种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化

夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 127-134.

PDF(1545 KB)
PDF(1545 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4) : 127-134. DOI: 10.12302/j.issn.1000-2006.202101018
研究论文

种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化

作者信息 +

Dynamic changes of soil microbial biomass and microbial entropy after planting Dictyophora indusiata in Phyllostachys edulis forests

Author information +
文章历史 +

摘要

【目的】竹林下种植竹荪会对林地微生物活动产生影响,明确种植竹荪对毛竹林地土壤微生物生物量、微生物熵及其化学计量不平衡性的影响,揭示竹荪种植后毛竹林地土壤质量的变化,为竹-菌复合生态系统的经营提供参考。【方法】以未种植竹荪(CK)和竹荪收获完成时立即取样(T0),以及收获后1 a(T1)、2 a(T2)的林地土壤为研究对象,测定并分析不同处理林地土壤微生物生物量、微生物熵变化规律及其与土壤-微生物化学计量不平衡性间的耦合关系。【结果】与未种植竹荪林地相比,竹荪种植后林地土壤有机碳(SOC)、全氮(TN),土壤微生物生物量碳、氮、磷(MBC、MBN、MBP)含量和土壤微生物熵碳、氮、磷(qMBCqMBNqMBP)总体上均明显升高,而土壤全磷(TP)含量显著降低。随竹荪收获后间隔时间的延长,土壤MBC含量和qMBC呈降低趋势;土壤MBN含量和qMBN均呈先明显降低后略升高趋势,而土壤SOC含量呈先显著降低后显著升高趋势;土壤TN、TP、MBP含量及qMBP均呈先升高后降低趋势,T1土壤TN、TP、MBP含量及qMBP显著高于T0和T2。土壤-微生物碳氮化学计量不平衡性(记为Cimb/Nimb)、碳磷化学计量不平衡性(记为Cimb/Pimb)和氮磷化学计量不平衡性(记为Nimb/Pimb)均以竹荪收获当年(T0)处理较低。MBC与MBN呈显著正相关,MBC、MBN与Cimb/Nimb、Cimb/Pimb均呈负相关,MBP与Cimb/Pimb、Nimb/Pimb呈正相关。【结论】种植竹荪后林地土壤质量短期内较未种植林地土壤有明显提升,种植竹荪可以改善毛竹林地土壤质量;竹荪刚收获后毛竹林地土壤质量最优,随着竹荪收获后间隔年份的增加,林地土壤质量呈现劣变趋势,且较未种植竹荪林地土壤质量差。

Abstract

【Objective】 Dictyophora indusiata planted in a Phyllostachys edulis forest could influence the microbial activity of soil. The study aimed to reveal the changes in soil quality and provide a reference for the management of bamboo-fungus composite ecosystems by analyzing the effects of D. indusiata on the biomass, entropy and stoichiometry imbalance of soil microbia in a P. edulis forest. 【Method】 Using the soils of non-planted D. indusiata (CK) and those after 0 (T0), 1 (T1) and 2 (T2) years of D. indusiata harvest, the relationships among soil microbial biomass, microbial entropy, and soil-microbial stoichiometry imbalance were investigated in different treatments. 【Result】 The results indicated that the soil organic carbon (SOC), total nitrogen (TN), soil microbial biomass carbon and nitrogen (MBC, MBN), and soil microbial entropy carbon, nitrogen, phosphorus (qMBC, qMBN, qMBP) in T0, T1, T2 soils were significantly higher than those in the control, whereas the soil total phosphorus (TP) content was significantly lower than that in the control. Soil MBC and qMBC gradually decreased with the increasing harvest time. Soil MBN and qMBN initially decreased and then increased slightly, whereas soil SOC content initially decreased and then increased significantly; Soil TN, TP, MBP and qMBP increased initially and then decreased. The TN, TP, MBP and qMBP in T1 soil were significantly higher than those in T0 and T2 soils. The soil-microbial stoichiometry (Cimb/Nimb, Cimb/Pimb, Nimb/Pimb) of T0 had the lowest imbalance compared with the other periods. Soil MBC was positively correlated with MBN and both were negatively correlated with Cimb/Nimb and Cimb/Pimb. Soil MBP was positively correlated with Cimb/Pimb and Nimb/Pimb. 【Conclusion】 The soil quality of P. edulis forests was improved significantly in the short term after planting D. indusiata. However, the soil quality of P. edulis forests tends to deteriorate with the increasing annual gap after the harvest of D. indusiata, and the soil quality is worse than that of P. edulis forest without planting D. indusiata; The best soil quality in the P. edulis forest was observed just after the harvest of D. indusiata.

