南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2): 1-11.doi: 10.12302/j.issn.1000-2006.202101030
收稿日期:
2021-01-23
接受日期:
2021-05-04
出版日期:
2022-03-30
发布日期:
2022-04-08
通讯作者:
徐侠
基金资助:
XIE Junyi1(), XU Xia1,*(), CAI Bin2, ZHANG Huiguang2
Received:
2021-01-23
Accepted:
2021-05-04
Online:
2022-03-30
Published:
2022-04-08
Contact:
XU Xia
摘要:
森林生态系统具有碳源和碳汇双重功能,调控森林中碳输入方式对于实现我国“碳中和”目标具有重要意义。作为森林土壤有机碳(SOC)的主要来源,不同碳(C)输入方式(如地上凋落物、地下植物根系等)对森林生态系统土壤氮(N)循环的影响一直是相关学者的研究重点。笔者综述了目前国内外不同C输入方式对土壤活性N库、土壤N矿化、硝化过程及氧化亚氮(N2O)排放的影响研究现状,分析了森林土壤活性N库及N转化过程对不同C输入变化的响应,发现:① 地上C排除可以降低土壤有效态氮(主要包括
中图分类号:
谢君毅,徐侠,蔡斌,等. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 1-11.
XIE Junyi, XU Xia, CAI Bin, ZHANG Huiguang. Responses of forest soil labile nitrogen pool and nitrogen cycle to the changes of carbon input under “carbon neutrality”[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(2): 1-11.DOI: 10.12302/j.issn.1000-2006.202101030.
表1
森林野外C输入控制试验"
野外试验 field experiments | C输入 carbon input | 过程 process | 优缺点 advantages and disadvantages | 适用场景 applicable scene |
---|---|---|---|---|
凋落物去除及添加 | 阻止/增加凋落物分解向土壤中输入C | 通过控制地上凋落物输入土壤的数量和分解速率来研究森林土壤C库和C循环与地上凋落物的相关关系 | 操作简便,通过铺设网袋阻隔凋落物。但网对雨水具有一定的阻隔,且凋落物积存在网上对降雨的阻隔改变更明显 | 在天然林或人工林中适用范围较广 |
树干环割 | 通过截断树干韧皮部来阻止光合产物向地下部分输入C | 通过截断树干向地下根系输入C及其他养分来控制C向土壤中的输入过程 | 操作简便,使用特定工具即可完成,但对树体具有不可恢复的损伤 | 对土壤有不被扰动的要求和不考虑树木损伤 |
根系排除 | 阻止根系分泌及死亡根系向土壤输入C | 通过根部挖沟等方法阻止根系向土壤中输入C | 操作较为困难,需要人为挖沟阻断根系,一般需要到地下40 cm或更深才具有阻断效果 | 样地较为平坦且碎石瓦砾较少,人工林较为普遍 |
DIRT试验 | 阻止/增加凋落物和阻止地下根系向土壤中输入C | 通过控制森林凋落物输入来源和速率来研究森林有机质和养分的积累和动态变化 | 操作较为困难,但能综合考虑地上地下的输入控制,意义较大 | 需要综合了解地上地下的碳输入 |
ILTER DIRT试验 | 改进版的DIRT试验 | 通过跨气候带、土壤质地梯度的DIRT试验来研究长期自然气候因素和生物因素在控制土壤有机质积累中的相对重要性 | 操作困难,需要多站点联系,但可以通过试验了解不同气候带、不同土壤质地的长期变化规律,意义重大 | 需要了解不同气候带、土壤质地的碳输入控制 |
表2
地上(凋落物)C输入对土壤活性N库变化的影响"
研究区域 study area | 研究地 年份/a year of study | 地上碳输入 aboveground C input | 植被类型 vegetation type | 氨态氮变化 N change | 硝态氮变化 N change | 可溶性 氮变化 DON change | 微生物生物 量氮变化 MBN change | 参考文献 reference |
---|---|---|---|---|---|---|---|---|
中国青藏高原东部 | <1 | 添加 | 草地 | 降低 | 增加 | 不显著 | 降低 | [ |
中国青藏高原东缘 | <1 | 添加 | 灌木和草本 | 降低 | 增加 | - | - | [ |
中国长沙天际岭林场 | <1 | 添加 | 樟树林 | 增加 | - | - | - | [ |
中国长沙天际岭林场 | <1 | 去除 | 樟树林 | 降低 | - | - | - | [ |
研究区域 study area | 研究地 年份/a year of study | 地上碳输入 aboveground C input | 植被类型 vegetation type | 氨态氮变化 N change | 硝态氮变化 N change | 可溶性 氮变化 DON change | 微生物生物 量量氮变化 MBN change | 参考文献 reference |
中国内蒙古赛罕乌拉 | 1 | 去除 | 山杨次生林 | 降低 | 不显著 | — | — | [ |
中国内蒙古赛罕乌拉 | 1 | 添加 | 山杨次生林 | 增加 | 不显著 | — | — | [ |
德国 | 2 | 去除 | 阔叶林 | — | — | 不显著 | — | [ |
中国会同森林生态站 | 4 | 去除 | 杉木林 | 降低 | — | — | — | [ |
中国三明生态站 | 4 | 添加 | 杉木林 | 降低 | 降低 | 不显著 | 不显著 | [ |
中国三明生态站 | 4 | 去除 | 杉木林 | 增加 | 降低 | 降低 | 降低 | [ |
中国山西灵空山 | 5 | 去除 | 油松-辽东栎混交林 | 增加 | 不显著 | — | 不显著 | [ |
表3
地上(凋落物)C输入对土壤净N矿化及硝化速率变化的影响"
