cnki.lykxyj.2010.05.011.
[17]
耿绍波. 河南西平杨树人工林生态系统碳通量及其环境响应研究[D]. 北京: 北京林业大学, 2011.
GENG S B. Study on the carbon flux observation over poplar plantation ecosystem of Xiping City in Henan Province of China[D]. Beijing: Beijing Forestry University, 2011.
[18]
张法伟, 李英年, 曹广民, 等. 青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子[J]. 植物生态学报, 2012, 36(3):187-198.
摘要
草甸草原是青藏高原的重要植被类型, 与其他植被类型相比, 其碳交换过程和驱动机理的研究仍较薄弱。利用青海湖东北岸草甸草原的涡度相关系统观测的连续数据(2010年7月1日&ndash;2011年6月30日), 分析了草甸草原CO<sub>2</sub>通量特征及其驱动因子。结果表明: 草甸草原净生态系统CO<sub>2</sub>交换量(NEE)在植物生长季的5&ndash;9月, 其日变化主要受控于光合光量子通量密度(PPFD); 而非生长季(10月21日&ndash;4月19日)和生长季初(4月下旬)、末期(10月中上旬) NEE的日变化主要受气温(T<sub>a</sub>)的影响。CO<sub>2</sub>日最大吸收值和释放值分别出现在7月1日(11.37 g CO<sub>2</sub>&middot;m<sup>&ndash;2</sup>&middot;d<sup>&ndash;1</sup>)和10月21日(4.04 g CO<sub>2</sub>&middot;m<sup>&ndash;2</sup>&middot;d<sup>&ndash;1</sup>)。逐日NEE主要受控于T<sub>a</sub>, 两者关系可用指数线性(explinear)方程表示(R<sup>2 </sup>= 0.54, p LAI)和增强型植被指数(EVI)对逐日NEE的影响表现为渐近饱和型, LAI和T<sub>a</sub>交互作用明显(p EVI的主效应强烈(p Q<sub>10</sub>)为2.42, 总呼吸(R<sub>eco</sub>)约占总初级生产力(GPP)的74%。生长季适度的昼夜温差(2</sub>&middot; m<sup>&ndash;2</sup>。
ZHANG F W, LI Y N, CAO G M, et al. CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake,China[J]. Chin J Plant Ecol, 2012, 36(3):187-198. DOI: 10.3724/SP.J.1258.2012.00187.
[19]
RUIMY A, JARVIS P G, BALDOCCHI D D, et al. CO2 fluxes over plant canopies and solar radiation:a review[J]. Adv Ecol Res, 1995, 26:1-68. DOI: 10.1016/S0065-2504(08)60063-X.
[20]
WADDINGTON J M, ROULET N T. Carbon balance of a boreal patterned peatland[J]. Glob Change Biol, 2000, 6(1):87-97. DOI: 10.1046/j.1365-2486.2000.00283.x.
[21]
孙程旭, 雷新涛, 曹红星, 等. 不同树龄油棕光合特性及影响因子研究[J]. 西南农业学报, 2011, 24(2):541-545.
SUN C X, LEI X T, CAO H X, et al. Study on photosynthetic characteristics and influence factors of oil palm at different age[J]. Southwest China J Agric Sci, 2011, 24(2):541-545. DOI: 10.16213/j.cnki.scjas.2011.02.052.
[22]
李润东, 范雅倩, 冯沛, 等. 北京松山天然落叶阔叶林生态系统净碳交换特征及其影响因子[J]. 应用生态学报, 2020, 31(11):3621-3630.
LI R D, FAN Y Q, FENG P, et al. Net ecosystem carbon exchange and its affecting factors in a deciduous broad-leaved forest in Songshan,Beijing,China[J]. Chin J Appl Ecol, 2020, 31(11):3621-3630. DOI: 10.13287/j.1001-9332.202011.008.
[23]
MCVEIGH P, SOTTOCORNOLA M, FOLEY N, et al. Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog[J]. Agric For Meteorol, 2014, 194:8-19. DOI: 10.1016/j.agrformet.2014.01.017.
[24]
XIAO J F, SUN G, CHEN J Q, et al. Carbon fluxes,evapotranspiration,and water use efficiency of terrestrial ecosystems in China[J]. Agric For Meteorol, 2013, 182/183:76-90. DOI: 10.1016/j.agrformet.2013.08.007.
