“碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响

谢君毅, 徐侠, 蔡斌, 张惠光

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 1-11.

PDF(1363 KB)
PDF(1363 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 1-11. DOI: 10.12302/j.issn.1000-2006.202101030
林学前沿

“碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响

作者信息 +

Responses of forest soil labile nitrogen pool and nitrogen cycle to the changes of carbon input under “carbon neutrality”

Author information +
文章历史 +

摘要

森林生态系统具有碳源和碳汇双重功能,调控森林中碳输入方式对于实现我国“碳中和”目标具有重要意义。作为森林土壤有机碳(SOC)的主要来源,不同碳(C)输入方式(如地上凋落物、地下植物根系等)对森林生态系统土壤氮(N)循环的影响一直是相关学者的研究重点。笔者综述了目前国内外不同C输入方式对土壤活性N库、土壤N矿化、硝化过程及氧化亚氮(N2O)排放的影响研究现状,分析了森林土壤活性N库及N转化过程对不同C输入变化的响应,发现:① 地上C排除可以降低土壤有效态氮(主要包括 $NH_{4}^{+}$-N和 $NO_{3}^{-}$-N)的含量,但地下C排除却增加了土壤 $NH_{4}^{+}$-N含量。C输入方式的改变对土壤微生物生物量氮(MBN)含量影响具有不确定性,这可能与生态系统类型、树种组成、时间尺度等因素相关。此外,地下C排除对土壤可溶性氮(DON)含量的影响较地上C排除的大,地下根系可能是影响土壤DON含量的主要贡献者。② 地上C输入对土壤N矿化及硝化速率的影响在短期内较大,而长期影响较小。其主要是通过间接改变土壤微生物活性从而影响了土壤N矿化及硝化过程,地下C排除增加了土壤N矿化速率,且随着时间尺度的增加表现更加明显。③ 地上C输入通过改变硝化和反硝化微生物的可利用C源而间接影响了N2O的排放,且受到树种影响显著,而地下C输入对N2O的影响因根系质量等的差异而发生改变。综上可知,森林土壤活性N库及N循环过程对不同C输入具有不同的响应机制,且受生态系统类型、物种、时间等因素影响较大。目前关于两种乃至多物种不同C的输入对森林土壤N影响的研究较少,且定性研究较为普遍;对优化森林生态系统地上地下C输入动态模型和精准预算不足,尚未建立完整的碳减排生态补偿机制。今后的研究亟须定量了解不同森林生态系统不同的C输入及其两者或者多物种之间的交互影响对土壤N的影响机制,且需更多地考虑在时间尺度上的长期变化过程;需要提升核算与预测森林地上地下碳中和能力,加快森林碳中和技术研发,为提前实现“碳中和”战略目标提供科技支撑。

Abstract

The forest ecosystem has the dual functions of carbon source and carbon sink, and regulating the carbon input mode in forest is of great significance for realizing the goal of “carbon neutrality” in China. The effects of changes in carbon (C) inputs (such as above-ground litter and under-ground roots) on soil nitrogen (N) cycling have long been a research focus in forest ecosystems. Based on previous studies worldwide, this paper reviews the research progress on the effects of different C inputs on the responses of the forest soil active N pool and N transformation processes, including soil active N pools, soil N mineralization, nitrification processes, and nitrous oxide (N2O) emissions. We found: (1) Above-ground C removal reduced soil available nitrogen contents (mainly $NH_{4}^{+}$-N and $NO_{3}^{-}$-N). However, under-ground C removal increased the soil $NH_{4}^{+}$-N content. Changes in different C inputs showed inconsistent effects on soil microbial biomass nitrogen (MBN), which may be related to the ecosystem type, tree species composition, timescale, and other factors. In addition, the influence of under-ground C removal on soil soluble nitrogen (DON) was greater than that of above-ground C removal, and the under-ground root system may be the main contributor to soil DON. (2) The effects of above-ground C inputs on soil N mineralization and nitrification rates were greater in the short but less in the long term. Soil N mineralization and nitrification processes were affected indirectly by changes in soil microbial activity. The under-ground C removal increased soil N mineralization rates, and the effect was more obvious with an increase in a time scale. (3) Above-ground C inputs indirectly affected N2O emissions by changing the available C sources of nitrifying and denitrifying microorganisms and was significantly affected by tree species. However, the effect of the under-ground C inputs on N2O varied with the root quality. Current research mainly focuses on the impacts of a certain type of above-and under-ground C inputs and its removal on soil N pool components and N transformation. In conclusion, soil active N pools and N cycling differed in the response mechanisms to different C inputs in forests and were greatly affected by the ecosystem type, species, time, and other factors. The dynamic model and accurate budget for optimizing the above- and under-ground carbon inputs of forest ecosystems are insufficient, and a complete ecological compensation mechanism for carbon emission reduction has not been established. Future research needs to quantitatively understand the mechanisms of soil N affected by different C inputs and interactions between two or more species in different forest ecosystems, and more consideration should be given to the long-term soil N dynamics. Therefore, it is necessary to improve the ability of accounting and forecasting forest carbon neutralization above-and under-ground, accelerate the development of C neutralization technology in forest ecosystems in future research, which provides a scientific and technological support for achieving the “C neutrality” strategic goal in advance.