研究区域 study area | 研究地年份/a year of study | 地上C输入 aboveground C input | 植被类型 vegetation type | 净N矿化速率变化 net N mineralization rate change | 硝化速率变化 nitrification rate change | 参考文献 reference |
---|---|---|---|---|---|---|
中国青藏高原东缘 | <1 | 添加 | 灌木和草本 | 增加 | — | [ |
中国长沙天际岭林场 | <1 | 添加 | 樟树林 | 降低 | 不显著 | [ |
中国长沙天际岭林场 | <1 | 去除 | 樟树林 | 增加 | 降低 | [ |
中国湖南森林植物园 | <1 | 添加 | 樟树林 | 1月和7月增加 | 7月增加 | [ |
中国内蒙古赛罕乌拉 | 1 | 去除 | 山杨次生林 | 增加 | — | [ |
中国鼎湖山 | 1 | 去除 | 亚热带森林 | 增加 | 不显著 | [ |
中国宝天曼 | 1 | 去除 | 暖温带森林 | 不显著 | 不显著 | [ |
中国长白山 | 1 | 去除 | 中温带森林 | 增加 | 增加 | [ |
美国和中欧 | 5 | 去除 | 温带森林 | 不显著 | 不显著 | [ |
美国新罕布什尔州 | 8 | 去除 | 北方阔叶林 | 不显著 | 不显著 | [ |
美国Andrews森林 | 10 | 添加 | 温带森林 | 不显著 | 不显著 | [ |
表4
地下(根系)C输入对土壤活性N库变化的影响"
研究区域 study area | 研究地 年份/a year of study | 地下C输入 belowground C input | 植被类型 vegetation type | 氨态氮变化 change | 硝态氮变化 change | 可溶性 氮变化 DON change | 微生物生物 量氮变化 MBN change | 参考文献 reference |
---|---|---|---|---|---|---|---|---|
中国内蒙古赛罕乌拉 | 1 | 去除根系 | 山杨次生林 | 增加 | 不显著 | — | — | [ |
中国福建滨海沙地 | 1 | 去除根系 | 尾巨桉、纹荚相思 和木麻黄人工林 | — | — | — | 降低 | [ |
中国福建滨海沙地 | 2 | 去除根系 | 尾巨桉人工林 | 不显著 | 不显著 | — | 不显著 | [ |
中国福建滨海沙地 | 2 | 去除根系 | 纹荚相思人工林 | 不显著 | 不显著 | — | 不显著 | [ |
中国福建滨海沙地 | 2 | 去除根系 | 木麻黄人工林 | 降低 | 不显著 | — | 增加 | [ |
中国福建滨海沙地 | 2 | 去除根系 | 湿地松人工林 | 不显著 | 不显著 | — | 不显著 | [ |
美国Andrews森林 | 2 | 去除根系 | 温带森林 | — | — | 降低 | — | [ |
中国南平市王台镇 | 3 | 去除根系 | 杉木林 | 增加 | 不显著 | 降低 | — | [ |
中国会同森林生态站 | 4 | 去除根系 | 杉木林 | 降低 | — | — | — | [ |
表5
地下(根系)碳输入对土壤净N矿化及硝化速率变化的影响"
研究区域 study area | 研究地年份/a year of study | 地下C输入 belowground C input | 植被类型 vegetation type | 净N矿化速率变化 net N mineralization rate change | 硝化速率变化 nitrification rate change | 参考文献 reference |
---|---|---|---|---|---|---|
美国北卡罗来纳州教堂山 | <1 | 去除根系 | — | 增加 | 增加 | [ |
新西兰海岸沙地 | 2.25 | 去除根系 | 辐射松人工林 | 不显著 | 增加 | [ |
Harvard森林 | 5 | 去除根系 | 过渡性橡树-枫树-桦林 | 降低 | 增加 | [ |
美国Andrews森林 | 10 | 去除根系 | 温带森林 | 增加 | 增加 | [ |
[1] | IPCC. Climate change 2007:the physical science basis[M]// Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge UK: Cambridge University Press, 2007. |
[2] | 陆景陵, 胡霭堂. 植物营养学[M]. 北京: 高等教育出版社, 2006:105. |
LU J L, HU A T. Plant nutrition[M]. Beijing: Higher Education Press, 2006:105. | |
[3] | 周才平. 中国主要类型森林生态系统及区域氮循环研究[D]. 北京: 中国科学院地理科学与资源研究所, 2000. |
ZHOU C P. Regional nitrogen cycling of forest ecosystems in China[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, 2000. | |
[4] | IPCC. Climate change 2014,synthesis report: contribution of working groups Ⅰ,Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva Switzerland: IPCC, 2014. |
[5] |
VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea:How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115. DOI: 10.1007/BF00002772.
doi: 10.1007/BF00002772 |
[6] |
KALBITZ K, SCHMERWITZ J, SCHWESIG D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma, 2003, 113(3/4):273-291. DOI: 10.1016/S0016-7061(02)00365-8.