[25]
FARQUHAR G D, CAEMMERER S V, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90. DOI: 10.1007/BF00386231.
[26]
吴利禄, 高翔, 褚建民, 等. 民勤绿洲-荒漠过渡带梭梭人工林净碳交换及其影响因子[J]. 应用生态学报, 2019, 30(10):3336-3346.
WU L L, GAO X, CHU J M, et al. Net carbon exchange and its driving factors of Haloxylon ammodendron plantation in the oasis-desert ecotone of Minqin,China[J]. Chin J Appl Ecol, 2019, 30(10):3336-3346. DOI: 10.13287/j.1001-9332.201910.018.
[27]
徐玲玲, 张宪洲, 石培礼, 等. 青藏高原低气压条件下高寒草甸群落光量子效率对温度的响应[J]. 中国科学.D辑:地球科学, 2006(S1):204-209.
XU L L, ZHANG X Z, SHI P L, et al. Response of light quantum efficiency to temperature in an alpine meadow community under low atmospheric pressure over the Tibetan Plateau[J]. Chin Sci.D:Earth Sci, 2006(S1):204-209. DOI: CNKI:SUN:JDXK.0.2006-S1-019.
[28]
张悦. 洪泽湖地区杨树人工林碳水通量、水分利用效率动态变化及影响因子研究[D]. 南京: 南京林业大学, 2019.
ZHANG Y. Study on dynamic change and influencing factors of carbon water flux and water use efficiency over a poplar plantation in Lake Hongze basin[D]. Nanjing: Nanjing Forestry University, 2019.
[29]
徐勇峰, 季淮, 韩建刚, 等. 洪泽湖湿地杨树林生长季碳通量变化特征及其影响因子[J]. 生态学杂志, 2018, 37(2):322-331.
XU Y F, JI H, HAN J G, et al. Variation of net ecosystem carbon flux in growing season and its driving factors in a poplar plantation from Hungtse Lake wetland[J]. Chin J Ecol, 2018, 37(2):322-331. DOI: 10.13292/j.1000-4890.201802.016.
[30]
TONG X J, MENG P, ZHANG J S, et al. Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the north China[J]. Atmos Environ, 2012, 49:257-267. DOI: 10.1016/j.atmosenv.2011.11.049.
[31]
牛晓栋, 孙鹏森, 刘晓静, 等. 中国亚热带-暖温带过渡区锐齿栎林净生态系统碳交换特征[J]. 生态学报, 2020, 40(17):5980-5991.
NIU X D, SUN P S, LIU X J, et al. Net ecosystem carbon dioxide exchange in an oak (Quercus aliena) forest at transitional zone from subtropics to warm temperate,China[J]. Acta Ecol Sin, 2020, 40(17):5980-5991. DOI: 10.5846/stxb201911252548.
[32]
李子涵, 罗维均, 杜虎, 等. 喀斯特常绿落叶阔叶混交林旱季CO2通量特征及其影响因子[J]. 地球与环境, 2020(5):525-536.
LI Z H, LUO W J, DU H, et al. CO2 flux and its driving factors in a Karst evergreen deciduous broadleaf mixed forest in dry season[J]. Earth Environ, 2020(5):525-536.
[33]
张悦, 冯会丽, 王维枫, 等. 洪泽湖地区杨树人工林碳水通量昼夜和季节变化特征[J]. 南京林业大学学报(自然科学版), 2019, 43(5):113-120.
ZHANG Y, FENG H L, WANG W F, et al. Diurnal and seasonal changes of fluxes over a poplar plantation in Hongze Lake basin[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):113-120. DOI: 10.3969/j.issn.1000-2006.201806032.

基金

林业科技成果国家级推广项目([2016]37号)

编辑: 郑琰燚
PDF(3559 KB)

Accesses

Citation

Detail

段落导航
相关文章

/