关键词

森林生态系统 / 凋落物及根系C输入 / 土壤活性N库 / N矿化 / N2O排放 / N循环 / 碳中和

Key words

forest ecosystem / litter and root carbon input / soil labile nitrogen pools / nitrogen mineralization / N2O emission / nitrogen cycle / carbon neutrality

引用本文

导出引用
谢君毅, 徐侠, 蔡斌, . “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版). 2022, 46(2): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202101030
XIE Junyi, XU Xia, CAI Bin, et al. Responses of forest soil labile nitrogen pool and nitrogen cycle to the changes of carbon input under “carbon neutrality”[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202101030
中图分类号: S718   

参考文献

[1]
IPCC. Climate change 2007:the physical science basis[M]// Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge UK: Cambridge University Press, 2007.
[2]
陆景陵, 胡霭堂. 植物营养学[M]. 北京: 高等教育出版社, 2006:105.
LU J L, HU A T. Plant nutrition[M]. Beijing: Higher Education Press, 2006:105.
[3]
周才平. 中国主要类型森林生态系统及区域氮循环研究[D]. 北京: 中国科学院地理科学与资源研究所, 2000.
ZHOU C P. Regional nitrogen cycling of forest ecosystems in China[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, 2000.
[4]
IPCC. Climate change 2014,synthesis report: contribution of working groups ⅠⅡ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva Switzerland: IPCC, 2014.
[5]
VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea:How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115. DOI: 10.1007/BF00002772.
[6]
KALBITZ K, SCHMERWITZ J, SCHWESIG D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties[J]. Geoderma, 2003, 113(3/4):273-291. DOI: 10.1016/S0016-7061(02)00365-8.
[7]
THOMAS B W, WHALEN J K, SHARIFI M, et al. Labile organic matter fractions as early-season nitrogen supply indicators in manure-amended soils[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(1):94-103. DOI: 10.1002/jpln.201400532.
[8]
陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环[J]. 生态学杂志, 2004, 23(5):126-133.
CHEN F S, ZENG D H, HE X Y. Soil nitrogen transformation and cycling in forest ecosystem[J]. Chin J Ecol, 2004, 23(5):126-133. DOI: CNKI:SUN:STXZ.0.2004-05-024.
[9]
SULZMAN E W, BRANT J B, BOWDEN R D, et al. Contribution of aboveground litter,belowground litter,and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest[J]. Biogeochemistry, 2005, 73(1):231-256. DOI: 10.1007/s10533-004-7314-6.
[10]
LAJTHA K, BOWDEN R D, CROW S, et al. The detrital input and removal treatment (DIRT) network[M]// Reference Module in Earth Systems and Environmental Sciences. Elsevier BV, 2017. DOI: 10.1016/B978-0-12-409548-9.09774-8.
[11]
杨万勤, 邓仁菊, 张健. 森林凋落物分解及其对全球气候变化的响应[J]. 应用生态学报, 2007, 18(12):2889-2895.
YANG W Q, DENG R J, ZHANG J. Forest litter decomposition and its responses to global climate change[J]. Chin J Appl Ecol, 2007, 18(12):2889-2895. DOI: CNKI:SUN:YYSB.0.2007-12-039.
[12]
SARDANS J, GRAU O, CHEN H Y H, et al. Changes in nutrient concentrations of leaves and roots in response to global change factors[J]. Glob Chang Biol, 2017, 23(9):3849-3856. DOI: 10.1111/gcb.13721.
[13]