关键词

毛竹林 / 竹荪 / 土壤微生物生物量 / 土壤微生物熵 / 土壤-微生物化学计量不平衡性

Key words

Phyllostachys edulis forest / Dictyophora indusiata / soil microbial biomass(SMB) / soil microbial entropy / soil-microbia stoichiometry imbalance

引用本文

导出引用
夏捷, 陈胜, 吴一凡, . 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版). 2022, 46(4): 127-134 https://doi.org/10.12302/j.issn.1000-2006.202101018
XIA Jie, CHEN Sheng, WU Yifan, et al. Dynamic changes of soil microbial biomass and microbial entropy after planting Dictyophora indusiata in Phyllostachys edulis forests[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 127-134 https://doi.org/10.12302/j.issn.1000-2006.202101018
中图分类号: S718.5   

参考文献

[1]
PASCUAL J A, GARCIA C, HERNANDEZ T, et al. Soil microbial activity as a biomarker of degradation and remediation processes[J]. Soil Biol Biochem, 2000, 32(13):1877-1883. DOI:10.1016/S0038-0717(00)00161-9.
[2]
CARAVACA F, ALGUACIL M M, FIGUEROA D, et al. Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semiarid Mediterranean area[J]. For Ecol Manag, 2003, 182(1/2/3):49-58. DOI:10.1016/S0378-1127(03)00067-7.
[3]
吴秀芝, 刘秉儒, 阎欣, 等. 荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应[J]. 应用生态学报, 2019, 30(8):2691-2698.
WU X Z, LIU B R, YAN X, et al. Response of soil microbial biomass and microbial entropy to desertification in desert grassland[J]. Chin J Appl Ecol, 2019, 30(8):2691-2698.DOI:10.13287/j.1001-9332.201908.009.
[4]
ROGERS B F, TATE R L III. Temporal analysis of the soil microbial community along a toposequence in pineland soils[J]. Soil Biol Biochem, 2001, 33(10):1389-1401. DOI:10.1016/S0038-0717(01)00044-X.
[5]
魏媛, 张金池, 喻理飞. 退化喀斯特植被恢复过程中土壤微生物生物量碳的变化[J]. 南京林业大学学报(自然科学版), 2008, 32(5):71-75.
WEI Y, ZHANG J C, YU L F. Changes of soil microbial biomass carbon along successional processes of degraded Karst vegetation[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(5):71-75.DOI:10.3969/j.issn.1000-2006.2008.05.016.
[6]
SRIVASTAVA S C, SINGH J S. Microbial C,N and P in dry tropical forest soils:effects of alternate land-uses and nutrient flux[J]. Soil Biol Biochem, 1991, 23(2):117-124. DOI:10.1016/0038-0717(91)90122-Z.
[7]
ANDERSON T H. Microbial eco-physiological indicators to asses soil quality[J]. Agric Ecosyst Environ, 2003, 98(1/2/3):285-293. DOI:0.1016/S0167-8809(03)00088-4.
[8]
SPARLING G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Soil Res, 1992, 30(2):195.DOI:10.1071/sr9920195.
[9]
胡宗达, 刘世荣, 刘兴良, 等. 川西亚高山天然次生林不同演替阶段土壤-微生物生物量及其化学计量特征[J]. 生态学报, 2021, 41(12):4900-4912.
HU Z D, LIU S R, LIU X L, et al. Soil and soil microbial biomass contents and C:N:P stoichiometry at different succession stages of natural secondary forest in subalpine area of western Sichuan,China[J]. Acta Ecol Sin, 2021, 41(12):4900-4912.DOI:10.5846/stxb202008202170.
[10]
周正虎, 王传宽. 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化[J]. 植物生态学报, 2016, 40(12):1257-1266.
ZHOU Z H, WANG C K. Changes of the relationships between soil and microbes in carbon,nitrogen and phosphorus stoichiometry during ecosystem succession[J]. Chin J Plant Ecol, 2016, 40(12):1257-1266.DOI:10.17521/cjpe.2016.0218.
[11]
MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources:mechanisms and implications of microbial adaptations to their resources[J]. Front Microbiol, 2014, 5:22.DOI:10.3389/fmicb.2014.00022.
[12]
MÜLLER M, OELMANN Y, SCHICKHOFF U, et al. Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation[J]. Geoderma, 2017, 291:21-32.DOI:10.1016/j.geoderma.2016.12.015.
[13]
冯杰, 冯娜, 刘艳芳, 等. 面向规模化应用的竹荪多糖液态深层发酵工艺优化[J]. 食品科学, 2020, 41(2):181-187.
FENG J, FENG N, LIU Y F, et al. Optimization of medium components for large-scale production of intracellular polysaccharides from Dictyophora indusiata in submerged fermentation[J]. Food Sci, 2020, 41(2):181-187.DOI:10.7506/spkx1002-6630-20181101-014.
[14]
彭超, 艾文胜, 谢韵帆, 等. 竹基质与菌种密度对棘托竹荪产量及营养品质的影响[J]. 热带作物学报, 2020, 41(6):1100-1107.
PENG C, AI W S, XIE Y F, et al. Effect of bamboo sawdust substrate and strain planting density to yield and nutritional quality of Dictyophora echinovolvata[J]. Chin J Trop Crops, 2020, 41(6):1100-1107.DOI:10.3969/j.issn.1000-2561.2020.06.005.
[15]
苏德伟, 林辉, 林春梅, 等. 不同生长时期竹荪覆土层土壤微生物、理化性质及其酶活性的变化研究[J]. 西南农业学报, 2014, 27(3):1170-1174.
SU D W, LIN H, LIN C M, et al. Study on changes of microorganisms,physicochemical property and enzyme activities about soil over Dictyophora indusiata at different growth stages[J]. Southwest China J Agric Sci, 2014, 27(3):1170-1174.DOI:10.16213/j.cnki.scjas.2014.03.066.
[16]
卢鹏, 谢锦忠, 童龙, 等. 麻竹林下竹荪仿野生种植关键技术研究[J]. 南京林业大学学报(自然科学版), 2016, 40(4):177-182.
LU P, XIE J Z, TONG L, et al. Study on the wild imitation cultivation technique for Dictyophora indusiata in Dendrocalamus latiflorus stands[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(4):177-182.DOI:10.3969/j.issn.1000-2006.2016.04.028.
[17]
白会超. 不同竹基料配方对竹荪产量和品质影响的研究[D]. 雅安: 四川农业大学, 2015.
BAI H C. The study of effects of different bamboo base formula on the yield and quality of Dictyophora[D]. Ya’an: Sichuan Agricultural University, 2015.
[18]
常颖萃, 蒋文静, 石妍, 等. 竹荪不同生育期土壤微生物动态变化[J]. 热带作物学报, 2013, 34(7):1228-1231.
CHANG Y C, JIANG W J, SHI Y, et al. Dynamic change of soil microorganisms at various growing stage of Dictyophora[J]. Chin J Trop Crops, 2013, 34(7):1228-1231.
[19]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M]. Beijing: Chinese Agriculture Press, 2000.
[20]
张利青, 彭晚霞, 宋同清, 等. 云贵高原喀斯特坡耕地土壤微生物量C、N、P空间分布[J]. 生态学报, 2012(7):2056-2065.
ZHANG L Q, PENG W X, SONG T Q, et al. Spatial heterogeneity of soil microbial biomass carbon,nitrogen,and phosphorus in sloping farmland in a Karst region on the Yunnan-Guizhou Plateau[J]. Acta Ecol Sin, 2012(7):2056-2065.DOI: 10.5846/stxb201108171204.
[21]
SHAO Y H, XIE Y X, WANG C Y, et al. Effects of different soil conservation tillage approaches on soil nutrients,water use and wheat-maize yield in rainfed dry-land regions of north China[J]. Eur J Agron, 2016, 81:37-45.DOI:10.1016/j.eja.2016.08.014.
[22]
赵睿宇, 李正才, 王斌, 等. 毛竹林地表稻草覆盖后翻耕对土壤有机碳的影响[J]. 生态学杂志, 2017, 36(8):2118-2126.
ZHAO R Y, LI Z C, WANG B, et al. Effects of straw mulching and scarification on soil labile organic carbon pool in a Phyllostachys edulis plantation[J]. Chin J Ecol, 2017, 36(8):2118-2126.DOI:10.13292/j.1000-4890.201708.016.
