基于极化定向角补偿的思茅松林地上生物量反演

张国飞, 岳彩荣, 罗洪斌, 谷雷, 朱泊东

南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 185-192.

PDF(3821 KB)
PDF(3821 KB)
南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6) : 185-192. DOI: 10.12302/j.issn.1000-2006.202101016
研究论文

基于极化定向角补偿的思茅松林地上生物量反演

作者信息 +

Based polarization orientation angle compensation for Pinus kesiya var. langbianensis forest aboveground biomass estimation

Author information +
文章历史 +

摘要

目的 极化合成孔径雷达在森林遥感监测中得到了广泛的应用。由于法拉第旋转和地物结构特性,电磁波极化定向角发生偏移,导致散射特征在机理上存在模糊性。本研究主要分析极化定向角偏移对体散射分量和地上生物量反演的影响。方法 以ALOS PALSAR全极化星载合成孔径雷达(SAR)数据为数据源,基于L波段散射特征,考虑地面与树干之间的二面角散射贡献,研究提出了一种扩展极化水云模型;基于Yamaguchi四分量分解参数和扩展极化水云模型估测思茅松林地上生物量。结果 通过酉变换来补偿极化定向角偏移后,体散射分量高估得到修正,极化定向角补偿后的体散射与实测地上生物量的回归模型较未补偿前效果更好(决定系数R2从0.214提升到0.332)。采用Yamaguchi四分量和扩展极化水云模型的地上生物量估测值和实测值有较强的相关性(R2= 0.644)和较低的均方根误差(23.11 t/hm2)。结论 SAR数据在极化分解前应进行极化定向角补偿,以减少体散射高估和二面角散射低估的问题,提高地上生物量反演精度。半经验极化扩展水云模型具有很好的估测森林地上生物量的潜力。

Abstract

【Objective】Polarimetric synthetic aperture radars have been widely used in forest remote sensing monitoring. Owing to Faraday rotation, the polarization orientation angle (POA) of the electromagnetic wave is displaced, leading to ambiguity in the scattering characteristics. In this study, the effects of polarization orientation angle compensation on the volume scattering component and aboveground biomass (AGB) retrieval were analyzed.【Method】 The influence of Faraday rotation on SAR data was analyzed using ALOS PALSAR full polarimetric SAR images as the data source. Based on the L-band scattering characteristics and considering the dihedral scattering contribution between the ground and the tree trunk, an extended polarization water cloud model (EPWCM) was proposed. Based on the Yamaguchi four-component decomposition parameters and field survey data, the aboveground biomass of Pinus kesiya var. langbianensis forest was estimated by EPWCM.【Result】 Through the unitary transformation of the coherence matrix to compensate for the polarization orientation angle deviation, the overestimation of the volume scattering component was corrected, and the regression with aboveground biomass was improved (R 2 increased from 0.214 to 0.332). The estimated aboveground biomass had a strong correlation with the observed AGB (R2 = 0.644) and a relatively high accuracy (RMSE as 23.11 t/hm2). 【Conclusion】 Before polarimetric decomposition, SAR data should be compensated for polarimetric orientation angle correction to reduce the ambiguity of scattering characteristics and increase the retrieval accuracy of AGB. The semi-empirical model has a good potential for estimating forest aboveground biomass.

关键词

思茅松林 / 地上生物量 / 极化定向角 / 法拉第旋转 / 扩展极化水云模型

Key words

Pinus kesiya var. langbianensis forest / aboveground biomass (AGB) / polarization orientation angle(POA) / Faraday rotation / extended polarization water cloud model(EPWCM)

引用本文

导出引用
张国飞, 岳彩荣, 罗洪斌, . 基于极化定向角补偿的思茅松林地上生物量反演[J]. 南京林业大学学报(自然科学版). 2021, 45(6): 185-192 https://doi.org/10.12302/j.issn.1000-2006.202101016
ZHANG Guofei, YUE Cairong, LUO Hongbin, et al. Based polarization orientation angle compensation for Pinus kesiya var. langbianensis forest aboveground biomass estimation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 185-192 https://doi.org/10.12302/j.issn.1000-2006.202101016
中图分类号: S718;S711   