DAVDSON R, RUMOR S, RONAD A. Biogeochemistry:soil warming and organic carbon content[J]. Nature, 2000, 408(6814):789-790. DOI: 10.1038/35048672.
[14]
郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4):93-100.
GUO J F, YANG Y S, CHEN G S, et al. A review on litter decomposition in forest ecosystem[J]. Scientia Silvae Sinicae, 2006, 42(4):93-100. DOI: 10.3321/j.issn:1001-7488.2006.04.017.
[15]
CHAPIN F S, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2011.
[16]
贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2020, 43(8):648-657.
JIA B R. Litter decomposition and its underlying mechanisms[J]. Chin J Plant Ecol, 2020, 43(8):648-657. DOI: 10.17521/cjpe.2019.0097.
[17]
IPCC. Climate change 1995:the science of climate change[M]. Cambridge: Cambridge University Press, 1996.
[18]
WARDLE D A, BARDGETT R D, KLIRONOMO J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677):1629-1633. DOI: 10.1126/science.1094875.
[19]
刘迎春. 基于生态调查数据整合分析的全球森林生态系统碳容量及其固碳潜力研究[D]. 北京: 中国科学院大学, 2013.
LIU Y C. Carbon carrying capacity and carbon sequestration potential of global forests based on the integrated analysis of inventory dataset[D]. Beijing: The University of Chinese Academy of Sciences, 2013.
[20]
FEKETE I, LAJTHA K, KOTROCZÓ Z, et al. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest[J]. Glob Chang Biol, 2017, 23(8):3154-3168. DOI: 10.1111/gcb.13669.
[21]
吴福忠, 谭波. 森林凋落物分解过程与土壤动物的相互关系研究进展[J]. 四川农业大学学报, 2018, 36(5):569-575.
WU F Z, TAN B. A review on the interactions between soil fauna and forest litter decomposition[J]. J Sichuan Agric Univ, 2018, 36(5):569-575. DOI: CNKI:SUN:SCND.0.2018-05-001.
[22]
韩其晟, 任宏刚, 刘建军. 秦岭主要森林凋落物中易分解和难分解植物残体含量及比值研究[J]. 西北林学院学报, 2012, 27(5):6-10.
HAN Q S, REN H G, LIU J J. Contents and ratios of the decomposable and resistant plant material in the litters of the main trees in Qingling Mountains[J]. J Northwest For Univ, 2012, 27(5):6-10. DOI: 10.3969/j.issn.1001-7461.2012.05.02.
[23]
GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses[J]. Nat Rev Microbiol, 2020, 18(11):649-660. DOI: 10.1038/s41579-020-0402-3.
[24]
FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide[J]. Journal of Ecology, 2013, 101:943-952. DOI: 10.1111/1365-2745.12092.
[25]
王清奎. 碳输入方式对森林土壤碳库和碳循环的影响研究进展[J]. 应用生态学报, 2011, 22(4):1075-1081.
WANG Q K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input[J]. Chin J Appl Ecol, 2011, 22(4):1075-1081. DOI: 10.13287/j.1001-9332.2011.0111.
[26]
温达志, 魏平, 张佑昌, 等. 鼎湖山南亚热带森林细根分解干物质损失和元素动态[J]. 生态学杂志, 1998, 17(2):1-6.
WEN D Z, WEI P, ZHANG Y C, et al. Dry mass loss and chemical changes of the decomposed fine roots in three China south subtropical forests at Dinghushan[J]. Chin J Ecol, 1998, 17(2):1-6. DOI: 10.1088/0256-307X/15/12/025.
[27]
BERG B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management, 2000, 133(1/2):13-22. DOI: 10.1016/s0378-1127(99)00294-7.
[28]
ASSEFA D, GODBOLD D L, BELAY B, et al. Fine root morphology,biochemistry and litter quality indices of fast- and slow-growing woody species in Ethiopian highland forest[J]. Ecosystems, 2018, 21(3):482-494. DOI: 10.1007/s10021-017-0163-7.