doi: 10.1016/S0016-7061(02)00365-8 |
[7] |
THOMAS B W, WHALEN J K, SHARIFI M, et al. Labile organic matter fractions as early-season nitrogen supply indicators in manure-amended soils[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(1):94-103. DOI: 10.1002/jpln.201400532.
doi: 10.1002/jpln.201400532 |
[8] | 陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环[J]. 生态学杂志, 2004, 23(5):126-133. |
CHEN F S, ZENG D H, HE X Y. Soil nitrogen transformation and cycling in forest ecosystem[J]. Chin J Ecol, 2004, 23(5):126-133. DOI: CNKI:SUN:STXZ.0.2004-05-024.
doi: CNKI:SUN:STXZ.0 |
|
[9] |
SULZMAN E W, BRANT J B, BOWDEN R D, et al. Contribution of aboveground litter,belowground litter,and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest[J]. Biogeochemistry, 2005, 73(1):231-256. DOI: 10.1007/s10533-004-7314-6.
doi: 10.1007/s10533-004-7314-6 |
[10] |
LAJTHA K, BOWDEN R D, CROW S, et al. The detrital input and removal treatment (DIRT) network[M]// Reference Module in Earth Systems and Environmental Sciences. Elsevier BV, 2017. DOI: 10.1016/B978-0-12-409548-9.09774-8.
doi: 10.1016/B978-0-12-409548-9.09774-8 |
[11] | 杨万勤, 邓仁菊, 张健. 森林凋落物分解及其对全球气候变化的响应[J]. 应用生态学报, 2007, 18(12):2889-2895. |
YANG W Q, DENG R J, ZHANG J. Forest litter decomposition and its responses to global climate change[J]. Chin J Appl Ecol, 2007, 18(12):2889-2895. DOI: CNKI:SUN:YYSB.0.2007-12-039.
doi: CNKI:SUN:YYSB.0.2007-12-039 |
|
[12] |
SARDANS J, GRAU O, CHEN H Y H, et al. Changes in nutrient concentrations of leaves and roots in response to global change factors[J]. Glob Chang Biol, 2017, 23(9):3849-3856. DOI: 10.1111/gcb.13721.
doi: 10.1111/gcb.13721 |
[13] |
DAVDSON R, RUMOR S, RONAD A. Biogeochemistry:soil warming and organic carbon content[J]. Nature, 2000, 408(6814):789-790. DOI: 10.1038/35048672.
doi: 10.1038/35048672 |
[14] | 郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4):93-100. |
GUO J F, YANG Y S, CHEN G S, et al. A review on litter decomposition in forest ecosystem[J]. Scientia Silvae Sinicae, 2006, 42(4):93-100. DOI: 10.3321/j.issn:1001-7488.2006.04.017.
doi: 10.3321/j.issn:1001-7488.2006.04.017 |
|
[15] | CHAPIN F S, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2011. |
[16] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2020, 43(8):648-657. |
JIA B R. Litter decomposition and its underlying mechanisms[J]. Chin J Plant Ecol, 2020, 43(8):648-657. DOI: 10.17521/cjpe.2019.0097.
doi: 10.17521/cjpe.2019.0097 |
|
[17] | IPCC. Climate change 1995:the science of climate change[M]. Cambridge: Cambridge University Press, 1996. |
[18] |
WARDLE D A, BARDGETT R D, KLIRONOMO J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677):1629-1633. DOI: 10.1126/science.1094875.
doi: 10.1126/science.1094875 |
[19] | 刘迎春. 基于生态调查数据整合分析的全球森林生态系统碳容量及其固碳潜力研究[D]. 北京: 中国科学院大学, 2013. |
LIU Y C. Carbon carrying capacity and carbon sequestration potential of global forests based on the integrated analysis of inventory dataset[D]. Beijing: The University of Chinese Academy of Sciences, 2013. | |
[20] |
FEKETE I, LAJTHA K, KOTROCZÓ Z, et al. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest[J]. Glob Chang Biol, 2017, 23(8):3154-3168. DOI: 10.1111/gcb.13669.
doi: 10.1111/gcb.13669 |
[21] | 吴福忠, 谭波. 森林凋落物分解过程与土壤动物的相互关系研究进展[J]. 四川农业大学学报, 2018, 36(5):569-575. |
WU F Z, TAN B. A review on the interactions between soil fauna and forest litter decomposition[J]. J Sichuan Agric Univ, 2018, 36(5):569-575. DOI: CNKI:SUN:SCND.0.2018-05-001.
doi: CNKI:SUN:SCND.0.2018-05-001 |
|
[22] | 韩其晟, 任宏刚, 刘建军. 秦岭主要森林凋落物中易分解和难分解植物残体含量及比值研究[J]. 西北林学院学报, 2012, 27(5):6-10. |
HAN Q S, REN H G, LIU J J. Contents and ratios of the decomposable and resistant plant material in the litters of the main trees in Qingling Mountains[J]. J Northwest For Univ, 2012, 27(5):6-10. DOI: 10.3969/j.issn.1001-7461.2012.05.02.
doi: 10.3969/j.issn.1001-7461.2012.05.02 |
|
[23] |
GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses[J]. Nat Rev Microbiol, 2020, 18(11):649-660. DOI: 10.1038/s41579-020-0402-3.
doi: 10.1038/s41579-020-0402-3 |
[24] |
FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide[J]. Journal of Ecology, 2013, 101:943-952. DOI: 10.1111/1365-2745.12092.