参考文献

[1]
SHI L, LIU S R. Methods of estimating forest biomass:a review[G]. Biomass Volume Estimation and Valorization for Energy. Rijeka Croatia: Intech, 2017. DOI: 10.5772/65733.
[2]
MANOLIS E N, ZAGAS T D, PORAVOU C A, et al. Biomass assessment for sustainable bioenergy utilization in a mediterranean forest ecosystem in northwest Greece[J]. Ecol Eng, 2016, 91:537-544.DOI: 10.1016/j.ecoleng.2016.02.041.
[3]
LE TOAN T, BEAUDOIN A, RIOM J, et al. Relating forest biomass to SAR data[J]. IEEE Trans Geosci Remote Sens, 1992, 30(2):403-411.DOI: 10.1109/36.134089.
[4]
MITCHARD E T A, SAATCHI S S, WOODHOUSE I H, et al. Using satellite radar backscatter to predict above-ground woody biomass:a consistent relationship across four different African landscapes[J]. Geophys Res Lett, 2009, 36(23):L23401.DOI: 10.1029/2009GL040692.
[5]
DOBSON M C, ULABY F T, LETOAN T, et al. Dependence of radar backscatter on coniferous forest biomass[J]. IEEE Trans Geosci Remote Sensing, 1992, 30(2):412-415.DOI: 10.1109/36.134090.
[6]
SUZUKI R, KIM Y, ISHII R. Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska[J]. Polar Sci, 2013, 7(2):100-112.DOI: 10.1016/j.polar.2013.03.001.
[7]
潘磊, 孙玉军, 王轶夫, 等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156.
PAN L, SUN Y J, WANG Y F, et al. Estimation of aboveground biomass in a Chinese fir(Cunninghamia lanceolata)forest combining data of Sentinel-1 and Sentinel-2[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):149-156.
[8]
ASKNE J I H, DAMMERT P B G, ULANDER L M H, et al. C-band repeat-pass interferometric SAR observations of the forest[J]. IEEE Trans Geosci Remote Sens, 1997, 35(1):25-35.DOI: 10.1109/36.551931.
[9]
ASKNE J, SANTORO M. Multitemporal repeat pass SAR interferometry of boreal forests[J]. IEEE Trans Geosci Remote Sens, 2005, 43(6):1219-1228.DOI: 10.1109/TGRS.2005.846878.
[10]
张伟伦, 张延成, 范文义, 等. 干涉水云模型对不同极化方式哨兵数据估测森林生物量的精度比较[J]. 东北林业大学学报, 2020, 48(11):27-32.
ZHANG W L, ZHANG Y C, FAN W Y, et al. Comparison of biomass accuracy with different polarization data with interferometric water cloud model[J]. J Northeast For Univ, 2020, 48(11):27-32.DOI: 10.3969/j.issn.1000-5382.2020.11.005.
[11]
李兰, 陈尔学, 李增元, 等. 森林地上生物量的多基线InSAR层析估测方法[J]. 林业科学, 2017, 53(11):85-93.
LI L, CHEN E X, LI Z Y, et al. Forest above-ground biomass estimation based on multi-baseline InSAR tomography[J]. Sci Silvae Sin, 2017, 53(11):85-93.DOI: 10.11707/j.1001-7488.20171110.
[12]
CLOUDE S R, PAPATHANASSIOU K P. Polarimetric SAR interferometry[J]. IEEE Trans Geosci Remote Sens, 1998, 36(5):1551-1565.DOI: 10.1109/36.718859.
[13]
YAMAGUCHI Y, SATO A, BOERNER W M, et al. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Trans Geosci Remote Sens, 2011, 49(6):2251-2258.DOI: 10.1109/TGRS.2010.2099124.
[14]
徐一凡, 刘爱芳, 徐辉, 等. 基于改进三分量模型的全极化SAR图像分类[J]. 电子测量技术, 2017, 40(12):220-227.
XU Y F, LIU A F, XU H, et al. Classification of fully polarimetric SAR image based on the improved three-component scattering model[J]. Electron Meas Technol, 2017, 40(12):220-227.
[15]
KUMAR S, GARG R D, GOVIL H, et al. PolSAR-decomposition-based extended water cloud modeling for forest aboveground biomass estimation[J]. Remote Sens, 2019, 11(19):2287.DOI: 10.3390/rs11192287.
[16]
SANTI E, PALOSCIA S, PETTINATO S, et al. The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas[J]. Remote Sens Environ, 2017, 200:63-73.DOI: 10.1016/j.rse.2017.07.038.
[17]
SATO A, YAMAGUCHI Y, SINGH G, et al. Four-component scattering power decomposition with extended volume scattering model[J]. IEEE Geosci Remote Sens Lett, 2012, 9(2):166-170.DOI: 10.1109/LGRS.2011.2162935.
[18]
YAMAGUCHI Y. Disaster monitoring by fully polarimetric SAR data acquired with ALOS-PALSAR[J]. Proceedings of the IEEE, 2012, 100(10):2851-2860.
[19]
LEE J S, AINSWORTH T L. The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions[J]. IEEE Trans Geosci Remote Sens, 2011, 49(1):53-64.DOI: 10.1109/TGRS.2010.2048333.
[20]
LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications[M]. Boca Raton: CRC Press, 2009. DOI: 10.1201/9781420054989.
[21]
游彪, 杨健. 极化合成孔径雷达图像目标定向角[J]. 太赫兹科学与电子信息学报, 2014, 12(4):539-544.