[29]
张秀娟, 吴楚, 梅莉, 等. 水曲柳和落叶松人工林根系分解与养分释放[J]. 应用生态学报, 2006, 17(8):1370-1376.
ZHANG X J, WU C, MEI L, et al. Root decomposition and nutrient release of Fraxinus manshurica and Larix gmelinii plantations[J]. Chin J Appl Ecol, 2006, 17(8):1370-1376. DOI: CNKI:SUN:YYSB.0.2006-08-002.
[30]
HAN S H, KIM S, CHANG H, et al. Increased soil temperature stimulates changes in carbon,nitrogen,and mass loss in the fine roots of Pinus koraiensis under experimental warming and drought[J]. Turkish Journal of Agriculture and Forestry, 2019, 43(1):80-87. DOI: 10.3906/tar-1807-162.
[31]
IVERSEN C M, LEDFORD J, NORBY R J. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest[J]. New Phytologist, 2010, 179(3):837-847. DOI: 10.1111/j.1469-8137.2008.02516.x.
[32]
USMAN S, SINGH S P, Rawat Y S, et al. Fine root decomposition and nitrogen mineralization patters in Quercus leucotrichphora and Pinus roxburghii forest in central Himalaya[J]. Forest Ecology and Management, 2000, 131:191-199. DOI: 10.1016/S0378-1127(99)00213-3.
[33]
王光军, 田大伦, 闫文德, 等. 去除和添加凋落物对枫香(Liqui-dambar formosana)和樟树(Cinnamomum camphora)林土壤呼吸的影响[J]. 生态学报, 2009(2):643-652.
WANG G J, TIAN D L, YAN W D, et al. Impact of litter addition and exclusion on soil respiration in a Liquidambar formosana forest and a nearby Cinnamomum camphora forest of central southern China[J]. Acta Ecolo-gica Sinica, 2009(2):643-652. DOI: 10.3321/j.issn:1000-0933.2009.02.012.
[34]
RODTASSANA C, TANNER E V J. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects[J]. Ecology, 2018, 99(3):735-742. DOI: 10.1002/ecy.2143.
[35]
SINGH B, NORDGREN A, LFVENIUS M O, et al. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:extending observations beyond the first year[J]. Plant Cell and Environment, 2003, 26(8):1287-1296. DOI: 10.1046/j.1365-3040.2003.01053.x.
[36]
FENG W, ZOU X, SCHAEFER D. Above- and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China[J]. Soil Biology and Biochemistry, 2009, 41:978-983. DOI: 10.1016/j.soilbio.2008.10.002.
[37]
HÖGBERG P, NORDGREN A, BUCHMANN N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature, 2001, 411:789-791. DOI: 10.1038/35081058.
[38]
ZELLER B, LIU J, BUCHMANN N, et al. 2008. Tree girdling increases soil N mineralisation in two spruce stands[J]. Soil Bio-logy and Biochemistry, 2008, 40:1155-1166. DOI: 10.1016/j.soilbio.2007.12.009.
[39]
NADELHOFFER K, BOWDEN R D, BOONE R, et al. Controls on forest soil organic matter development and dynamics,chronic litter manipulation as a potential international LTER activity[C]//LAJTHA K, VANDERBILT K. Cooperation in long term ecological research in central and eastern europe,proceedings of the ILTER regional workshop,22-25 June,1999, Budapest,Hungary.Corvallis,OR,Oregon State University: 2000.
[40]
NADELHOFFER K J, BOWDEN R D, BOWDEN R D, et al. The DIRT experiment:litter and root influences on forest soil organic matter stocks and function[M]// FOSTER D, ABER J. Forests in time:the environmental consequences of 1000 years of change in New England. New Haven: Yale University Press, 2004,300-315.