doi: 10.1111/1365-2745.12092 |
[25] | 王清奎. 碳输入方式对森林土壤碳库和碳循环的影响研究进展[J]. 应用生态学报, 2011, 22(4):1075-1081. |
WANG Q K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input[J]. Chin J Appl Ecol, 2011, 22(4):1075-1081. DOI: 10.13287/j.1001-9332.2011.0111.
doi: 10.13287/j.1001-9332.2011.0111 |
|
[26] | 温达志, 魏平, 张佑昌, 等. 鼎湖山南亚热带森林细根分解干物质损失和元素动态[J]. 生态学杂志, 1998, 17(2):1-6. |
WEN D Z, WEI P, ZHANG Y C, et al. Dry mass loss and chemical changes of the decomposed fine roots in three China south subtropical forests at Dinghushan[J]. Chin J Ecol, 1998, 17(2):1-6. DOI: 10.1088/0256-307X/15/12/025.
doi: 10.1088/0256-307X/15/12/025 |
|
[27] |
BERG B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management, 2000, 133(1/2):13-22. DOI: 10.1016/s0378-1127(99)00294-7.
doi: 10.1016/s0378-1127(99)00294-7 |
[28] |
ASSEFA D, GODBOLD D L, BELAY B, et al. Fine root morphology,biochemistry and litter quality indices of fast- and slow-growing woody species in Ethiopian highland forest[J]. Ecosystems, 2018, 21(3):482-494. DOI: 10.1007/s10021-017-0163-7.
doi: 10.1007/s10021-017-0163-7 |
[29] | 张秀娟, 吴楚, 梅莉, 等. 水曲柳和落叶松人工林根系分解与养分释放[J]. 应用生态学报, 2006, 17(8):1370-1376. |
ZHANG X J, WU C, MEI L, et al. Root decomposition and nutrient release of Fraxinus manshurica and Larix gmelinii plantations[J]. Chin J Appl Ecol, 2006, 17(8):1370-1376. DOI: CNKI:SUN:YYSB.0.2006-08-002.
doi: CNKI:SUN:YYSB.0.2006-08-002 |
|
[30] |
HAN S H, KIM S, CHANG H, et al. Increased soil temperature stimulates changes in carbon,nitrogen,and mass loss in the fine roots of Pinus koraiensis under experimental warming and drought[J]. Turkish Journal of Agriculture and Forestry, 2019, 43(1):80-87. DOI: 10.3906/tar-1807-162.
doi: 10.3906/tar-1807-162 |
[31] |
IVERSEN C M, LEDFORD J, NORBY R J. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest[J]. New Phytologist, 2010, 179(3):837-847. DOI: 10.1111/j.1469-8137.2008.02516.x.
doi: 10.1111/j.1469-8137.2008.02516.x. |
[32] |
USMAN S, SINGH S P, Rawat Y S, et al. Fine root decomposition and nitrogen mineralization patters in Quercus leucotrichphora and Pinus roxburghii forest in central Himalaya[J]. Forest Ecology and Management, 2000, 131:191-199. DOI: 10.1016/S0378-1127(99)00213-3.
doi: 10.1016/S0378-1127(99)00213-3 |
[33] | 王光军, 田大伦, 闫文德, 等. 去除和添加凋落物对枫香(Liqui-dambar formosana)和樟树(Cinnamomum camphora)林土壤呼吸的影响[J]. 生态学报, 2009(2):643-652. |
WANG G J, TIAN D L, YAN W D, et al. Impact of litter addition and exclusion on soil respiration in a Liquidambar formosana forest and a nearby Cinnamomum camphora forest of central southern China[J]. Acta Ecolo-gica Sinica, 2009(2):643-652. DOI: 10.3321/j.issn:1000-0933.2009.02.012.
doi: 10.3321/j.issn:1000-0933.2009.02.012 |
|
[34] |
RODTASSANA C, TANNER E V J. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects[J]. Ecology, 2018, 99(3):735-742. DOI: 10.1002/ecy.2143.
doi: 10.1002/ecy.2143 |
[35] |
SINGH B, NORDGREN A, LFVENIUS M O, et al. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:extending observations beyond the first year[J]. Plant Cell and Environment, 2003, 26(8):1287-1296. DOI: 10.1046/j.1365-3040.2003.01053.x.
doi: 10.1046/j.1365-3040.2003.01053.x. |
[36] |
FENG W, ZOU X, SCHAEFER D. Above- and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China[J]. Soil Biology and Biochemistry, 2009, 41:978-983. DOI: 10.1016/j.soilbio.2008.10.002.
doi: 10.1016/j.soilbio.2008.10.002 |
[37] |
HÖGBERG P, NORDGREN A, BUCHMANN N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature, 2001, 411:789-791. DOI: 10.1038/35081058.
doi: 10.1038/35081058 |
[38] |
ZELLER B, LIU J, BUCHMANN N, et al. 2008. Tree girdling increases soil N mineralisation in two spruce stands[J]. Soil Bio-logy and Biochemistry, 2008, 40:1155-1166. DOI: 10.1016/j.soilbio.2007.12.009.