YOU B, YANG J. Orientation angle of target in polarimetric synthetic aperture radar images[J]. J Terahertz Sci Electron Inf Technol, 2014, 12(4):539-544.
[22]
黄龙, 刘爱芳, 徐辉, 等. 极化定向角补偿区域检测新方法[J]. 电子测量技术, 2018, 41(2):41-44.
HUANG L, LIU A F, XU H, et al. New area detection method for polarization orientation angle compensation[J]. Electron Meas Technol, 2018, 41(2):41-44.DOI: 10.19651/j.cnki.emt.1701081.
[23]
李江. 思茅松中幼龄人工林生物量和碳储量动态研究[D]. 北京:北京林业大学, 2011.
LI J. Dynamics of biomass and carbon stock for young and middle aged plantation of Simao pine (Pinus kesiya var. langbianensis)[D]. Beijing:Beijing Forestry University, 2011.
[24]
LI H Z, LI Q Q, WU G F, et al. The impacts of building orientation on polarimetric orientation angle estimation and model-based decomposition for multilook polarimetric SAR data in urban areas[J]. IEEE Trans Geosci Remote Sens, 2016, 54(9):5520-5532.DOI: 10.1109/TGRS.2016.2567421.
[25]
SOUISSI B, OUARZEDDINE M. Polarimetric SAR data correction and terrain topography measurement based on the radar target orientation angle[J]. J Indian Soc Remote Sens, 2016, 44(3):335-349.DOI: 10.1007/s12524-015-0493-x.
[26]
KIMURA H. Calibration of polarimetric PALSAR imagery affected by faraday rotation using polarization orientation[J]. IEEE Trans Geosci Remote Sens, 2009, 47(12):3943-3950.DOI: 10.1109/TGRS.2009.2028692.
[27]
BABU A, KUMAR S, GOVIL H. Investigation on the effects of polarization orientation angle shift in the UAVSAR polarimetric decomposition[J]. J Indian Soc Remote Sens, 2021, 49(3):551-557.DOI: 10.1007/s12524-020-01234-0.
[28]
ATTEMA E P W, ULABY F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2):357-364.
[29]
BINDLISH R, BARROS A P. Parameterization of vegetation backscatter in radar-based,soil moisture estimation[J]. Remote Sens Environ, 2001, 76(1):130-137.DOI: 10.1016/S0034-4257(00)00200-5.
[30]
MORAN M S, VIDAL A, TROUFLEAU D, et al. Ku-and C-band SAR for discriminating agricultural crop and soil conditions[J]. IEEE Trans Geosci Remote Sens, 1998, 36(1):265-272.DOI: 10.1109/36.655335.
[31]
SANTORO M, BEAUDOIN A, BEER C, et al. Forest growing stock volume of the northern hemisphere: spatially explicit estimates for 2010 derived from Envisat ASAR[J]. Remote Sens Environ, 2015, 168:316-334.DOI: 10.1016/j.rse.2015.07.005.
[32]
SAI BHARADWAJ P, KUMAR S, KUSHWAHA S P S, et al. Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data[J]. Phys Chem Earth Parts A/B/C, 2015, 83/84:187-195.DOI: 10.1016/j.pce.2015.09.003.
[33]
THIRION-LEFEVRE L, GUINVARC’H R, COLIN-KOENIGUER E. The combined effect of orientation angle and material on PolSAR images of urban areas[J]. Remote Sens, 2020, 12(10):1632.DOI: 10.3390/rs12101632.
[34]
范永东. 模型选择中的交叉验证方法综述[D]. 太原:山西大学, 2013.
FAN Y D. A summary of cross-validation in model selection[D]. Taiyuan:Shanxi University, 2013.
[35]
岳锋, 杨斌. 思茅松林碳汇功能研究[J]. 江苏农业科学, 2011, 39(5):467-470.
YUE F, YANG B. Study on carbon sink function of Pinus kesiya var. langbianensis[J]. Jiangsu Agric Sci, 2011, 39(5):467-470. DOI: 10.15889/j.issn.1002-1302.2011.05.202.
[36]
吴兆录, 党承林. 云南普洱地区思茅松林的生物量[J]. 云南大学学报(自然科学版), 1992, 14(2):119-127.
WU Z L, DANG C L. The biomass of Pinus kesiya var. langbianensis stands in Puer District,Yunnan[J]. J Yunnan Univ (Nat Sci), 1992, 14(2):119-127.
[37]
陈庆, 郑征, 冯志立, 等. 云南普洱地区思茅松林生物量及碳储量研究[J]. 云南大学学报(自然科学版), 2014, 36(3):439-445.
CHEN Q, ZHENG Z, FENG Z L, et al. Biomass and carbon storage of Pinus kesiya var. langbianensis in Puer,Yunnan[J]. J Yunnan Univ (Nat Sci Ed), 2014, 36(3):439-445.DOI: 10.7540/j.ynu.20130614.
[38]
MICHELAKIS D, STUART N, BROLLY M, et al. Estimation of woody biomass of pine savanna woodlands from ALOS PALSAR imagery[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2015, 8(1):244-254.DOI: 10.1109/JSTARS.2014.2365253.
[39]
PEREGON, YAMAGATA. The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: a case study in western Siberia[J]. Remote Sens Environ, 2013, 137:139-146.

基金

国家自然科学基金项目(42061072)
云南省重大科技专项(生物医药)(202002AA100007)
云南省教育厅科学研究基金项目(2018JS330)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(3821 KB)

Accesses

Citation

Detail

段落导航
相关文章

/