[41]
GHOLZ H L, FISHER R F, PRICHETT W L. Nutrient dynamics in slash pine plantation ecosystems[J]. Ecology, 1985, 66(3):647-659. DOI: 10.2307/1940526.
[42]
马婷瑶, 翟凯燕, 金雪梅, 等. 间伐对马尾松人工林土壤活性氮组分的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(12):44-53.
MA T Y, ZHAI K Y, JIN X M, et al. Effects of thinning on soil active nitrogen in masson pine plantation[J]. J Northwest Sci-Tech Univ Agr, 2017, 45(12):44-53. DOI: 10.13207/j.cnki.jnwafu.2017.12.007.
[43]
WANG Q K, YU Y Z, HE T X, et al. Aboveground and belowground litter have equal contributions to soil CO2 emission:an evidence from a 4-year measurement in a subtropical forest[J]. Plant Soil, 2017, 421(1/2):7-17. DOI: 10.1007/s11104-017-3422-7.
[44]
阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020, 57(4):954-962.
RUAN C Y, LIU X F, M K, et al. Effects of litter carbon,nitrogen and enzyme activity in soil under Chinese fir[J]. Acta Pedol Sin, 2020, 57(4):954-962. DOI: 10.11766/trxb201808060408.
[45]
胡霞, 吴宁, 王乾, 等. 青藏高原东缘雪被覆盖和凋落物添加对土壤氮素动态的影响[J]. 生态环境学报, 2012, 21(11):1789-1794.
HU X, WU N, WANG Q, et al. Effects of snowpack and litter input on soil nitrogen dynamics in the eastern Tibetan Plateau[J]. Ecol Environmnet, 2012, 21(11):1789-1794. DOI: 10.3969/j.issn.1674-5906.2012.11.003.
[46]
郝娜. 大兴安岭南段次生林土壤氮矿化对不同碳输入的响应[D]. 呼和浩特: 内蒙古农业大学, 2016.
HAO N. Soil nitrogen mineralization in response to different of avenues carbon input in secondary forest southern of Daxinganling[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
[47]
邓华平, 王光军, 耿赓. 樟树人工林土壤氮矿化对改变凋落物输入的响应[J]. 北京林业大学学报, 2010, 32(3):47-51.
DENG H P, WANG G J, GENG G. Response of nitrogen mineralization to litter addition and exclusion in soils of Cinnamomum camphora plantation[J]. J Beijing For Univ, 2010, 32(3):47-51. DOI: 10.13332/j.1000-1522.2010.03.035.
[48]
唐佐芯, 赵静, 孙筱璐, 等. 氮添加和凋落物处理对油松-辽东栎混交林土壤氮的影响[J]. 生态学杂志, 2018, 37(1):75-81.
TANG Z X, ZHAO J, SUN X L, et al. Effects of nitrogen addition and litter manipulation on soil nitrogen in a mixed Pinus tabuliformis and Quercus wutaishanica forest[J]. Chin J Ecol, 2018, 37(1):75-81. DOI: 10.13292/j.1000-4890.201801.013.
[49]
PARK J H, MATZNER E. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux[J]. Biogeochemistry, 2003, 66(3):265-286. DOI: 10.1023/B:BIOG.0000005341.19412.7b.
[50]
HOOKER T D, STARK J M. Soil C and N cycling in three semiarid vegetation types:response to an in situ pulse of plant detritus[J]. Soil Biology and Biochemistry, 2008, 40:2678-2685. DOI: 10.1016/j.soilbio.2008.07.015.
[51]
XIONG Y M, XIA H P, LI Z A, et al. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China[J]. Plant Soil, 2008, 304(1/2):179-188. DOI: 10.1007/s11104-007-9536-6.
[52]
HU X, SUN G, YIN P, et al. Effects of nutrient input on soil nitrogen cycle in winter in the alpine zone[J]. Journal of Biobased Materials and Bioenergy, 2018, 12(1):129-133. DOI: 10.1166/jbmb.2018.1748.
[53]
SAYER E J, POWERS J S, TANNER E V. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere[J]. PLoS One, 2007, 2(12):e1299. DOI: 10.1371/journal.pone.0001299.