doi: 10.1016/j.soilbio.2007.12.009 |
[39] | NADELHOFFER K, BOWDEN R D, BOONE R, et al. Controls on forest soil organic matter development and dynamics,chronic litter manipulation as a potential international LTER activity[C]//LAJTHA K, VANDERBILT K. Cooperation in long term ecological research in central and eastern europe,proceedings of the ILTER regional workshop,22-25 June,1999, Budapest,Hungary.Corvallis,OR,Oregon State University: 2000. |
[40] | NADELHOFFER K J, BOWDEN R D, BOWDEN R D, et al. The DIRT experiment:litter and root influences on forest soil organic matter stocks and function[M]// FOSTER D, ABER J. Forests in time:the environmental consequences of 1000 years of change in New England. New Haven: Yale University Press, 2004,300-315. |
[41] |
GHOLZ H L, FISHER R F, PRICHETT W L. Nutrient dynamics in slash pine plantation ecosystems[J]. Ecology, 1985, 66(3):647-659. DOI: 10.2307/1940526.
doi: 10.2307/1940526 |
[42] | 马婷瑶, 翟凯燕, 金雪梅, 等. 间伐对马尾松人工林土壤活性氮组分的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(12):44-53. |
MA T Y, ZHAI K Y, JIN X M, et al. Effects of thinning on soil active nitrogen in masson pine plantation[J]. J Northwest Sci-Tech Univ Agr, 2017, 45(12):44-53. DOI: 10.13207/j.cnki.jnwafu.2017.12.007.
doi: 10.13207/j.cnki.jnwafu.2017.12.007 |
|
[43] |
WANG Q K, YU Y Z, HE T X, et al. Aboveground and belowground litter have equal contributions to soil CO2 emission:an evidence from a 4-year measurement in a subtropical forest[J]. Plant Soil, 2017, 421(1/2):7-17. DOI: 10.1007/s11104-017-3422-7.
doi: 10.1007/s11104-017-3422-7 |
[44] | 阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020, 57(4):954-962. |
RUAN C Y, LIU X F, LÜ M K, et al. Effects of litter carbon,nitrogen and enzyme activity in soil under Chinese fir[J]. Acta Pedol Sin, 2020, 57(4):954-962. DOI: 10.11766/trxb201808060408.
doi: 10.11766/trxb201808060408 |
|
[45] | 胡霞, 吴宁, 王乾, 等. 青藏高原东缘雪被覆盖和凋落物添加对土壤氮素动态的影响[J]. 生态环境学报, 2012, 21(11):1789-1794. |
HU X, WU N, WANG Q, et al. Effects of snowpack and litter input on soil nitrogen dynamics in the eastern Tibetan Plateau[J]. Ecol Environmnet, 2012, 21(11):1789-1794. DOI: 10.3969/j.issn.1674-5906.2012.11.003.
doi: 10.3969/j.issn.1674-5906.2012.11.003 |
|
[46] | 郝娜. 大兴安岭南段次生林土壤氮矿化对不同碳输入的响应[D]. 呼和浩特: 内蒙古农业大学, 2016. |
HAO N. Soil nitrogen mineralization in response to different of avenues carbon input in secondary forest southern of Daxinganling[D]. Hohhot: Inner Mongolia Agricultural University, 2016. | |
[47] | 邓华平, 王光军, 耿赓. 樟树人工林土壤氮矿化对改变凋落物输入的响应[J]. 北京林业大学学报, 2010, 32(3):47-51. |
DENG H P, WANG G J, GENG G. Response of nitrogen mineralization to litter addition and exclusion in soils of Cinnamomum camphora plantation[J]. J Beijing For Univ, 2010, 32(3):47-51. DOI: 10.13332/j.1000-1522.2010.03.035.
doi: 10.13332/j.1000-1522.2010.03.035 |
|
[48] | 唐佐芯, 赵静, 孙筱璐, 等. 氮添加和凋落物处理对油松-辽东栎混交林土壤氮的影响[J]. 生态学杂志, 2018, 37(1):75-81. |
TANG Z X, ZHAO J, SUN X L, et al. Effects of nitrogen addition and litter manipulation on soil nitrogen in a mixed Pinus tabuliformis and Quercus wutaishanica forest[J]. Chin J Ecol, 2018, 37(1):75-81. DOI: 10.13292/j.1000-4890.201801.013.
doi: 10.13292/j.1000-4890.201801.013 |
|
[49] |
PARK J H, MATZNER E. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux[J]. Biogeochemistry, 2003, 66(3):265-286. DOI: 10.1023/B:BIOG.0000005341.19412.7b.
doi: 10.1023/B:BIOG.0000005341.19412.7b |
[50] |
HOOKER T D, STARK J M. Soil C and N cycling in three semiarid vegetation types:response to an in situ pulse of plant detritus[J]. Soil Biology and Biochemistry, 2008, 40:2678-2685. DOI: 10.1016/j.soilbio.2008.07.015.
doi: 10.1016/j.soilbio.2008.07.015 |
[51] |
XIONG Y M, XIA H P, LI Z A, et al. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China[J]. Plant Soil, 2008, 304(1/2):179-188. DOI: 10.1007/s11104-007-9536-6.
doi: 10.1007/s11104-007-9536-6 |
[52] |
HU X, SUN G, YIN P, et al. Effects of nutrient input on soil nitrogen cycle in winter in the alpine zone[J]. Journal of Biobased Materials and Bioenergy, 2018, 12(1):129-133. DOI: 10.1166/jbmb.2018.1748.
doi: 10.1166/jbmb.2018.1748 |
[53] |
SAYER E J, POWERS J S, TANNER E V. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere[J]. PLoS One, 2007, 2(12):e1299. DOI: 10.1371/journal.pone.0001299.
