
基于极化定向角补偿的思茅松林地上生物量反演
张国飞, 岳彩荣, 罗洪斌, 谷雷, 朱泊东
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 185-192.
基于极化定向角补偿的思茅松林地上生物量反演
Based polarization orientation angle compensation for Pinus kesiya var. langbianensis forest aboveground biomass estimation
【Objective】Polarimetric synthetic aperture radars have been widely used in forest remote sensing monitoring. Owing to Faraday rotation, the polarization orientation angle (POA) of the electromagnetic wave is displaced, leading to ambiguity in the scattering characteristics. In this study, the effects of polarization orientation angle compensation on the volume scattering component and aboveground biomass (AGB) retrieval were analyzed.【Method】 The influence of Faraday rotation on SAR data was analyzed using ALOS PALSAR full polarimetric SAR images as the data source. Based on the L-band scattering characteristics and considering the dihedral scattering contribution between the ground and the tree trunk, an extended polarization water cloud model (EPWCM) was proposed. Based on the Yamaguchi four-component decomposition parameters and field survey data, the aboveground biomass of Pinus kesiya var. langbianensis forest was estimated by EPWCM.【Result】 Through the unitary transformation of the coherence matrix to compensate for the polarization orientation angle deviation, the overestimation of the volume scattering component was corrected, and the regression with aboveground biomass was improved (R 2 increased from 0.214 to 0.332). The estimated aboveground biomass had a strong correlation with the observed AGB (R2 = 0.644) and a relatively high accuracy (RMSE as 23.11 t/hm2). 【Conclusion】 Before polarimetric decomposition, SAR data should be compensated for polarimetric orientation angle correction to reduce the ambiguity of scattering characteristics and increase the retrieval accuracy of AGB. The semi-empirical model has a good potential for estimating forest aboveground biomass.
思茅松林 / 地上生物量 / 极化定向角 / 法拉第旋转 / 扩展极化水云模型
Pinus kesiya var. langbianensis forest / aboveground biomass (AGB) / polarization orientation angle(POA) / Faraday rotation / extended polarization water cloud model(EPWCM)
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
潘磊, 孙玉军, 王轶夫, 等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156.
|
[8] |
|
[9] |
|
[10] |
张伟伦, 张延成, 范文义, 等. 干涉水云模型对不同极化方式哨兵数据估测森林生物量的精度比较[J]. 东北林业大学学报, 2020, 48(11):27-32.
|
[11] |
李兰, 陈尔学, 李增元, 等. 森林地上生物量的多基线InSAR层析估测方法[J]. 林业科学, 2017, 53(11):85-93.
|
[12] |
|
[13] |
|
[14] |
徐一凡, 刘爱芳, 徐辉, 等. 基于改进三分量模型的全极化SAR图像分类[J]. 电子测量技术, 2017, 40(12):220-227.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
游彪, 杨健. 极化合成孔径雷达图像目标定向角[J]. 太赫兹科学与电子信息学报, 2014, 12(4):539-544.
|
[22] |
黄龙, 刘爱芳, 徐辉, 等. 极化定向角补偿区域检测新方法[J]. 电子测量技术, 2018, 41(2):41-44.
|
[23] |
李江. 思茅松中幼龄人工林生物量和碳储量动态研究[D]. 北京:北京林业大学, 2011.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
范永东. 模型选择中的交叉验证方法综述[D]. 太原:山西大学, 2013.
|
[35] |
岳锋, 杨斌. 思茅松林碳汇功能研究[J]. 江苏农业科学, 2011, 39(5):467-470.
|
[36] |
吴兆录, 党承林. 云南普洱地区思茅松林的生物量[J]. 云南大学学报(自然科学版), 1992, 14(2):119-127.
|
[37] |
陈庆, 郑征, 冯志立, 等. 云南普洱地区思茅松林生物量及碳储量研究[J]. 云南大学学报(自然科学版), 2014, 36(3):439-445.
|
[38] |
|
[39] |
PEREGON, YAMAGATA. The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: a case study in western Siberia[J]. Remote Sens Environ, 2013, 137:139-146.
|
/
〈 |
|
〉 |