[54]
SERNA M D, POMARES F. Evaluation of chemical indices of soil organic nitrogen availability in calcareous soils[J]. Soil Science Society of America Journal, 1992, 56:1486-1491. DOI: 10.2136/sssaj1992.03615995005600050025x.
[55]
KIM I, DEURER M, SIVAKUMARAN S, et al. The impact of soil carbon management and environmental conditions on N mineralization[J]. Biol Fertil Soils, 2011, 47(6):709-714. DOI: 10.1007/s00374-010-0526-0.
[56]
FISK M C, FAHEY T J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests[J]. Biogeochemistry, 2001, 53(2):201-223. DOI: 10.1023/A:1010693614196.
[57]
HOLUB S M, LAJTHA K, SPEARS J D H, et al. Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe[J]. Forest Ecology and Management, 2005, 214:320-330. DOI: 10.1016/j.foreco.2005.04.016.
[58]
BREWER E A. Response of soil microbial communities and nitrogen cycling processes to changes in vegetation input[D]. Eugene: Oregon State University, 2010.
[59]
姜博涵. 我国不同气候带森林生态系统中凋落物和林下植被去除对土壤氮矿化的影响[D]. 开封: 河南大学, 2019.
JIANG B H. Effects of litter and understory vegetation removal on soil nitrogen mineralization in forest ecosystems in different climatic zones of China[D]. Kaifeng: Henan University, 2019.
[60]
文汲. 施氮及凋落物输入对亚热带樟树人工林土壤氮矿化的影响[D]. 长沙: 中南林业科技大学, 2014.
WEN J. The effect of nitrogen fertilization and litter input on soil nitrogen mineralization of Cinnamomum camphora plantation in subtropical aera[D]. Changsha: Central South University of Forestry and Technology, 2014.
[61]
SUN X L, ZHAO J, YOU Y M, et al. Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China[J]. Sci Rep, 2016, 6:19536. DOI: 10.1038/srep19536.
[62]
KNOWLES R. Denitrification[J]. Microbiol Rev, 1982, 46(1):43-70. DOI: 10.1007/BF02010678.
[63]
PATHAK H. Emissions of nitrous oxide from soil[J]. Currentence, 1999, 77,359-369. DOI: 10.1038/23281.
[64]
O̓CONNELL C S, RUAN L, SILVER W L. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions[J]. Nat Commun, 2018, 9(1):1348. DOI: 10.1038/s41467-018-03352-3.
[65]
ZOU J, TOBIN B, LUO Y, et al. Differential responses of soil CO2 and N2O fluxes to experimental warming[J]. Agricultural & Forest Meteorology, 2018, 259:11-22. DOI: 10.1016/j.agrformet.2018.04.006.
[66]
SONG L, TIAN P, ZHANG J B, et al. Effects of three years of si-mulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Sci Total Environ, 2017, 609:1303-1311. DOI: 10.1016/j.scitotenv.2017.08.017.
[67]
ROSE T J, KEARNEY L J, MORRIS S, et al. Pinto peanut cover crop nitrogen contributions and potential to mitigate nitrous oxide emissions in subtropical coffee plantations[J]. Science of The Total Environment, 2019, 656:108-117. DOI: 10.1016/j.scitotenv.2018.11.291.
[68]
LEY M, LEHMANN M F, NIKLAUS P A, et al. Alteration of nitrous oxide emissions from floodplain soils by aggregate size,litter accumulation and plant-soil interactions[J]. Biogeosciences, 2018, 15:7043-7057. DOI: 10.5194/bg-2018-281.
[69]
CHENG Y, WANG J, LIU Y, et al. Litter decomposition reduces either N2O or NO production in strongly acidic coniferous and broad-leaved forest soils under anaerobic conditions[J]. J Soils Sediments, 2014, 14(3):549-557. DOI: 10.1007/s11368-013-0795-y.