doi: 10.1371/journal.pone.0001299 |
[54] |
SERNA M D, POMARES F. Evaluation of chemical indices of soil organic nitrogen availability in calcareous soils[J]. Soil Science Society of America Journal, 1992, 56:1486-1491. DOI: 10.2136/sssaj1992.03615995005600050025x.
doi: 10.2136/sssaj1992.03615995005600050025x |
[55] |
KIM I, DEURER M, SIVAKUMARAN S, et al. The impact of soil carbon management and environmental conditions on N mineralization[J]. Biol Fertil Soils, 2011, 47(6):709-714. DOI: 10.1007/s00374-010-0526-0.
doi: 10.1007/s00374-010-0526-0 |
[56] |
FISK M C, FAHEY T J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests[J]. Biogeochemistry, 2001, 53(2):201-223. DOI: 10.1023/A:1010693614196.
doi: 10.1023/A:1010693614196 |
[57] |
HOLUB S M, LAJTHA K, SPEARS J D H, et al. Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe[J]. Forest Ecology and Management, 2005, 214:320-330. DOI: 10.1016/j.foreco.2005.04.016.
doi: 10.1016/j.foreco.2005.04.016 |
[58] | BREWER E A. Response of soil microbial communities and nitrogen cycling processes to changes in vegetation input[D]. Eugene: Oregon State University, 2010. |
[59] | 姜博涵. 我国不同气候带森林生态系统中凋落物和林下植被去除对土壤氮矿化的影响[D]. 开封: 河南大学, 2019. |
JIANG B H. Effects of litter and understory vegetation removal on soil nitrogen mineralization in forest ecosystems in different climatic zones of China[D]. Kaifeng: Henan University, 2019. | |
[60] | 文汲. 施氮及凋落物输入对亚热带樟树人工林土壤氮矿化的影响[D]. 长沙: 中南林业科技大学, 2014. |
WEN J. The effect of nitrogen fertilization and litter input on soil nitrogen mineralization of Cinnamomum camphora plantation in subtropical aera[D]. Changsha: Central South University of Forestry and Technology, 2014. | |
[61] |
SUN X L, ZHAO J, YOU Y M, et al. Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China[J]. Sci Rep, 2016, 6:19536. DOI: 10.1038/srep19536.
doi: 10.1038/srep19536 |
[62] |
KNOWLES R. Denitrification[J]. Microbiol Rev, 1982, 46(1):43-70. DOI: 10.1007/BF02010678.
doi: 10.1007/BF02010678 |
[63] |
PATHAK H. Emissions of nitrous oxide from soil[J]. Currentence, 1999, 77,359-369. DOI: 10.1038/23281.
doi: 10.1038/23281 |
[64] |
O̓CONNELL C S, RUAN L, SILVER W L. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions[J]. Nat Commun, 2018, 9(1):1348. DOI: 10.1038/s41467-018-03352-3.
doi: 10.1038/s41467-018-03352-3 |
[65] |
ZOU J, TOBIN B, LUO Y, et al. Differential responses of soil CO2 and N2O fluxes to experimental warming[J]. Agricultural & Forest Meteorology, 2018, 259:11-22. DOI: 10.1016/j.agrformet.2018.04.006.
doi: 10.1016/j.agrformet.2018.04.006 |
[66] |
SONG L, TIAN P, ZHANG J B, et al. Effects of three years of si-mulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Sci Total Environ, 2017, 609:1303-1311. DOI: 10.1016/j.scitotenv.2017.08.017.
doi: 10.1016/j.scitotenv.2017.08.017 |
[67] |
ROSE T J, KEARNEY L J, MORRIS S, et al. Pinto peanut cover crop nitrogen contributions and potential to mitigate nitrous oxide emissions in subtropical coffee plantations[J]. Science of The Total Environment, 2019, 656:108-117. DOI: 10.1016/j.scitotenv.2018.11.291.
doi: 10.1016/j.scitotenv.2018.11.291 |
[68] |
LEY M, LEHMANN M F, NIKLAUS P A, et al. Alteration of nitrous oxide emissions from floodplain soils by aggregate size,litter accumulation and plant-soil interactions[J]. Biogeosciences, 2018, 15:7043-7057. DOI: 10.5194/bg-2018-281.
doi: 10.5194/bg-2018-281 |
[69] |
CHENG Y, WANG J, LIU Y, et al. Litter decomposition reduces either N2O or NO production in strongly acidic coniferous and broad-leaved forest soils under anaerobic conditions[J]. J Soils Sediments, 2014, 14(3):549-557. DOI: 10.1007/s11368-013-0795-y.
doi: 10.1007/s11368-013-0795-y |
[70] |
ZHENG X, LIU Q, ZHENG L Y, et al. Litter removal enhances soil N2O emissions:implications for management of leaf-harvesting Cinnamomum camphora plantations[J]. Forest Ecology and Ma-nagement, 2020, 466:118-121. DOI: 10.1016/j.foreco.2020.118121.
doi: 10.1016/j.foreco.2020.118121 |
[71] |
FAN J, LUO R, MCCONKEY B G, et al. Effects of nitrogen deposition and litter layer management on soil CO2,N2O,and CH4 emissions in a subtropical pine forestland[J]. Scientific Reports, 2020, 10(1):8959. DOI: 10.1038/s41598-020-65952-8.