[23]
徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002, 39(1):83-90.
XU Y C, SHEN Q R, RAN W. Effects of zero-tillage and application of manure on soil microbial biomass C,N and P after sixteen years of cropping[J]. Acta Pedol Sin, 2002, 39(1):83-90.DOI:10.11766/trxb200103110113.
[24]
SPEDDING T A, HAMEL C, MEHUYS G R, et al. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems[J]. Soil Biol Biochem, 2004, 36(3):499-512.DOI:10.1016/j.soilbio.2003.10.026.
[25]
汤宏, 沈健林, 张杨珠, 等. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 2013, 27(1):240-246.
TANG H, SHEN J L, ZHANG Y Z, et al. Effect of rice straw incorporation and water management on soil microbial biomass carbon,nitrogen and dissolved organic carbon,nitrogen in a rice paddy field[J]. J Soil Water Conserv, 2013, 27(1):240-246.DOI:10.13870/j.cnki.stbcxb.2013.01.045.
[26]
徐华勤, 肖润林, 宋同清, 等. 稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J]. 生物多样性, 2008, 16(2):166-174.
XU H Q, XIAO R L, SONG T Q, et al. Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations[J]. Biodivers Sci, 2008, 16(2):166-174.DOI:10.3321/j.issn:1005-0094.2008.02.009.
[27]
张奇, 陈粲, 陈效民, 等. 不同深度秸秆还田对黄棕壤氮素和微生物生物量碳氮的影响[J]. 水土保持通报, 2019, 39(2):56-61.
ZHANG Q, CHEN C, CHEN X M, et al. Effects of straw returning to different soil depths on soil nitrogen and microbial biomass carbon and nitrogen in yellow brown soil[J]. Bull Soil Water Conserv, 2019, 39(2):56-61.DOI: 10.13961/j.cnki.stbctb.2019.02.009
[28]
SCHNÜRER J, ROSSWALL T. Mineralization of nitrogen from 15N labelled fungi,soil microbial biomass and roots and its uptake by barley plants[J]. Plant Soil, 1987, 102(1):71-78.DOI:10.1007/BF02370903.
[29]
崔纪超, 毛艳玲, 杨智杰, 等. 土壤微生物生物量磷研究进展[J]. 亚热带资源与环境学报, 2008, 3(4):80-89.
CUI J C, MAO Y L, YANG Z J, et al. Advances in soil microbial biomass phosphorus[J]. J Subtrop Resour Environ, 2008, 3(4):80-89.DOI:10.19687/j.cnki.1673-7105.2008.04.011.
[30]
任天志. 持续农业中的土壤生物指标研究[J]. 中国农业科学, 2000, 33(1):68-75.
REN T Z. Soil bioindicators in sustainable agriculture[J]. Sci Agric Sin, 2000, 33(1):68-75.
[31]
唐海明, 李超, 肖小平, 等. 有机肥氮投入比例对双季稻田根际土壤微生物生物量碳、氮和微生物熵的影响[J]. 应用生态学报, 2019, 30(4):1335-1343.
TANG H M, LI C, XIAO X P, et al. Effects of different manure nitrogen input ratio on rhizosphere soil microbial biomass carbon,nitrogen and microbial quotient in double-cropping rice field[J]. Chin J Appl Ecol, 2019, 30(4):1335-1343.DOI:10.13287/j.1001-9332.201904.014.
[32]
SINGH J S, RAGHUBANSHI A S, SINGH R S, et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature, 1989, 338: 499-500. DOI:10.1038/338499a0.
[33]
陈安娜, 王光军, 陈婵, 等. 亚热带不同林龄杉木林叶-根-土氮磷化学计量特征[J]. 生态学报, 2018, 38(11):4027-4036.
CHEN A N, WANG G J, CHEN C, et al. Variation in the N and P stoichiometry of leaf-root-soil during stand development in a Cunninghamia lanceolata plantation in subtropical China[J]. Acta Ecol Sin, 2018, 38(11):4027-4036.DOI: 10.5846/stxb201707141278.

基金

浙江省公益计划项目(LGN19C160002)
宁波市科技计划项目(2019C10048)
宁波市科技计划项目(2019B10020)
浙江省省院合作林业科技项目(2020SY05)
中央财政林业科技推广示范资金项目((2020)TS 17号)

编辑: 孟苗婧
PDF(1545 KB)

Accesses

Citation

Detail

段落导航
相关文章

/