[70]
ZHENG X, LIU Q, ZHENG L Y, et al. Litter removal enhances soil N2O emissions:implications for management of leaf-harvesting Cinnamomum camphora plantations[J]. Forest Ecology and Ma-nagement, 2020, 466:118-121. DOI: 10.1016/j.foreco.2020.118121.
[71]
FAN J, LUO R, MCCONKEY B G, et al. Effects of nitrogen deposition and litter layer management on soil CO2,N2O,and CH4 emissions in a subtropical pine forestland[J]. Scientific Reports, 2020, 10(1):8959. DOI: 10.1038/s41598-020-65952-8.
[72]
MARHAN S, AUBER J, POLL C. Additive effects of earthworms,nitrogen-rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil[J]. Applied Soil Ecology, 2015, 86:55-61. DOI: 10.1016/j.apsoil.2014.10.006.
[73]
HUANG Y, ZOU J, ZHENG X, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J]. Soil Biology & Biochemistry, 2004, 36(6):973-981. DOI: 10.1016/j.soilbio.2004.02.009.
[74]
田亚男, 何志龙, 吕昭琪, 等. 凋落茶叶对华中地区酸化茶园土壤N2O与CO2排放的影响[J]. 农业环境科学学报, 2016, 35(8):1625-1632.
TIAN Y N, HE Z L, Z Q, et al. Effects of tea litter applications on N2O and CO2 fluxes from acidification of tea garden soil in Central China[J]. J Agro-Environ Sci, 2016, 35(8):1625-1632. DOI: 10.11654/jaes.2016-0052.
[75]
GIULIANO B, MARIA GRAZIA S, SILVIA C, et al. Phytotoxicity dynamics of decaying plant materials[J]. New Phytologist, 2010, 169:571-578. DOI: 10.1111/j.1469-8137.2005.01611.x.
[76]
WEIDENHAMER J D, CALLAWAY R M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function[J]. J Chem Ecol, 2010, 36(1):59-69. DOI: 10.1007/s10886-009-9735-0.
[77]
CHE R X, QIN J J, TAHMASBIAN I, et al. Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes[J]. Soil Biology and Biochemistry, 2018, 120:145-152. DOI: 10.1016/j.soilbio.2018.02.006.
[78]
章宪, 范跃新, 罗茜, 等. 凋落物和根系处理对杉木人工林土壤氮素的影响[J]. 亚热带资源与环境学报, 2014, 9(2):39-44.
ZHANG X, FAN Y X, LUO X, et al. Effects of litter and root treatments on soil nitrogen content of Chinese fir plantation[J]. J Subtrop Resour Environ, 2014, 9(2):39-44. DOI: 10.3969/j.issn.1673-7105.2014.02.007.
[79]
周建斌, 陈竹君, 郑险峰. 土壤可溶性有机氮及其在氮素供应及转化中的作用[J]. 土壤通报, 2005, 36(2):244-248.
ZHOU J B, CHEN Z J, ZHENG X F. Soluble organic nitrogen in soil and its roles in the sapply and transformation of N[J]. Chin J Soil Sci, 2005, 36(2):244-248. DOI: 10.3321/j.issn:0564-3945.2005.02.025.
[80]
YANO Y, LAJTHA K, SOLLINS P, et al. Chemistry and dynamics of dissolved organic matter in a temperate conife-rous forest on andic soils:effects of litter quality[J]. Ecosystems, 2005, 8(3):286-300. DOI: 10.1007/s10021-005-0022-9.
[81]
LAJTHA K, CROW S E, YANO Y, et al. Detrital controls on soil solution N and dissolved organic matter in soils:a field experiment[J]. Biogeochemistry, 2005, 76(2):261-281. DOI: 10.1007/s10533-005-5071-9.
[82]
KRAMER C, TRUMBORE S, FRÖBERG M, et al. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil[J]. Soil Biology and Biochemistry, 2010, 42(7):1028-1037. DOI: 10.1016/j.soilbio.2010.02.021.
[83]