doi: 10.1038/s41598-020-65952-8 |
[72] |
MARHAN S, AUBER J, POLL C. Additive effects of earthworms,nitrogen-rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil[J]. Applied Soil Ecology, 2015, 86:55-61. DOI: 10.1016/j.apsoil.2014.10.006.
doi: 10.1016/j.apsoil.2014.10.006 |
[73] |
HUANG Y, ZOU J, ZHENG X, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J]. Soil Biology & Biochemistry, 2004, 36(6):973-981. DOI: 10.1016/j.soilbio.2004.02.009.
doi: 10.1016/j.soilbio.2004.02.009 |
[74] | 田亚男, 何志龙, 吕昭琪, 等. 凋落茶叶对华中地区酸化茶园土壤N2O与CO2排放的影响[J]. 农业环境科学学报, 2016, 35(8):1625-1632. |
TIAN Y N, HE Z L, LÜ Z Q, et al. Effects of tea litter applications on N2O and CO2 fluxes from acidification of tea garden soil in Central China[J]. J Agro-Environ Sci, 2016, 35(8):1625-1632. DOI: 10.11654/jaes.2016-0052.
doi: 10.11654/jaes.2016-0052 |
|
[75] |
GIULIANO B, MARIA GRAZIA S, SILVIA C, et al. Phytotoxicity dynamics of decaying plant materials[J]. New Phytologist, 2010, 169:571-578. DOI: 10.1111/j.1469-8137.2005.01611.x.
doi: 10.1111/j.1469-8137.2005.01611.x. |
[76] |
WEIDENHAMER J D, CALLAWAY R M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function[J]. J Chem Ecol, 2010, 36(1):59-69. DOI: 10.1007/s10886-009-9735-0.
doi: 10.1007/s10886-009-9735-0 |
[77] |
CHE R X, QIN J J, TAHMASBIAN I, et al. Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes[J]. Soil Biology and Biochemistry, 2018, 120:145-152. DOI: 10.1016/j.soilbio.2018.02.006.
doi: 10.1016/j.soilbio.2018.02.006 |
[78] | 章宪, 范跃新, 罗茜, 等. 凋落物和根系处理对杉木人工林土壤氮素的影响[J]. 亚热带资源与环境学报, 2014, 9(2):39-44. |
ZHANG X, FAN Y X, LUO X, et al. Effects of litter and root treatments on soil nitrogen content of Chinese fir plantation[J]. J Subtrop Resour Environ, 2014, 9(2):39-44. DOI: 10.3969/j.issn.1673-7105.2014.02.007.
doi: 10.3969/j.issn.1673-7105.2014.02.007 |
|
[79] | 周建斌, 陈竹君, 郑险峰. 土壤可溶性有机氮及其在氮素供应及转化中的作用[J]. 土壤通报, 2005, 36(2):244-248. |
ZHOU J B, CHEN Z J, ZHENG X F. Soluble organic nitrogen in soil and its roles in the sapply and transformation of N[J]. Chin J Soil Sci, 2005, 36(2):244-248. DOI: 10.3321/j.issn:0564-3945.2005.02.025.
doi: 10.3321/j.issn:0564-3945.2005.02.025 |
|
[80] |
YANO Y, LAJTHA K, SOLLINS P, et al. Chemistry and dynamics of dissolved organic matter in a temperate conife-rous forest on andic soils:effects of litter quality[J]. Ecosystems, 2005, 8(3):286-300. DOI: 10.1007/s10021-005-0022-9.
doi: 10.1007/s10021-005-0022-9 |
[81] |
LAJTHA K, CROW S E, YANO Y, et al. Detrital controls on soil solution N and dissolved organic matter in soils:a field experiment[J]. Biogeochemistry, 2005, 76(2):261-281. DOI: 10.1007/s10533-005-5071-9.
doi: 10.1007/s10533-005-5071-9 |
[82] |
KRAMER C, TRUMBORE S, FRÖBERG M, et al. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil[J]. Soil Biology and Biochemistry, 2010, 42(7):1028-1037. DOI: 10.1016/j.soilbio.2010.02.021.
doi: 10.1016/j.soilbio.2010.02.021 |
[83] |
ZHANG Z, PHILLIPS R P, ZHAO W, et al. Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests[J]. Functional Ecology, 2018. DOI: 10.1111/1365-2435.13236.
doi: 10.1111/1365-2435.13236 |
[84] | 林宝平, 何宗明, 郜士垒, 等. 去除根系和凋落物对滨海沙地3种防护林土壤碳氮库的短期影响[J]. 生态学报, 2017, 37(12):4061-4071. |
LIN B P, HE Z M, GAO S L, et al. Short-term effects of root exclusion and litter removal on sandy soil carbon and nitrogen pools in three coastal plantation forests[J]. Acta Ecol Sin, 2017, 37(12):4061-4071. DOI: 10.5846/stxb201603130449.
doi: 10.5846/stxb201603130449 |
|
[85] | 梁艺凡, 万晓华, 桑昌鹏, 等. 滨海防护林土壤氮组分对凋落物和根系去除的响应[J]. 森林与环境学报, 2019, 39(2):127-134. |
LIANG Y F, WAN X H, SANG C P, et al. Response of soil nitrogen pool to litter and root exclusion in costal protection forest[J]. J For Environ, 2019, 39(2):127-134. DOI: 10.13324/j.cnki.jfcf.2019.02.003.
doi: 10.13324/j.cnki.jfcf.2019.02.003 |
|
[86] |
HAICHAR F E Z, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology & Biochemistry, 2014, 77(7):69-80. DOI: 10.1016/j.soilbio.2014.06.017.
doi: 10.1016/j.soilbio.2014.06.017 |
[87] |
PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exu-dation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation[J]. Ecol Lett, 2011, 14(2):187-194. DOI: 10.1111/j.1461-0248.2010.01570.x.
doi: 10.1111/j.1461-0248.2010.01570.x. |
[88] |
ROSS D J, SCOTT N A, TATE K R, et al. Root effects on soil carbon and nitrogen cycling in a Pinus radiata D. Don plantation on a coastal sand[J]. Soil Research, 2001, 39(5):1027-1039. DOI: 10.1071/sr00058.
doi: 10.1071/sr00058 |
[89] |
DRAKE J E, OISHI A C, GIASSON M A, et al. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric[CO2] and N fertilization[J]. Agricultural & Forest Meteorology, 2012, 165(15):43-52. DOI: 10.1016/j.agrformet.2012.05.017.
doi: 10.1016/j.agrformet.2012.05.017 |
[90] | WILSON L I. Characterization of soil carbon and nitrogen pools following a decade of detritus manipulation in a temperate conife-rous forest[D]. Eugene: Oregon State University, 2008. |
[91] |
HU X K, LIU L L, ZU B, et al. Asynchronous responses of soil carbon dioxide,nitrous oxide emissions and net nitrogen mineralization to enhanced fine root input[J]. Soil Biology and Biochemistry, 2016, 92:67-78. DOI: 10.1016/j.soilbio.2015.09.019.
doi: 10.1016/j.soilbio.2015.09.019 |
[92] |
MOTHAPO N, CHEN H, CUBETA M A, et al. Phylogenetic,taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy[J]. Soil Biology & Biochemistry, 2015, 83:160-175. DOI: 10.1016/j.soilbio.2015.02.001.
doi: 10.1016/j.soilbio.2015.02.001 |
[93] |
YUAN Y S, ZHAO W Q, ZHANG Z L, et al. Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots[J]. Soil Biology & Biochemistry, 2018, 121:16-23. DOI: 10.1016/j.soilbio.2018.03.002.
doi: 10.1016/j.soilbio.2018.03.002 |
[94] |
HENRY S, TEXIER S, HALLET S, et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers:insight into the role of root exudates[J]. Environmental Microbiology, 2010, 10(11):3082-3092. DOI: 10.1111/j.1462-2920.2008.01599.x.
doi: 10.1111/j.1462-2920.2008.01599.x. |
[95] |
RUMMEL P S, PFEIFFER B, PAUSCH J, et al. Maize root and shoot litter quality controls short-term CO2 and N2O emissions and bacterial community structure of arable soil[J]. Biogeoences Discussions, 2019, 187:843-858. 10.5194/bg-2019-320.
doi: 10.5194/bg-2019-320 |
[1] | 杨云峰, 余春华. 植被空间类型对城市绿地碳中和绩效的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 209-218. |
[2] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[3] | 黄梓敬, 徐侠, 张惠光, 蔡斌, 李良彬. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32. |
[4] | 张智光. 可再生资源型企业绿色战略的演进规律研究——以林业企业为例[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 1-11. |
[5] | 杨红强, 余智涵. 全球木质林产品碳科学研究动态及未来的重点问题[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 219-228. |
[6] | 孙龙, 窦旭, 胡同欣. 林火对森林生态系统碳氮磷生态化学计量特征影响研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 1-9. |
[7] | 王新新, 韩建刚, 徐传红, 徐莎. 碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 174-180. |
[8] | 刘泽彬,程瑞梅,肖文发,王娜. 三峡库区库首森林生态系统植物叶片碳氮磷化学计量特征研究[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 27-33. |
[9] | 张文文,肖晗冉,杨宝玲,董可嘉,阮宏华,郑阿宝,沈彩芹,曹国华. 不同土地利用类型土壤动物对土壤氮矿化季节变化的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 20-26. |
[10] | 王姮,李明诗. 气候变化对森林生态系统的主要影响述评[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 167-173. |
[11] | 修珍珍,王斌,杨校生,余超,张龙,格日乐图. 庙山坞自然保护区森林生态系统服务功能评估[J]. 南京林业大学学报(自然科学版), 2015, 39(04): 81-87. |
[12] | 路秋玲,王国兵,杨平,郑阿宝,阮宏华*. 森林生态系统不同碳库碳储量估算方法的评价[J]. 南京林业大学学报(自然科学版), 2012, 36(05): 155-160. |
[13] | 张骏,高洪娣,应宝根,王坚娅,袁位高,朱锦茹,伊力塔,江波*. 浙江省仙居县公益林生物量动态分析[J]. 南京林业大学学报(自然科学版), 2011, 35(05): 147-150. |
[14] | 王邵军,阮宏华. 全球变化背景下森林生态系统碳循环及其管理[J]. 南京林业大学学报(自然科学版), 2011, 35(02): 113-116. |
[15] | 曾群英,周元满,李际平,罗立平,刘素青*. 场级森林生态系统区划与组织实施[J]. 南京林业大学学报(自然科学版), 2010, 34(04): 102-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||