ZHANG Z, PHILLIPS R P, ZHAO W, et al. Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests[J]. Functional Ecology, 2018. DOI: 10.1111/1365-2435.13236.
[84]
林宝平, 何宗明, 郜士垒, 等. 去除根系和凋落物对滨海沙地3种防护林土壤碳氮库的短期影响[J]. 生态学报, 2017, 37(12):4061-4071.
LIN B P, HE Z M, GAO S L, et al. Short-term effects of root exclusion and litter removal on sandy soil carbon and nitrogen pools in three coastal plantation forests[J]. Acta Ecol Sin, 2017, 37(12):4061-4071. DOI: 10.5846/stxb201603130449.
[85]
梁艺凡, 万晓华, 桑昌鹏, 等. 滨海防护林土壤氮组分对凋落物和根系去除的响应[J]. 森林与环境学报, 2019, 39(2):127-134.
LIANG Y F, WAN X H, SANG C P, et al. Response of soil nitrogen pool to litter and root exclusion in costal protection forest[J]. J For Environ, 2019, 39(2):127-134. DOI: 10.13324/j.cnki.jfcf.2019.02.003.
[86]
HAICHAR F E Z, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology & Biochemistry, 2014, 77(7):69-80. DOI: 10.1016/j.soilbio.2014.06.017.
[87]
PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exu-dation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation[J]. Ecol Lett, 2011, 14(2):187-194. DOI: 10.1111/j.1461-0248.2010.01570.x.
[88]
ROSS D J, SCOTT N A, TATE K R, et al. Root effects on soil carbon and nitrogen cycling in a Pinus radiata D. Don plantation on a coastal sand[J]. Soil Research, 2001, 39(5):1027-1039. DOI: 10.1071/sr00058.
[89]
DRAKE J E, OISHI A C, GIASSON M A, et al. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric[CO2] and N fertilization[J]. Agricultural & Forest Meteorology, 2012, 165(15):43-52. DOI: 10.1016/j.agrformet.2012.05.017.
[90]
WILSON L I. Characterization of soil carbon and nitrogen pools following a decade of detritus manipulation in a temperate conife-rous forest[D]. Eugene: Oregon State University, 2008.
[91]
HU X K, LIU L L, ZU B, et al. Asynchronous responses of soil carbon dioxide,nitrous oxide emissions and net nitrogen mineralization to enhanced fine root input[J]. Soil Biology and Biochemistry, 2016, 92:67-78. DOI: 10.1016/j.soilbio.2015.09.019.
[92]
MOTHAPO N, CHEN H, CUBETA M A, et al. Phylogenetic,taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy[J]. Soil Biology & Biochemistry, 2015, 83:160-175. DOI: 10.1016/j.soilbio.2015.02.001.
[93]
YUAN Y S, ZHAO W Q, ZHANG Z L, et al. Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots[J]. Soil Biology & Biochemistry, 2018, 121:16-23. DOI: 10.1016/j.soilbio.2018.03.002.
[94]
HENRY S, TEXIER S, HALLET S, et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers:insight into the role of root exudates[J]. Environmental Microbiology, 2010, 10(11):3082-3092. DOI: 10.1111/j.1462-2920.2008.01599.x.
[95]
RUMMEL P S, PFEIFFER B, PAUSCH J, et al. Maize root and shoot litter quality controls short-term CO2 and N2O emissions and bacterial community structure of arable soil[J]. Biogeoences Discussions, 2019, 187:843-858. 10.5194/bg-2019-320.

基金

国家自然科学基金青年科学基金项目(31700376)
江苏省高等学校自然科学研究重大项目(17KJA180006)
江苏省“六大人才高峰”项目(JY-041&TD-XYDXX-006)
南京林业大学“5151”人才计划
江苏省研究生科研与实践创新计划项目(KYCX21-0868)

编辑: 王国栋
PDF(1363 KB)

Accesses

Citation

Detail

段落导航
相关文章

/